
Theoretical Computer Science 331 (2005) 97–114
www.elsevier.com/locate/tcs

Realizability and verification of MSC graphs�

Rajeev Alura,∗, Kousha Etessamib, Mihalis Yannakakisc
aDepartment of Computer and Information Science, University of Pennsylvania, 3330 Walnut Street,

Philadelphia, PA 19104, USA
bLaboratory for Foundations of Computer Science, School of Informatics, The King’s Buildings, Mayfield Road,

Edinburgh EH9 3JZ, Scotland, UK
cDepartment of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, NY 10027, USA

Received 30 November 2001; received in revised form 31 October 2003

Abstract

Scenario-based specifications such as message sequence charts (MSC) offer an intuitive and visual
way to describe design requirements. MSC-graphs allow convenient expression of multiple scenarios,
and can be viewed as an earlymodelof the system that can be subjected to a variety of analyses.
Problems such as LTL model checking are undecidable for MSC-graphs in general, but are known to
be decidable for the class ofboundedMSC-graphs.

Our first set of results concerns checkingrealizabilityof bounded MSC-graphs. An MSC-graph is
realizable if there is a distributed implementation that generates precisely the behaviors in the graph.
There are two notions of realizability,weakandsafe, depending on whether or not we require the
implementation to be deadlock-free. It is known that for a finite set of MSCs, weak realizability is
coNP-complete while safe realizability has a polynomial-time solution. We establish that for bounded
MSC-graphs, weak realizability is, surprisingly, undecidable, while safe realizability is in EXPSPACE.

Our second set of results concerns verification of MSC-graphs. While checking properties of a
graphG, besides verifying all the scenarios in the setL(G) of MSCs specified byG, it is desirable
to verify all the scenarios in the setLw(G)—the closureof G, that contains the implied scenarios
that any distributed implementation ofG must include. For checking whether a given MSCM is a
possible behavior, checkingM ∈ L(G) is NP-complete, but checkingM ∈ Lw(G) has a quadratic

�A preliminary version of this paper appears inProceedings of the 28th International Colloquium onAutomata,
Languages, and Programming(ICALP’01), LNCS 2076, Springer, pp. 797–808, 2001. This research was partially
supported by NSF Career award CCR97-34115, NSF award CCR99-70925, and Alfred P. Sloan Faculty Fellowship.

∗Corresponding author.
E-mail address:alur@cis.upenn.edu(R. Alur).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.034

http://www.elsevier.com/locate/tcs
mailto:alur@cis.upenn.edu

98 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

solution. For temporal logic specifications, considering the closure makes the verification problem
harder: while checking LTL properties ofL(G) is PSPACE-complete for bounded graphsG, checking
even simple “local” properties ofLw(G) is undecidable.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Formal verification; Software specification; Message sequence charts

1. Introduction

Message sequence charts (MSCs) are a commonly used visual notation for describing
message exchanges between concurrent processes. They have become popular among soft-
ware engineers for early requirements specification. Recently MSCs have been standardized
by ITU [10], and incorporated in modern software engineering notations such as UML[7].
In the simplest form, an MSC depicts the desired exchange of messages, and corresponds
to a single (partial-order) execution of the system. In recent years, a variety of features have
been introduced so that a designer can specify multiple scenarios conveniently. In particular,
MSC-graphsallow MSCs to be combined using operations such as choice, concatenation,
and repetition. MSC-graphs can be viewed as an early model of the system that can be sub-
jected to formal analysis. This has motivated the development of algorithms for a variety of
analyses including detecting race conditions and timing conflicts[2], pattern matching[14],
detecting non-local choice[4], and model checking[3], and tools such as uBET[9] and
MESA [5].

An MSC-graph consists of a graphG whose nodes are labeled by MSCs, andG is
viewed as defining the setL(G) of all MSCs obtained by concatenating the MSCs that
appear along any (directed) finite path from the designated start node ofG. It is worth not-
ing that the traditional high-level model for concurrent systems has been communicating
state machines. Both communicating state machines and MSC-graphs can be viewed as
specifying sets of behaviors, but the two offer dual views: the former is a parallel com-
position of sequential machines, while the latter is a sequential composition of concurrent
executions. The complexity of a variety of verification questions in the communicating-
state-machines model has been well understood: typically the problems are undecidable,
and we must assume a bound on the sizes of message-buffers to obtain decidability results.
Recent results indicate that verification problems about MSC-graphs are also undecid-
able in general as a process can send a potentially unbounded number of messages yet
to be received[3,14]. The requirement for decidability, for problems such as LTL model
checking, seems to beboundedness: in a bounded MSC-graph, in every cycle, for every
pair of active processesp and q, there is a sequence of communications fromp to q
and back, ensuring that all the active processes stay roughly synchronized, thereby bound-
ing the number of pending messages[3,13]. The boundedness property of an MSC-graph
can be checked in time exponential in the number of processes[3], and linear in the size
of the MSC-graph. In this paper, we study a variety of analysis problems for bounded
MSC-graphs.

The first analysis question studied in this paper concerns a form of consistency, called
realizability, of specifications given as an MSC-graph. As observed in[1], a set of MSCs

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 99

can potentially imply other, distinct, MSCs whose communication pattern must be ex-
hibited by any concurrent system that realizes the given MSCs. An MSC-graphG is
said to be realizable if there exists a distributed implementation whose behaviors are
precisely the ones specified byG. The precise definition of realizability depends on the
underlying communication architecture for the distributed system[1]. In this paper we
focus on realizability under a basic FIFO communication architecture. Unspecified, but
implied, behaviors can be indicative of logical errors, and can be revealed by check-
ing realizability. We prove that checking this form of realizability is, surprisingly, un-
decidable for bounded MSC-graphs by a reduction from the Post correspondence prob-
lem. Intuitively, this is because, while a bounded graph ensures boundedness of buffers
in the scenarios specified in the graph, it does not ensure boundedness of buffers in its
distributed implementation where different processes can follow different paths in the
graph.

We study a second form of realizability, calledsaferealizability, where the distributed
implementation must bedeadlock-free. Safe realizability is a stronger notion of realizability,
and corresponds to inferring partial global behaviors from local views of the specified MSCs.
For a finite set of MSCs, checking weak realizability is coNP-complete, while checking safe
realizability has a polynomial-time solution[1]. For bounded MSC-graphs, we show that
checking safe realizability, unlike the weaker version, is decidable. We establish an upper
bound of EXPSPACE. We show the problem is PSPACE-hard, but matching the lower and
upper bounds remains an open problem.

For the purpose of verification of an MSC-graphG, due to the gap between an MSC-
graph and its implementation, besidesL(G), we also considerLw(G), theweak-closureof
G, containing all MSCs implied by MSCs inG, as a possible semantics. As we will see, a
verification question can have different answers and different complexities depending upon
this choice of semantics.

Our first verification problem concerns testing whether a given scenarioM is a possible
behavior of a given MSC-graphG. This is relevant in identifying if a new scenario is already
present in the existing specification, and also for detecting bugs ifM specifies an undesired
scenario. We show that the problem of verifying whetherM ∈ L(G) is NP-complete in
general, but can be solved in polynomial-time if the number of processes is bounded. We
establish that testing whetherM is in the closure ofL(G) can be solved in quadratic time.
This shows that it is easier to determine whether an MSC exists in the closure than in the
originally given set, and furthermore, the questions about the implementation ofG can
sometimes be verified without constructing it.

Finally, we consider the model checking problem, where the model is given by an MSC
graphG and the specification is given by automata or by temporal logic formulas. When
the semantics ofG is L(G), and the specification is given by an automaton accepting
linearizations corresponding to “bad” behaviors, the problem is undecidable in general and
PSPACE-complete for bounded graphs[3]. If the specification is given by “local” properties
that do not distinguish between different linearizations of the same MSC, model checking
can be solved in polynomial-time[15]. In this paper, we show that under the closure-
semantics, the model checking questions become harder: for an acyclic graph the problem
is coNP-complete, and for bounded graphs the problem is undecidable, even for simple
linearization-invariant local specifications.

100 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

2. Specification languages

2.1. Message sequence charts

We start by recalling the definition of message sequence charts. Informally, a single
MSC depicts the message exchanges in one communication scenario between entities of
a concurrent system. For example, in Fig.1 two MSCs are depicted giving two distinct
communication scenarios in a client-server system where messages pass through a proxy.
In the left scenario, the proxy simply relays the request message from the client to the server,
while in the right scenario the proxy has a cached copy of the requested item, and hence
responds to the client without involving the server.

Our formal definition of MSCs captures the essence of the ITU standard MSC’96, and
is analogous to the definitions of labeled MSCs given in[1–3]. Let {P1, . . . , Pn} be a set of
processes, and� be a message alphabet. We use the labelsend(i, j, a) to denote the event
“processPi sends the messagea to processPj ”. Similarly, receive(i, j, a) denotes the event
“processPj receives the messagea from processPi”. Define the set�S = {send(i, j, a) |
1� i, j�n & a ∈ �} of send labels, the set�R = {receive(i, j, a) | 1� i, j�n & a ∈ �}
of receive labels, and�̂ = �S ∪ �R as the set ofevent labels. A �-labeled MSCM over
processes{P1, . . . , Pn} is given by:
• a finite setE of events which is partitioned into a setS of “send” events and a setR of

“receive” events;
• a mappingp that maps each evente to a process 1�p(e)�n on which it occurs;
• a bijective mappingf : S �→ R between send and receive events, matching each send

with its corresponding receive;
• a mappingl : E �→ �̂ which labels each event such thatl(S) ⊆ �S andl(R) ⊆ �R, and

furthermore for consistency of labels, for alls ∈ S, if l(s) = send(i, j, a) thenp(s) = i

andl(f (s)) = receive(i, j, a) andp(f (s)) = j ;
• for each 1� i�n, a total order� i on the events of processPi , that is, on the elements

of p−1(i), such that the transitive closure of the relation

� .= ⋃

1� i�n

� i ∪ {(s, f (s)) | s ∈ S}

is a partial order onE.

request A
request A

ProxyClient

A

Client Server

A

request A

ProxyServer

A

Fig. 1. Two simple MSCs depict client-server scenarios through a proxy.

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 101

We require all our MSCs to satisfy an additional FIFO condition:
• there is no reversal of the order in which two messages sent by some processPi are

received by another processPj , that is, for send eventss1, s2 ∈ S, if p(s1) = p(s2) = i,
ands1� i s2, thenf (s1)� j f (s2), wherej = p(f (s1)).

If the underlying architecture is not FIFO, then a weakernon-degeneracycondition can be
used. Non-degeneracy condition disallows reversals between a pair ofidenticalmessages
between a given pair of processes[1]. The results of this paper are developed using the FIFO
condition, but we will indicate when they also hold with the non-degeneracy condition.

Observe that the information in MSCs can be captured by any word over�̂ that corre-
sponds to the sequence of labels of any linearization that is consistent with the partial order
� . Furthermore, any word over̂� in which thesendandreceiveevents can be matched,
uniquely defines an MSC. Let us be more precise. A wordw = w1 · · ·w|E| over the alpha-
bet �̂ is a linearizationof an MSCM iff there exists a total ordere1 · · · e|E| of the events
in E such that wheneverei�ej , we havei�j , and for 1� i� |E|, wi = l(ei). Letw be
a word over�̂, and consider processesi andj . We define the projectionsw ⇑ send(i, j)
andw ⇑ receive(i, j) as follows. Ifw is the empty word, thenw ⇑ send(i, j) and
w ⇑ receive(i, j) equal the empty word. Supposew = xv, for x ∈ �̂. If x = send(i, j, a)
thenw ⇑ send(i, j) = a(v ⇑ send(i, j)) elsew ⇑ send(i, j) = v ⇑ send(i, j). If x =
receive(i, j, a) thenw ⇑ receive(i, j) = a(v ⇑ receive(i, j)) elsew ⇑ receive(i, j) =
v ⇑ receive(i, j). Now, a wordw is well-formedif for every prefixv of w, for every pair
of processesi andj , v ⇑ receive(i, j) is a prefix ofv ⇑ send(i, j). A wordw is complete
if for every pair of processesi andj ,w ⇑ send(i, j) = w ⇑ receive(i, j). A wordw over
�̂ is a linearization of an MSC iff it is well-formed and complete[1].

2.2. MSC graphs

A natural way to structure multiple scenarios is to employ graphs whose nodes are MSCs.
Formally, an MSC-graphG consists of a setV of vertices, a binary relation→ overV ,
an initial vertexvI , a set of terminal verticesV T, and a labeling function� that maps each
vertexv to an MSC. The paths that start at the initial vertex and end at a terminal vertex
represent (finite)accepting pathsof G, i.e., the finite executions of the system modeled
by the MSC-graph. To formally associate a set of MSCs with the MSC-graphG, we first
have to define a concatenation operation on MSCs. ConcatenationM ·M ′ corresponds to
a natural process-by-process pasting of the two MSCsM andM ′ together (see[3] for a
formal definition). Then, we can associate an MSC with each path by concatenating MSCs
corresponding to individual vertices. The (finite) languageL(G) of the graph is then all
MSCs of the form�(v0) ·�(v1) · · ·�(vn), wherev0v1 . . . vn is an accepting path inG. Since
MSCs are uniquely characterized by their linearizations, we will also useL(G) to denote
the set of all linearizations of the MSCs in it.

In general, the setL(G) is not regular. The problem arises, for instance, when there is
a cycle in the graph such that some process sends a message at some vertex in the cycle,
but does not receive any message at any vertex in the cycle. For example, consider the
MSC-graph with a single node with a self-loop, where the MSC associated with the node
consists of a single message edge. The language of this MSC graph is non-regular, because it

102 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

consists of strings of send’s and receive’s which are isomorphic to “properly parenthesized”
expressions over the alphabet{(,)}, a language known not to be a regular language. The
class of bounded MSCs avoids this problem. Given an MSC-graphG and a subsetU of its
vertices, define the communication graphHU of U as follows: the set of vertices ofHU is
the setP of all the processes, and there is an arc from processp to processq if p sends a
message toq in the MSC�(v) for somev ∈ U . For a setU of vertices, we denote byPU
the set of processes that send or receive a message in the MSC of some vertex inU , and
call them the active processes of the setU . We call an MSC-graphboundedif for every
cycle� ofG, the subgraph of the communication graphH� induced by the setP� of active
processes of the cycle is strongly connected. In other words, communication graphH� on all
the processes consists of one nontrivial strongly connected component and isolated nodes
corresponding to processes that are inactive throughout the cycle. In[3], it is shown that
if G is bounded, the set of linearizations of all the MSCs inL(G) is regular, and can be
generated by a nondeterministic automaton whose size is exponential in the size ofG. The
converse of the question, namely, characterizing regular languages using MSC graphs, is
studied in[8].

2.3. Concurrent automata

Our concurrency model is based on the standard buffered message-passing model of
communication. There are several choices to be made with regard to the particular com-
munication architecture of concurrent processes, such as synchrony/asynchrony and the
queuing disciplines on the buffers. We fix our architecture to a standard asynchronous set-
ting, with FIFO message buffers between all pairs of processes. We now formally define our
automataAi , and their (asynchronous) product�n

i=1Ai , which captures their joint behavior.

As in the previous section, let� be the message alphabet. Let�̂i be the set of labels
of events belonging to processPi , namely, the messages of the formsend(i, j, a) and
receive(j, i, a). The behavior of processPi is specified by an automatonAi over the alphabet
�̂i with the following components:(1) a setQi of states,(2) a transition relation�i ⊆
Qi × �̂i ×Qi , (3) an initial stateq0

i ∈ Qi , and(4) a setFi ⊆ Qi of accepting states.
To define the joint behavior of the set of automataAi , we need to describe the mes-

sage buffers. For each ordered pair(i, j) of process indices, we have two message buffers
Bsi,j andBri,j . The first buffer,Bsi,j , is a “pending” buffer which stores the messages that
have been sent byPi but are still “in transit” and not yet accessible byPj . The second
bufferBri,j contains those messages that have already reachedPj , but are not yet accessed
and removed from the buffer byPj . All the buffers are words over the message alpha-
bet�. We define the asynchronous product automatonA = �n

i=1Ai over the alphabet̂�,
given by:
States. A stateq of A consists of the (local) statesqi of component processesAi , along

with the contents of the buffersBsi,j andBri,j .
Initial state. The initial stateq0 of A is given by having the component for each processi

be in the start stateq0
i , and by having every buffer be empty.

Transitions. In the transition relation� ⊆ Q × (�̂ ∪ {�}) × Q, the �-transitions model
the transfer of messages from the sender to the receiver. The transitions are defined as

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 103

a

a

b

b

p1 p2 p3 p4

MSC1

p1 p2 p3 p4

a

a

b

b

MSC2

a

p1 p2 p3 p4

a

b

b

M'

Fig. 2. Weak inference.

follows:
(1) For an eventx ∈ �̂i , (q, x, q ′) ∈ � iff (a) the local states of processesk �= i are

identical inq andq ′, (b) the local state of processi is qi in q andq ′
i in q ′ such that

(qi, x, q
′
i) ∈ �i , (c) if x = receive(j, i, a) then the bufferBrj,i in stateq contains the

messagea in the front, and the corresponding buffer in stateq ′ is obtained by deleting
a, (d) if x = send(i, j, a), the bufferBsi,j in stateq ′ is obtained by appending the
messagea to the corresponding buffer in stateq, and (e) all other buffers are identical
in statesq andq ′.

(2) There is a�-labeled transition from stateq toq ′, iff statesq andq ′ are identical except
that for one pair(i, j), the bufferBsi,j in stateq ′ is obtained from the corresponding
buffer in stateq by deleting the first messagea, and the bufferBri,j in stateq ′ is
obtained from that inq by adding that messagea at its end.

Accepting states. A stateq of A is accepting if for all processesi, the local stateqi of
processi in q is accepting, and all the buffers inq are empty.
We associate withA = �iAi the language of possible executions ofA, denotedL(A),

which consists of all those words in̂�∗ leadingA from start stateq0 to an accepting state,
where�-transitions are viewed as�-transitions in the usual automata-theoretic sense. For
any set of concurrent automataAi , the languageL(�iAi) of the product of the automata
contains only complete and well-formed words. Furthermore, for a given MSCM, the
languageL(�iAi) either contains all linearizations ofM or it contains none.

3. Realizability

3.1. Weak realizability

Consider the two MSCs MSC1 and MSC2 shown in Fig.2. Any distributed implementa-
tion that exhibits these two behaviors must also exhibit the behavior depicted byM ′. This is
because, as far as each process can locally tell, the scenario is proceeding according to one
of the two given scenarios. Consequently, we say that the set of MSCs containing MSC1
and MSC2 (weakly) impliesM ′ [1].

Formally, given a setL of MSCs (or equivalently, their linearizations), and another MSC
M, we say thatL weakly impliesM, if for any sequence of automata〈Ai | 1� i�n〉, if

104 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

every MSC inL is inL(�iAi) then so isM in L(�iAi). Theweak closureLw of a setL
of MSCs contains all the MSCsL weakly implies, and the setL is weakly realizable iff
L = Lw. The notions defined above naturally extend to MSC-graphs. The MSC-graphG

is said to beweakly realizableif the setL(G) of MSCs is. Thus, a weakly realizable graph
already contains all the implied scenarios.

For computational purposes, an alternative characterization of the weak realizability is
helpful. For an MSCM and a processPi , letM|i denote the sequence of events belonging to
the processPi inM. Then, a setL of MSCs weakly implies an MSCM iff for all 1 � i�n,
there exists an MSCMi ∈ L such thatM|i = Mi |i [1]. In other words, for every process
Pi , the events occurring onPi in MSCM are consistent with the events occurring onPi in
some MSC known to be in the languageL, thenM is implied, andM must be inL for L to
be closed. Intuitively, a closed languageL can be constructed from the projections of the
MSCs inL onto individual processes. For a finite set of MSCs, checking weak realizability
is coNP-complete[1]. We show that checking weak realizability is undecidable for bounded
graphs.

Theorem 1. Given a bounded MSC graphG, checking ifG is weakly realizable is unde-
cidable.

Proof. The proof is a reduction from thepost correspondence problem(PCP). The PCP
is as follows: given a collection of pairs〈(v1, w1), (v2, w2), . . . , (vr , wr)〉, wherevi, wi ∈
�∗, for some fixed finite alphabet�, with designated initial pair(v1, w1), determine whether
there is a sequence of indicesi2, . . . , im, such that

v1vi2 . . . vim = w1wi2 . . . wim. (1)

By examining the standard proof of undecidability for the PCP from the Turing machine
halting problem, one can see that the constructed PCP instance has the property that if
there is a solution then there is one where the one string is always a prefix of the other.
In particular, the following version, call it OneSidedPCP, remains undecidable: determine
whether there is a sequence of indicesi2 . . . im, such that equality1 holds, and further-
more, for allj�m, the stringw1wi2 . . . wij is a prefix of the stringv1vi2 . . . vij (that is,
the right string never overtakes the left one). We will reformulate OneSidedPCP slightly
further to suit our purposes. LetRelaxedPCP (RPCP) be the following problem: given
{(v1, w1), (v2, w2), . . . , (vr , wr)}, determine whether there are indicesi1, . . . , im such that
xi1 . . . xim = yi1 . . . yim , wherexij , yij ∈ {vij , wij }, for some indexil xil �= yil , and for all
j�m, yi1 . . . yij is a prefix ofxi1 . . . xij . �

We now prove that RPCP is undecidable.

Lemma 2. RPCP is undecidable.

Proof. Given an instance� = 〈(v1, w1), (v2, w2), . . . , (vr , wr)〉 of the OneSidedPCP
problem, we will reduce it to RPCP as follows: introduce three new symbols: #, $, and	
to the alphabet�, and call the new alphabet�′. We first make the following transformation

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 105

v

c

2

P4 P4

v

2 3

i

i

1
i

v

P

d

(i,0)
i

(i,0)

(i,1)
i

(i,1)

i

P2 3

wi
2

w

PP1 P1

w1
i

P

Fig. 3. MSCsM0
i

andM1
i

.

on the wordsvi andwi . Fora ∈ �, lethv(a) = a	, and lethw(a) = 	a. Extendhv andhw in
the obvious way to a homomorphism from�∗ to �′∗. Let v′

i = hv(vi) and let
w′
i = hw(wi).
We map an instance� of OneSidedPCP, to the following instance of RPCP:

�′ = {(#	v′
1,#w

′
1), (v

′
1, w

′
1), . . . , (v

′
r , w

′
r), ($,	$)}.

Claim: � ∈ OneSidedPCP if and only if�′ ∈ RPCP.
To see the “only if” direction, note that ifv1vi2 . . . vim = w1wi2 . . . wim then #	v′

1v
′
i2
. . .

v′
im

$ equals #w′
1w

′
i2
. . . w′

im
	$, and forj < m, |#	v′

1v
′
i2
. . . v′

ij
| exceeds|#w′

1w
′
i2
. . . w′

ij
|.

To see the “if” direction, suppose(i1, . . . , im) are a sequence of indices for a solution to
�′. Since there must be some indexij for which the chosenxij , yij differ, let ij be the first
such index in the sequence. Then, w.l.o.g.,xij = #	v′

1 andyij = #w′
1, because for all other

pairs one of them begins with	 while the other doesn’t. Note that since the “v” string thus
far ends with	, while the “w” string does not, in the next choice of pairs, we must choose
v′
ij+1

andw′
ij+1

to append to the “v” and “w” strings, respectively. Proceeding in this way,

we must end our string with the pair $ and	$, respectively. Now, if we eliminate the initial
symbol #, the final symbol $, and all the intermediate	 symbols from our solution for�′,
beginning at the first distinct pairxij , yij , we obtain a solution for�. That establishes the
claim. �

Now we reduce RPCP to weak realizability. Given a finite setL of MSCs, letL∗ denote
the MSC graph that consists of the complete graph with|L| vertices one per MSC in the set
L, dummy initial and terminal verticesvI , vT with empty MSCs, and edges fromvI to all
vertices ofL and from those tovT. Thus, an MSC of this graph is simply a concatenation of
MSCs from the setL. In the sequel, we say that a processp synchronously sends a message
m to processq, if p sendsm to q immediately followed byq sending the messagem back
to p. In figures, such messages will be depicted by double arrows.

Given an instance� = {(v1, w1), . . . , (vm,wm)} of RPCP, we build a setL of MSCs over
4 processes as follows. For a stringu, letul denote thel’th character of the string. For each
pair (vi, wi) we build two MSCsM0

i andM1
i , which are depicted in Fig.3. Thus inM0

i ,
process 1 sends synchronously(i,0) to process 2 then sends the indexi to process 4, and then
process 4 sends synchronously(i,0) to process 3. After that, process 2 synchronously sends

106 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

the sequence of characters ofvi to process 3 (note we assumec is the length ofvi andd the
length ofwi in the figure),M1

i is similar. Observe that the communication graph of each of
these MSCs is strongly connected and involves all the processes, and hence, the MSC graph
L∗ is bounded.

Claim 1: � ∈ RPCP iff L∗ is not weakly realizable.

Proof. For the “only if” direction, supposeR = (i1, a1, b1, i2, a2, b2, . . . , im, am, bm) are
the indices for a solution to�, and the bitsaj andbj indicate which string (vij or wij) is
chosen to go into the two (left and right) long strings.

Consider the new MSCsM andM ′ obtained from the sequencesM = M
a1
i1
. . .M

am
im

and
the sequenceM ′ = M

b1
i1
. . .M

bm
im

. Executions of both of these (sequences of) MSCs must
exist in any realization ofL∗. We then look at the projectionsM|1,M|2,M|3, andM|4 of
M, andM ′|1,M ′|2 ,M ′|3 andM ′|4 ofM ′ onto the 4 processes. Now consider an MSCM ′′
formed fromM ′|1,M ′|2,M|3, andM|4. The claim is that the combined MSCM ′′ is weakly
implied byL∗. By definition, the only thing to establish is thatM ′′ is indeed an MSC, in
the sense that it is acyclic, well-formed and complete. The only new situation in terms of
communication inM ′′ is the communication betweenP1 andP4, and betweenP2 andP3.
But the communication betweenP1 andP4 is consistent inM ′|1 andM|4 (i.e. the sequence
of messages sent fromP1 to P4 in M ′|1 is equal to the sequence of messages received in
M|4), and the communication betweenP2 andP3 is consistent inM ′|2 andM|3 because
R is a solution to the RPCP. Furthermore, the acyclicity ofM ′′ follows from the property
of the solution that the string formed by the firstj words on processes 1 and 2 is always a
prefix of the string formed by the firstj words on processes 3 and 4. Consequently each
message fromP1 toP4 is sent before it needs to be received. But note thatM ′′ cannot itself
be inL∗ because there must be some indexij whereaj �= bj , and no MSC exists inL
where, after process 1 announces the index, what process 2 sends is not identical to what
process 3 receives.

Now, for the “if” direction, suppose there is some MSCM@ which exists in any realization
of L∗, but is not inL∗ itself. We want to derive a solution to� fromM@. First, it is clear
that the projectionM@|1 must consist of a sequence of pairs of messages (the first of each
pair acknowledged), sent from process 1 to process 2 and 4, respectively, with messages
(i, b) andi, respectively. Likewise, it is clear that, in order for process 2 to receive those
messages,M@|2 must consist of a sequence of receipts of(i, b) pairs, and after each(i, b),
eithervi or wi is sent to process 3, based on whetherb = 0 or b = 1, before the next
index pair is received. LikewiseM@|4 consists of a sequence of receipt of an indexi

from process 1 followed by sending of(i,0) or (i,1) to process 3, andM@|3 consist of
a sequence of receipt of(i,0) or (i,1) followed by receiptvi or wi , respectively. Now,
sinceM@ is not inL∗, for some indexi the choice ofvi or wi must differ on process
2 and process 3. (Note, we are assuming that the buffers between processes are FIFO.)
Furthermore, because of the precedences, the prefix formed by the firstj words on process
2 must precede the(j + 1)th message from process 1 to process 4, which in turn precedes
the (j + 1)th message from 4 to 3, and hence the(j + 1)th word on process 3. That
is, the string formed by the firstj words on process 2 is a prefix of the string formed
by the firstj words on process 3. Therefore, we can readily build a solution for� from
M@. �

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 107

1 1

P1 P2

MSC3

P1 P2

MSC4

2 2 1

P1 P2

MSC5

2

Fig. 4. Safe realizability.

3.2. Safe realizability

As a motivation for safe realizability, consider the MSCs in Fig.4. In MSC3, both pro-
cesses send each other the value 1, while in MSC4, both processes send each other the
value 2, and thus, they agree in both cases. From these two, we should be able to infer
a partial scenario, depicted in MSC5, in which the two processes start by sending each
other conflicting values, and the scenario is then completed in some way. However, the set
containing only MSC3 and MSC4 is weakly realizable. A closer examination reveals that
the distributed implementation of these two scenarios can potentially deadlock when one
process decides to send the message 1 while the other decides to send the message 2. We
need a stronger version of implication closure.

To define this formally, consider a setAi of concurrent automata and the productA =
�iAi . A stateq of the productA is said to be adeadlockstate if no accepting state ofA
is reachable fromq. For instance, a rejecting state in which all processes are waiting to
receive messages which do not exist in the buffers will be a deadlock state. The productA

is said to bedeadlock-freeif no state reachable from its initial state is a deadlock state. A
setL of MSCs is said to besafely realizableif L = L(�Ai) for some〈Ai |1� i�n〉 such
that�Ai is deadlock-free.1

There is an equivalent characterization of safe realizability as follows. Letpref(L) denote
the set of prefixes of the MSCs or words inL. Then, a setL of MSCs is safely realizable
iff it satisfies the following two closure conditions:
(1) for a well-formed wordw (i.e. a partial MSC), if for all 1� i�n, there exists a word

vi ∈ pref(L) such thatw|i = vi |i , thenw is in pref(L);
(2) for a well-formed and complete wordw (i.e. an MSC) inpref(L), if for all 1� i�n,

there exists a wordvi ∈ L such thatw|i = vi |i , thenw is inL.
The first closure condition says that the set of partial MSCs (i.e. prefixes ofL) can be
constructed from the projections of the MSCs inL onto individual processes. The second
condition is similar to the closure condition for weak realizability, but allows us to focus
attention only on complete MSCs that are themselves prefixes of MSCs already inL. The
second condition is not implied by the first, as pointed out in[11]. For the proof that these
two conditions capture safe realizability, please consult the full version of[1].

1 Recall that we identify MSCs with their linearizations, and thus, a set of MSCs with the set of all linearizations
of all the MSCs in that set.

108 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

The MSC-graphG is said to be safely realizable if the setL(G) of MSCs is. For a finite
set of MSCs, we known that weak realizability is coNP-complete while safe realizability
has a polynomial-time solution[1]. For bounded graphs, even though weak realizability
is undecidable, checking safe realizability is decidable. In bounded graphs, if we consider
the behaviors corresponding to the paths in the graphs, a process cannot be far ahead of its
communication partner, thus keeping the buffer size bounded. While checking safe realiz-
ability, when we consider the possible interactions among local behaviors (i.e. projections)
of different processes, if the communication buffer between any pair of processes exceeds
this bound, we can immediately flag an error. In contrast, while checking weak realizability,
even when the buffer size exceeds the bound, we need to check if there is a “complete”
MSC that can extend this partial behavior. We establish an EXPSPACEupper bound, as well
as PSPACE-hardness, for checking safe realizability. Note that both the bounds also hold if
we use alternate communication architecture by relaxing the FIFO requirement on buffers.

Theorem 3. Checking safe realizability of a bounded MSC-graph is inEXPSPACE.

Proof. SinceG is bounded, we know thatL(G) is definable by an exponential sized au-
tomatonA each of whose states can be encoded in polynomial space[3]. Likewise, we can
build a concurrent productA′ = �iAi , where eachAi is the local automaton formed by
the projection onto processi ofG, and then determinized and minimized. IfL(G) is safely
realizable, then we know thatA′ is such a realization[1]. Moreover, sinceG is bounded,
there is a polynomial bound (actually, linear in the number of vertices ofG) that we can
place on the lengths of queues inA′ such that if ever the queue length is exceeded we
will know that the partial MSC which exceeded the bound is not a prefix of an MSC in
L(G). Thus, we first check to see whether there is an execution ofA′ in which the buffer
bound is exceeded. This can be done in PSPACEby guessing a bad path. If there is such an
execution, we halt and report thatL(G) is not realizable. Thus, we assume thatA′ enforces
the polynomial bound on the buffers.

Next, we check whether the automatonA′ is deadlock-free. Note that checking whether
a state ofA′ is a deadlock state is in PSPACE: PSPACEis closed under negation, and to show
that a state is not a deadlock state, it suffices to guess a path from the state to an accepting
state, and this can be done in PSPACEby a routine argument. Now, to show thatA′ is not
deadlock-free, we simply guess a state, and show it be reachable as well as to be a deadlock
state. Consequently, checking deadlock-freedom ofA′ is in PSPACE.

Finally, we need to show thatL(A′) andL(G) are identical. Consider the complement
automatonĀ for L(G) (we do not actually buildĀ, but compute its states using the subset
construction as we need them). We then need to know whetherL(A′) ∩ L(Ā) is empty or
not. If it is, thenA′ realizesL(G). If not, thenL(G) is not safely realizable. Since each
state ofĀ requires exponential size to encode, we can determine whetherL(A′) ∩ L(Ā) is
nonempty in EXPSPACEby guessing an accepting path in each automaton.�

Theorem 4. Checking safe realizability of a bounded MSC-graph isPSPACE-hard.

Proof. We reduce the PSPACE-complete problem of determining whether a given NFA,A,
accepts�∗, to checking safe realizability. AssumeA = 〈Q,�, �, qinit , l, F 〉 is �-labeled

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 109

on states rather than on transitions, i.e.,l : Q �→ �, and� ⊆ Q×Q. Let� = {a1, . . . , ak}
andQ = {q1, . . . , qn}. We build fromA an MSC graphG, which will have nodes(Q′ =
{q ′

1, . . . , q
′
n}) ∪ {start, left, right} ∪ (V = {va1, . . . , vak }). The edges between vertices in

Q′ will be identical to the transition relation� overQ, and every nodeq ′ ∈ Q′ is labeled by
an MSC with one synchronous (acknowledged) message from processP1 toP2, where the
content of the message isl(q). The verticesV will form a complete subgraph andva ∈ V is
labeled by an MSC whereP1 sendsa (synchronously) toP2. The start nodestart is labeled
with the empty MSC. It has edges to both theleft andright nodes. The nodeleft is labeled
by an MSC whereP3 sends the (synchronous) message “left” toP2 and the (synchronous)
message “go” toP1. The noderight is labeled by an MSC whereP3 sends the (synch)
message “right” toP2 and the (synch) message “go” toP1. Theright node has an edge to
the initial stateq ′

init ∈ Q′. Theleft node has edges to all vertices inV . The terminal nodes
of G are all nodes ofV as well as those nodesq ′ ∈ Q′ such thatq ∈ F .

We claim thatL(G) is safely realizable iffL(A) = �∗. Let us consider whether the
product�Ai of the component automataAi , each associated with corresponding process
Pi , can deadlock. The component automatonA1 waits for the message “go” fromP3, acks
it, and then synchronously sends all possible message sequences toP2. (Note that this is so
because the projection ofV onto processP1 accepts all possible strings following a “go”.)

SupposeL(A) = �∗. Then, the automatonA2 waits for the message “left” or “right” from
P3, and then can receive every possible message fromP1 (each message is acknowledged).
Hence the product�Ai is a safe realization. IfL(A) �= �∗, then letw be a string such that
w �∈ L(A). SupposeP3 sends the “right” instruction toP2 and “go” toP1. AfterP1 receives
the “go” instruction fromP3, let P1 attempt to sendw to P2 (by moving through theleft
node into theV component). Sincew �∈ L(A), there is some prefixw′ of w such that, after
P1 sendsw′ there is no execution ofP2 (necessarily in theQ′ component) that receives it,
i.e., no path forP2 which after receiving the “right” instruction receivesw′. HenceL(G) is
not safely realizable. �

4. Verification

Now we turn our attention to the verification problem where the system to be verified is
described by an MSC-graphG. We will consider two semantics for the verification problem,
the setL(G) of all the MSCs specified byG, and the setLw(G) of all the MSCs in the weak
closure. First suppose the specification is given by an automatonA accepting linearizations
corresponding to “bad” behaviors. If the semantics of an MSC-graphG is L(G), then
the verification problem, namely, checking emptiness ofL(G) ∩ L(A), is undecidable in
general and PSPACE-complete for bounded graphs[3]. As our results will indicate, when
the semantics ofG is Lw(G), the verification problem is undecidable even for bounded
graphs. Since MSCs specify partially ordered executions, we proceed to consider partial-
order specifications.

4.1. MSC membership

Given MSC graphG and given an MSCM, we wish to know (1) isM ∈ L(G)? and (2) is
M ∈ Lw(G)? There are at least two reasons to consider this problem. First,M may specify

110 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

an undesirable scenario, so a positive answer to any of these two questions imply existence
of a bug. Second,M may specify a desired behavior, and answering these questions can
help avoid redundancy.

As discussed earlier, we can equate an MSC overk processes with a “well-formed”k-
tuple〈s1, . . . , sk〉 of stringssi , wheresi indicates the linearly ordered sequence of messages
sent and received by processi.

First we consider the question of checking if a given MSCM belongs toL(G). There
are two cases to this question depending on whether the number of processesk in the
MSCs is fixed or not. We observe that for a fixed number of processes,k, the question can
be answered in timeO(n2k), and we show that for an arbitrary number of processes the
question is NP-complete. Boundedness is not relevant to these results.

Theorem 5. Given an MSC-graphGand an MSCM overk processes, there is an algorithm
that decides inO(|G||M|k) time whetherM ∈ L(G).

Proof. LetM = 〈s1, . . . , sk〉. Let si[j, j ′] denote, for 0�j�j ′ � |si |, the substring ofsi
starting at positionj and ending at positionj ′. Sincek is fixed, we can build a graphH whose
nodes are(v, d̄), wherev is a node ofGand wherēd = (d1, . . . , dk), 0�di� |si |. There will
be an edge(v, d̄) → (v′, d̄ ′) in H if and only if there is an edgev → v′ in G and�(v′) =
〈s1[d1+1, d ′

1], . . . , sk[dk+1, d ′
k]〉. We mark an initial node ofH , namely the node(vinit , d̄)

such thatvinit is the initial node of the MSC graph, and�(vinit) = 〈s1[0, d1], . . . , sk[0, dk]〉.
(If this initial node does not exist, then we already knowM �∈ L(G).) Now,M ∈ L(G) iff
(v, (|s1|, . . . , |sk)) is reachable for some terminal vertexv of G. The size ofH is at most
O((|G||M|k)), hence we can compute reachability in that time bound. Note that we need
not actually constructH , but can compute reachability on it on the fly, computing nodes
only as needed. �

Next we show NP-completeness for the membership problem. Our proof is very similar
to the proof given by[14] for “template matching” in MSC graphs, but because template
matching offers more flexibility than finding a given MSC, we need a reduction from a
slightly different NP-complete problem. The result can also be derived from an earlier
result on membership problems for trace languages[6]. We give our explicit proof, because
it also yields the stronger facts that the result remains true for complete MSC-graphs and
acyclic MSC-graphs.

Theorem 6. Given an MSC-graphG and an MSCM, it is NP-complete to determine if
M ∈ L(G), even whenG is a complete graph, or whenG is an acyclic graph.

Proof. The problem is contained in NP because we can guess a path inG and easily verify
that the path generatesM.

To show NP-hardness, we provide a reduction from the NP-complete problemONE-
IN-THREE-3-SAT[16]: given a 3-CNF formula
, is there a satisfying assignment to the
variables such that each clause of
 getsexactly one literalassignedtrue ? From a 3CNF
formula
 = C1 ∧ . . . ∧ Cm, over variablesx1, . . . , xn, we define an MSC graphG and
an MSCM over 2m + 2n processes. The underlying graph ofG is a complete graph,
andM does not depend on
. For each clauseCj , we have two processesPj,1 andPj,2,

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 111

and for each variablexi , we have two processesQi,1 andQi,2. The complete graphG has
2n verticesV = {vi, wi | 1� i�n}, wheren is the number of variables in
. All vertices of
G are initial vertices. For eachi we labelvi by an MSCMxi in which there is one message
(labeled, say,a) from processPj,1 to Pj,2 precisely when variablexi appears positively in
Cj . In addition, there is a messagea sent fromQi,1 toQi,2 inMxi . Likewise,wi is labeled
by an MSCMx̄i , which does the opposite ofMvi : there is one message labeleda from
processPj,1 toPj,2 when variablexi appears negatively. Again, in addition, the messagea

is sent fromQi,1 toQi,2.
Finally, we defineM, which does not depend on
. In M, for eachj , there is onea-

message sent fromPj,1 toPj,2, and for eachi there is ana-message sent fromQi,1 toQi,2.
It is not difficult to see thatM ∈ L(G) iff there is a satisfying assignment to
 that sets
precisely one literal in each clause to true.�

Now we consider the membership question for weak-closure semantics: isM ∈ Lw(G)?
This problem turns out to be much easier:

Theorem 7. Given an MSC-graphG and an MSCM, there is an algorithm that in time
O(|G||M|) determines whetherM ∈ Lw(G).

Proof. SupposeG andM = 〈s1, . . . , sk〉 are defined overk processes. Checking whether
M ∈ Lw(G) amounts to simply checking whether, for each processi, si can be generated
by the automaton given by the “projection” ofG onto processi (see[1]).

For each processi, letGi be the projection ofG onto the events of processi: Gi is like
G, but each vertexv inGi is labeled with the projection onto processi of the MSC labeling
vj inG. The accept states ofGi are the same as those ofG.Gi can be viewed as an ordinary
automaton over the alphabet of events belonging to processi. ThenM ∈ Lw(G) iff si ∈ Gi
for eachi. BuildingGi ’s can be done in linear time, and checking whethersi ∈ Gi can be
done in timeO(|Gi ||si |), for eachi ∈ [k]. Thus, the total time isO(|G||M|). �

4.2. Checking local properties

GivenG, we want to know whetherLw(G) satisfies a property
. A property
 is
linearization independent if it will hold for one linearization of an MSC iff it holds for
all. A property
 of MSCs is said to belocal if it (syntactically) only refers to events
on one process,Pi . Such local properties are clearly linearization independent, because
every linearization of an MSC preserves the local order of events on a given process.
Boolean combinations of linearization independent properties are also clearly linearization
independent. In order to make this a precise definition, we need to fix a specification logic.
However, our upper bound results are applicable irrespective of the particular choice as long
as checking whether a particular word satisfies a property can be done in polynomial-time,
and our negative results use properties of a very limited form such as “eventx eventually
occurs on processPi”, or “eventx never occurs on processPi”. As an example of such a
specification logic, consider the following: a property is a Boolean combination of atomic
properties, and an atomic property is a regular language over the events of a single process,

112 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

specified by a deterministic finite automaton. Another example is the restricted temporal
logic T LC− interpreted over partially ordered structures[15].

Theorem 8. There are local properties
1 and
2 such that for a finite MSC setL, it is
coNP-complete to determine if every MSC inLw satisfies
1 ∨
2.

Proof. The problem is in coNP, because we can guess projections on each process, check
that they combine into a valid MSC, and then check that the respective local strings satisfy
the simple eventuality described by the local properties¬
1 and¬
2.

The hardness proof is a reduction from 3SAT. Let� = 〈C1, . . . , Cm〉 be the clauses
of the 3SAT formula, ordered in some arbitrary way, and letx1, . . . , xn be its variables.
We will add new variablesy andz1, . . . , zm. Our new ordered list of clauses will be� =
〈y∨¬z1, y∨¬z2, . . . , y∨¬zm,C1∨z1, C2∨z2, . . . , Cm∨zm〉. Clearly,� has a satisfying
assignment iff� has a satisfying assignment withy = 0. Let�|k1 denote the firstk clauses
in the list�. Notice that for every clauseCi and for every assignment to variables occurring
in Ci , there is a satisfying assignment of�|i+m−1

1 which agrees with that assignment (just
sety = 1, andzj = 1 for j < i. Now you are free to set the variables inCi in whichever
way).

Now we are ready to describe our MSC set, and our properties
1 and
2. The MSC set
will consist of one process for every variable and every clause in�. In addition, there will
be an extra process calledPf , which will serve to tabulate whether the formula has been
satisfied or not. There will be one MSC,Mt based on the “trivial” satisfying assignment
to �, namelyPy will send true to every clause that contains it, in their lexicographical
order. Likewise, thePzi ’s will send true to every clause that containszi , respectively. The
xi variables, can either sendtrue or false to their clauses, it does not matter here. Each
clause processPC′ , after receiving its truth assignment in messages (which it reads in the
lexicographical order of the variables), then receives a message from its predecessor clause
(if there is one) which either indicates that the prior clauses have all been satisfied or
not. If the prior clauses have been satisfied, and ifC′ itself has also been satisfied, then
C′ propagates the “satisfied” message to the next clause in the ordered list. Otherwise, it
propagates “not satisfied”. The last clauseC′′ propagates this message toPf , which does
nothing other than to receive it. Clearly, for the assignment on whichMt is based,Pf will
receive a satisfied message.

Next, for each clauseCi ∨ zi , and for each satisfying assignment� to the variables in
Ci ∨ zi (there are only a constant number of these, sinceCi is a 3CNF clause), we will
add a new MSCMCi,� which mimics the same thing as above, only the assignment to the
variables is one consistent with both� and the assignment mentioned above which satisfies
�|i+m−1

1 . Finally, we add another MSCMy , whose only purpose is to exhibit one MSC
such that the “assignment” toy is false.

Our setL of MSCs containsMt ,My and the MSCsMCi,�. Consider an MSCM ∈ Lw.
If Pf receives a “satisfied” message, then we can construct a satisfying assignment for�
fromM. Moreover, ifPy sendsfalse’s inM, then we can construct a satisfying assignment
which assignsy = 0, i.e., a satisfying assignment to�. We claim that the converse holds as
well, i.e., if there is such a satisfying assignment, then there will be anM weakly-implied
byL wherePy sendsfalse(call this¬
1) andPf receives “satisfied” (call this¬
2).

R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114 113

finite set bounded graphs unbounded

weak coNP-complete undecidable undecidable

safe P-time EXPSPACE-complete undecidable

Fig. 5. Summary of results on realizability.

To see this, note that, locally, each variable process sees both assignments to that variable
in some MSC inL. Moreover, locally each clause process sees every satisfying assignment
to that clause. Now, if there is global satisfying assignment that setsy to false, then it must
be possible to construct it by combining the local satisfying assignment in a consistent way,
i.e., by having an implied MSCM ∈ L which exhibits this satisfying assignment.�

It follows that checking whether every MSC inLw(G), for an acyclic MSC-graphG,
satisfies a boolean combination of local properties is coNP-complete.

Theorem 9. There is a boolean combination
 of local properties, such that given a
bounded MSC-graphG, it is undecidable to check if every MSC inLw(G) satisfies
.

Proof. The proof uses precisely the same complete MSC graphs given in the proof of
Theorem1, which reduce an instance of RPCP to checking whetherL(G) = Lw(G). Note
that in that setting, if there is an implied but unspecified MSCM, that is, if there is a
solution to the RPCP, then by the construction, there is a solution in which the two strings
use exclusively words from different lists. In the notation of the proof of Theorem 1, allai
bits are 0, and allbi bits are 1, that is, in the implied MSCM, every message sent by the
processP1 toP2 is of the form(i,1) (let’s call this property�1) and every message sent by
the processP4 to P3 is of the form(i,0) (let’s call this property�2). Conversely, if there
is an implied MSC that satisfies the property�1 ∧ �2, then RPCP has a solution. Hence,
RPCP has no solution iff every MSC inLw(G) satisfies the property¬�1 ∨ ¬�2. Clearly,
�1 and�2 are local properties (�1 depends only on the events of processP1, and�2 on the
events of processP4). �

5. Conclusions

We have studied various algorithmic questions related to checking realizability and verify-
ing MSC-graphs and bounded MSC-graphs. A subsequent recent paper by Lohrey solves the
two gaps in our results[11]: checking safe realizability for bounded HMSCs is EXPSPACE-
hard, and is undecidable in the general case. The table in Fig.5 summarizes the compu-
tational complexity of various realizability problems. Note that our undecidability proof
for weak realizability applies only in the setting with FIFO communication architecture,
and a recent result by Morin[12] establishes decidability of weak realizability of bounded
MSC-graphs under a non-FIFO architecture.

114 R. Alur et al. / Theoretical Computer Science 331 (2005) 97–114

Acknowledgements

Thanks to Remi Morin for comments that helped clarify some ambiguity about our
assumed communication architecture in Theorem1. Thanks to an anonymous referee for
pointing out the work of[6], and its implications for Proposition6.

References

[1] R. Alur, K. Etessami, M. Yannakakis, Inference of message sequence charts, in: Proc. 22nd Internat. Conf.
on Software Engineering (ICSE), 2000, pp. 304–313.

[2] R. Alur, G.J. Holzmann, D.A. Peled, An analyzer for message sequence charts, Software Concepts Tools 17
(2) (1996) 70–77.

[3] R. Alur, M. Yannakakis, Model checking of message sequence charts, in: Proc. Tenth Internat. Conf. on
Concurrency Theory (CONCUR), Lecture Notes in Computer Science, Vol. 1664, 1999, pp. 114–129.

[4] H. Ben-Abdallah, S. Leue, Syntactic detection of process divergence and non-local choice in message
sequence charts, in: Proc. Third Internat. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Lecture Notes in Computer Science, Vol. 1217, 1997, pp. 259–276.

[5] H. Ben-Abdallah, S. Leue, MESA: support for scenario-based design of concurrent systems, in: Proc. Fourth
Internat. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Lecture
Notes in Computer Science, Vol. 1384, 1998, pp. 118–135.

[6] A. Bertoni, G. Mauri, N. Sabadini, Membership problems for regular and context-free trace languages, Inform.
Comput. 82 (2) (1989) 135–150.

[7] G. Booch, I. Jacobson, J. Rumbaugh, Unified Modeling Language User Guide, Addison-Wesley, Reading,
1997.

[8] J. Henriksen, M. Mukund, K. Narayan Kumar, P.S. Thiagarajan, On message sequence graphs and finitely
generated regular MSC languages, in: Proc. 27th Internat. Coll. on Automata, Languages and Programming
(ICALP), Lecture Notes in Computer Science, Vol. 1853, 2000, pp. 675–686.

[9] G.J. Holzmann, D.A. Peled, M.H. Redberg, Design tools for requirements engineering, Lucent Bell Labs
Tech. J. 2 (1) (1997) 86–95.

[10] ITU-T recommendation Z.120. Message Sequence Charts (MSC’96), 1996.
[11] M. Lohrey, Safe realizability of high-level message charts, in: Proc. 13th Internat. Conf. on Concurrency

Theory (CONCUR), 2002.
[12] R. Morin, Recognizable sets of message sequence charts, in: Proc. 19th Annual Symp. on Theoretical Aspects

of Computer Science (STACS), Lecture Notes in Computer Science, Vol. 2285, 2002, pp. 523–534.
[13] A. Muscholl, D.A. Peled, Message sequence graphs and decision problems on Mazurkiewicz traces, in:

Proceedings of the 24th International Symposium on Mathematical Foundations of Computer Science
(MFCS), 2000, pp. 81–89.

[14] A. Muscholl, D.A. Peled, Z. Su, Deciding properties of message sequence charts, in: Proc. First Internat.
Conf. on Foundations of Software Science and Computation Structures, 1998, pp. 226–242.

[15] D.A. Peled, Specification and verification of message sequence charts, in: Proc. IFIP Internat. Conf. on
Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE XIII), 2000,
pp. 139–154.

[16] T.J. Schaefer, The complexity of satisfiability problems, in: Proc. Tenth ACM Symp. on Theory of Computing
(STOC), 1978, pp. 216–226.

	Realizability and verification of MSC graphs62626262
	Introduction
	Specification languages
	Message sequence charts
	MSC graphs
	Concurrent automata

	Realizability
	Weak realizability
	Safe realizability

	Verification
	MSC membership
	Checking local properties

	Conclusions
	Acknowledgements
	References

