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Abstract

Scenario-based specifications such as message sequence charts (MSC) offer an intuitive and visual
way to describe design requirements. MSC-graphs allow convenient expression of multiple scenarios,
and can be viewed as an earmhodelof the system that can be subjected to a variety of analyses.
Problems such as LTL model checking are undecidable for MSC-graphs in general, but are known to
be decidable for the class bbundedViSC-graphs.

Ouir first set of results concerns checkieglizability of bounded MSC-graphs. An MSC-graph is
realizable if there is a distributed implementation that generates precisely the behaviors in the graph.
There are two notions of realizabilitweakand safe depending on whether or not we require the
implementation to be deadlock-free. It is known that for a finite set of MSCs, weak realizability is
coNP-complete while safe realizability has a polynomial-time solution. We establish that for bounded
MSC-graphs, weak realizability is, surprisingly, undecidable, while safe realizability iSRSEACE

Our second set of results concerns verification of MSC-graphs. While checking properties of a
graphG, besides verifying all the scenarios in the £¢G) of MSCs specified by, it is desirable
to verify all the scenarios in the sét’ (G)—the closureof G, that contains the implied scenarios
that any distributed implementation 6f must include. For checking whether a given M8Cis a
possible behavior, checking € L(G) is NP-complete, but checking € L (G) has a quadratic
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solution. For temporal logic specifications, considering the closure makes the verification problem
harder: while checking LTL properties 8fG) is PSPACEcomplete for bounded graplas checking

even simple “local” properties df" (G) is undecidable.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Message sequence charts (MSCs) are a commonly used visual notation for describing
message exchanges between concurrent processes. They have become popular among soft-
ware engineers for early requirements specification. Recently MSCs have been standardized
by ITU [10], and incorporated in modern software engineering notations such aggJML
In the simplest form, an MSC depicts the desired exchange of messages, and corresponds
to a single (partial-order) execution of the system. In recent years, a variety of features have
been introduced so that a designer can specify multiple scenarios conveniently. In particular,
MSC-graphsllow MSCs to be combined using operations such as choice, concatenation,
and repetition. MSC-graphs can be viewed as an early model of the system that can be sub-
jected to formal analysis. This has motivated the development of algorithms for a variety of
analyses including detecting race conditions and timing conffittpattern matchingl4],
detecting non-local choici], and model checkinf3], and tools such as uBE[B] and
MESA [5].

An MSC-graph consists of a graphi whose nodes are labeled by MSCs, amrds
viewed as defining the sdt(G) of all MSCs obtained by concatenating the MSCs that
appear along any (directed) finite path from the designated start na@ge s worth not-
ing that the traditional high-level model for concurrent systems has been communicating
state machines. Both communicating state machines and MSC-graphs can be viewed as
specifying sets of behaviors, but the two offer dual views: the former is a parallel com-
position of sequential machines, while the latter is a sequential composition of concurrent
executions. The complexity of a variety of verification questions in the communicating-
state-machines model has been well understood: typically the problems are undecidable,
and we must assume a bound on the sizes of message-buffers to obtain decidability results.
Recent results indicate that verification problems about MSC-graphs are also undecid-
able in general as a process can send a potentially unbounded number of messages yet
to be received3,14]. The requirement for decidability, for problems such as LTL model
checking, seems to Heoundednessn a bounded MSC-graph, in every cycle, for every
pair of active processes andg, there is a sequence of communications frpnto ¢
and back, ensuring that all the active processes stay roughly synchronized, thereby bound-
ing the number of pending messad@gdl.3]. The boundedness property of an MSC-graph
can be checked in time exponential in the number of procd8$eand linear in the size
of the MSC-graph. In this paper, we study a variety of analysis problems for bounded
MSC-graphs.

The first analysis question studied in this paper concerns a form of consistency, called
realizability, of specifications given as an MSC-graph. As observdd]ina set of MSCs
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can potentially imply other, distinct, MSCs whose communication pattern must be ex-
hibited by any concurrent system that realizes the given MSCs. An MSC-grajsh

said to be realizable if there exists a distributed implementation whose behaviors are
precisely the ones specified lay. The precise definition of realizability depends on the
underlying communication architecture for the distributed systEnin this paper we

focus on realizability under a basic FIFO communication architecture. Unspecified, but
implied, behaviors can be indicative of logical errors, and can be revealed by check-
ing realizability. We prove that checking this form of realizability is, surprisingly, un-
decidable for bounded MSC-graphs by a reduction from the Post correspondence prob-
lem. Intuitively, this is because, while a bounded graph ensures boundedness of buffers
in the scenarios specified in the graph, it does not ensure boundedness of buffers in its
distributed implementation where different processes can follow different paths in the
graph.

We study a second form of realizability, calledferealizability, where the distributed
implementation must b#eadlock-freeSafe realizability is a stronger notion of realizability,
and corresponds to inferring partial global behaviors from local views of the specified MSCs.
For afinite set of MSCs, checking weak realizability is coNP-complete, while checking safe
realizability has a polynomial-time solutidti]. For bounded MSC-graphs, we show that
checking safe realizability, unlike the weaker version, is decidable. We establish an upper
bound of ExpsPACE We show the problem isdPacehard, but matching the lower and
upper bounds remains an open problem.

For the purpose of verification of an MSC-gragh due to the gap between an MSC-
graph and its implementation, beside&5), we also considet ™ (G), theweak-closuref
G, containing all MSCs implied by MSCs iéi, as a possible semantics. As we will see, a
verification question can have different answers and different complexities depending upon
this choice of semantics.

Ouir first verification problem concerns testing whether a given sceMaiga possible
behavior of a given MSC-graph. This is relevant in identifying if a new scenario is already
present in the existing specification, and also for detecting budssipecifies an undesired
scenario. We show that the problem of verifying whethere L(G) is NP-complete in
general, but can be solved in polynomial-time if the number of processes is bounded. We
establish that testing wheth#f is in the closure of.(G) can be solved in quadratic time.

This shows that it is easier to determine whether an MSC exists in the closure than in the
originally given set, and furthermore, the questions about the implementatiGhoai
sometimes be verified without constructing it.

Finally, we consider the model checking problem, where the model is given by an MSC
graphG and the specification is given by automata or by temporal logic formulas. When
the semantics o5 is L(G), and the specification is given by an automaton accepting
linearizations corresponding to “bad” behaviors, the problem is undecidable in general and
Pspacecomplete for bounded grapf3. If the specification is given by “local” properties
that do not distinguish between different linearizations of the same MSC, model checking
can be solved in polynomial-timg5]. In this paper, we show that under the closure-
semantics, the model checking questions become harder: for an acyclic graph the problem
is coNP-complete, and for bounded graphs the problem is undecidable, even for simple
linearization-invariant local specifications.
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2. Specification languages
2.1. Message sequence charts

We start by recalling the definition of message sequence charts. Informally, a single
MSC depicts the message exchanges in one communication scenario between entities of
a concurrent system. For example, in Flgtwo MSCs are depicted giving two distinct
communication scenarios in a client-server system where messages pass through a proxy.
In the left scenario, the proxy simply relays the request message from the client to the server,
while in the right scenario the proxy has a cached copy of the requested item, and hence
responds to the client without involving the server.

Our formal definition of MSCs captures the essence of the ITU standard MSC’96, and
is analogous to the definitions of labeled MSCs givefi#8]. Let{ Py, ..., P,} be a set of
processes, and be a message alphabet. We use the labptii, j, a) to denote the event
“processpP; sends the messageo processP;”. Similarly, receivei, j, a) denotes the event
“processP; receives the messagdrom processP;”. Define the set = {sendi, j, a) |
1<i, j<n & a € X2} of send labelsthe sett® = {receivei, Jj,a)|1<i,j<n & a € X}
of receive labelsand2 = 5 U 2R as the set oévent labelsA Z-labeled MSCM over
processe$Ps, ..., P,} is given by:
¢ afinite setE of events which is partitioned into a sg&bf “send” events and a sé& of

“receive” events;

e a mappingp that maps each eveato a process X p(e) <n on which it occurs;

e a bijective mappingf : S — R between send and receive events, matching each send
with its corresponding receive;

e amapping : E — 2 which labels each event such théf) < > and/(R) < =&, and
furthermore for consistency of labels, for ale S, if [(s) = sendi, j, a) thenp(s) =i
andI(f(s)) = receivéi, j,a) andp(f(s)) = Jj;

e for each i <n, atotal order<; on the events of proceg3, that is, on the elements
of p~1(i), such that the transitive closure of the relation

<= U < U f)]seS)

1<i<n

is a partial order orE.

‘ CIient‘ ‘ Proxy‘ ‘Serveﬂ ‘ CIient‘ ‘ Proxy‘ ‘ Servef

request A request A
request A

A A

Fig. 1. Two simple MSCs depict client-server scenarios through a proxy.
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We require all our MSCs to satisfy an additional FIFO condition:

e there is no reversal of the order in which two messages sent by some pR@Ess
received by another process, that is, for send evenis, s2 € S, if p(s1) = p(s2) =1,
ands; <;sz, then £ (s1) < ; f (s2), wherej = p(f (s1)).

If the underlying architecture is not FIFO, then a weaken-degeneracgondition can be

used. Non-degeneracy condition disallows reversals between a pdéntical messages

between a given pair of proces$gk The results of this paper are developed using the FIFO
condition, but we will indicate when they also hold with the non-degeneracy condition.
Observe that the information in MSCs can be captured by any wordotieat corre-
sponds to the sequence of labels of any linearization that is consistent with the partial order
<. Furthermore, any word ove¥ in which thesendandreceiveevents can be matched,
uniquely defines an MSC. Let us be more precise. A word wq - - - wjg| over the alpha-

betS is alinearizationof an MSCM iff there exists a total ordar - - - e|g| of the events

in E such that whenevers; <e;, we havei < j, and for 1<i <|E|, w; = [(e;). Letw be

a word overy, and consider processeand j. We define the projections 1} sendi, j)

andw 1t receivei, j) as follows. If w is the empty word, themw 1 sendi, j) and

w 1} receivéi, j) equal the empty word. Suppoge= xv, forx € 3. If x = send;, j,a)

thenw 1 sendi, j) = a(v f} sendi, j)) elsew f} sendi, j) = v f sendi, j). If x =

receivéi, j, a) thenw 1 receivdi, j) = a(v { receivdi, j)) elsew 1 receivdi, j) =

v 1 receivedi, j). Now, a wordw is well-formedif for every prefixv of w, for every pair

of processesandj, v 1} receivdi, j) is a prefix ofv {+ sendi, j). Awordw is complete

if for every pair of processesandj, w f+ sendi, j) = w 1} receivei, j). Awordw over

5 is a linearization of an MSC iff it is well-formed and complé1d.

2.2. MSC graphs

A natural way to structure multiple scenarios is to employ graphs whose nodes are MSCs.
Formally, an MSC-grapl; consists of a seV of vertices, a binary relatior> overV,
an initial vertexv', a set of terminal verticeg ', and a labeling functiop that maps each
vertexv to an MSC. The paths that start at the initial vertex and end at a terminal vertex
represent (finitepccepting path®f G, i.e., the finite executions of the system modeled
by the MSC-graph. To formally associate a set of MSCs with the MSC-gtaphe first
have to define a concatenation operation on MSCs. Concaterdtiaif’ corresponds to
a natural process-by-process pasting of the two M&Cand M’ together (se¢3] for a
formal definition). Then, we can associate an MSC with each path by concatenating MSCs
corresponding to individual vertices. The (finite) langudgé&) of the graph is then all
MSCs of the formu(vo) - u(v1) - - - u(vy,), wherevgus . . . v, is an accepting path id. Since
MSCs are uniquely characterized by their linearizations, we will alsdé® to denote
the set of all linearizations of the MSCs in it.

In general, the sek(G) is not regular. The problem arises, for instance, when there is
a cycle in the graph such that some process sends a message at some vertex in the cycle,
but does not receive any message at any vertex in the cycle. For example, consider the
MSC-graph with a single node with a self-loop, where the MSC associated with the node
consists of a single message edge. The language of this MSC graph is non-regular, because it
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consists of strings of send’s and receive’s which are isomorphic to “properly parenthesized”
expressions over the alphaliét)}, a language known not to be a regular language. The
class of bounded MSCs avoids this problem. Given an MSC-gtaphd a subsdt’ of its
vertices, define the communication grafih of U as follows: the set of vertices @y is

the setP of all the processes, and there is an arc from propdssprocess; if p sends a
message tq in the MSCpu(v) for somev € U. For a setJ of vertices, we denote by

the set of processes that send or receive a message in the MSC of some vértenah

call them the active processes of the etWe call an MSC-graplboundedif for every

cyclep of G, the subgraph of the communication grafghinduced by the seP, of active
processes of the cycle is strongly connected. In other words, communicatiornfyyaptall

the processes consists of one nontrivial strongly connected component and isolated nodes
corresponding to processes that are inactive throughout the cydi, ihis shown that

if G is bounded, the set of linearizations of all the MSC4.{(G) is regular, and can be
generated by a nondeterministic automaton whose size is exponential in the GiZE€ladf
converse of the question, namely, characterizing regular languages using MSC graphs, is
studied in[8].

2.3. Concurrent automata

Our concurrency model is based on the standard buffered message-passing model of
communication. There are several choices to be made with regard to the particular com-
munication architecture of concurrent processes, such as syn¢ghsymghrony and the
gueuing disciplines on the buffers. We fix our architecture to a standard asynchronous set-
ting, with FIFO message buffers between all pairs of processes. We now formally define our
automata;, and their (asynchronous) produét_, A;, which captures their joint behavior.

As in the previous section, |e&f be the message alphabet. Batbe the set of labels
of events belonging to proced3, namely, the messages of the fosendi, j, a) and
receive j, i, a). The behavior of proces3 is specified by an automatan over the alphabet
2,- with the following components(l) a setQ; of states,(2) a transition relatiord; <
0; x 3% Q;, (3) an initial stateg? € Q;, and(4) a setF; C Q; of accepting states.
To define the joint behavior of the set of automadta we need to describe the mes-
sage buffers. For each ordered p@ijrj) of process indices, we have two message buffers
; and B/ ;. The first buffer,B; ., is a “pending” buffer which stores the messages that
have been sent by; but are stlﬁ “in transit” and not yet accessible By. The second
buffer B/ . contains those messages that have already reaghdxlit are not yet accessed
and removed from the buffer b®;. All the buffers are words over the message alpha—
betX. We define the asynchronous product automatoa I17_; A; over the alphab@,
given by:
States A stateg of A consists of the (local) stateg of component processes, along
with the contents of the buffe; ; andB; .
Initial state The initial stateyg of A is given by having the component for each prodess
be in the start statgo, and by having every buffer be empty.

Transitions In the transition relatio® < Q x (2 U {r}) x Q, the z-transitions model
the transfer of messages from the sender to the receiver. The transitions are defined as
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Fig. 2. Weak inference.

follows:

(1) For an evenk € 3 (g, x,q") € oiff (a) the local states of processks# i are
identical ing andq’, (b) the local state of processs g; in ¢ andg; in ¢’ such that
(gi»x,q}) € 0;, () if x = receive(j, i, a) then the buﬁele’l. in stateg contains the
message in the front, and the corresponding buffer in stgtes obtained by deleting
a, (d) if x = sendi, j, a), the bufferBl:ij in stateq’ is obtained by appending the
message to the corresponding buffer in staieand (e) all other buffers are identical
in statesy andgq’.

(2) Thereis a-labeled transition from stateto ¢/, iff statesg andq’ are identical except
that for one paili, j), the bufferBl{j in stateq’ is obtained from the corresponding
buffer in stateg by deleting the first message and the bufferBi”j in stateq’ is
obtained from that iy by adding that messageat its end.

Accepting statesA stateg of A is accepting if for all processés the local statey; of
process in g is accepting, and all the buffers gnare empty.

We associate witth = I1; A; the language of possible executionsggfdenotedL(A),
which consists of all those words & leadingA from start stateyg to an accepting state,
wherez-transitions are viewed astransitions in the usual automata-theoretic sense. For
any set of concurrent automata, the languagée. (I1; A;) of the product of the automata
contains only complete and well-formed words. Furthermore, for a given MSGhe
languagel.(I1; A;) either contains all linearizations &f or it contains none.

3. Realizability
3.1. Weak realizability

Consider the two MSCs MSC1 and MSC2 shown in RigAny distributed implementa-
tion that exhibits these two behaviors must also exhibit the behavior depictdd Byis is
because, as far as each process can locally tell, the scenario is proceeding according to one
of the two given scenarios. Consequently, we say that the set of MSCs containing MSC1
and MSC2 (weakly) implieds” [1].

Formally, given a sek. of MSCs (or equivalently, their linearizations), and another MSC
M, we say thatL. weakly impliesM, if for any sequence of automatd; | 1<i <n), if
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every MSCinL isin L(II; A;) then so isM in L(II; A;). Theweak closurd.? of a setL

of MSCs contains all the MSCE weakly implies, and the sdt is weakly realizable iff

L = L™. The notions defined above naturally extend to MSC-graphs. The MSC-@graph
is said to beveakly realizablef the setL(G) of MSCs is. Thus, a weakly realizable graph
already contains all the implied scenarios.

For computational purposes, an alternative characterization of the weak realizability is
helpful. Foran MSQV and a process;, let M |; denote the sequence of events belonging to
the proces®; in M. Then, a seL. of MSCs weakly implies an MS@/ iff for all 1 <i <n,
there exists an MS@/; € L such thatM|; = M;|; [1]. In other words, for every process
P;, the events occurring of; in MSC M are consistent with the events occurring®nn
some MSC known to be in the languabgthenM is implied, andM must be inL for L to
be closed. Intuitively, a closed languafjecan be constructed from the projections of the
MSCs inL onto individual processes. For a finite set of MSCs, checking weak realizability
is coNP-completgl]. We show that checking weak realizability is undecidable for bounded
graphs.

Theorem 1. Given a bounded MSC grapgh, checking ifG is weakly realizable is unde-
cidable

Proof. The proof is a reduction from thgost correspondence problefRCP). The PCP
is as follows: given a collection of paifgvy, wi), (v2, w2), ..., (v, w,)), Wwherev;, w; €
2*, for some fixed finite alphabét, with designated initial paitvy, w1), determine whether
there is a sequence of indices. . ., i,,, such that

V1Viy ... Vi, = WIWjy - . . Wi, - ()

By examining the standard proof of undecidability for the PCP from the Turing machine
halting problem, one can see that the constructed PCP instance has the property that if
there is a solution then there is one where the one string is always a prefix of the other.
In particular, the following version, call it OneSidedPCP, remains undecidable: determine
whether there is a sequence of indiégs. .i,, such that equalityl holds, and further-
more, for all j <m, the stringwiw;, . .. Wi is a prefix of the stringv;, ... vi; (that is,

the right string never overtakes the left one). We will reformulate OneSidedPCP slightly
further to suit our purposes. L&elaxedPCP (RPCP) be the following problem: given
{(v1, w1), (v2, w2), ..., (v,, w,)}, determine whether there are indiées . ., i,, such that

Xig oo Xipy = Yig -+ Vi wherex,-j, i; € {vij, wi b for some index; x;, # y;,, and for all

J<m, yiy - yi is a prefix ofx;, .. X

We now prove that RPCP is undecidable.

Lemma 2. RPCP is undecidable

Proof. Given an instancel = ((v1, w1), (v2, w2), ..., (v, w;)) of the OneSidedPCP
problem, we will reduce it to RPCP as follows: introduce three new symbols: #, $f and
to the alphabel, and call the new alphabgt. We first make the following transformation
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Fig. 3. MSCsM? and M}

onthe words; andw;. Fora € X, leth,(a) = af$, and leth, (a) = fa. Extendr, andh,, in
the obvious way to a homomorphism frod* to X™. Let v, = h,(v;) and let
w,/' = hy (w;).

We map an instancg of OneSidedPCP, to the following instance of RPCP:

A" = {#pv], #wy), V], wy), ..., (v, w,), ($, )}

Claim: A € OneSidedPCP if and only ifA” € RPCP.

To see the “only if” direction, note that ifiv;, . . . v;,, = wiw;, ... w;, then #ﬁv’lvgz ...
v; $equals #v’lwlfz ...w; B$, and forj <m, |#ﬂv’1vlf2 . v{j| exceed$#w’lw;2 ... wl’.j l.

To see the “if” direction, suppode, .. ., i,,) are a sequence of indices for a solution to
A’. Since there must be some indgxXor which the chosem,-_,., Vi differ, leti; be the first
such index in the sequence. Then, w.l.axg.,= #fv; andy;, = #wj, because for all other
pairs one of them begins withiwhile the other doesn’t. Note that since the “v” string thus
far ends withf3, while the “w” string does not, in the next choice of pairs, we must choose

!/ 01

Vi andw;]_+1 to append to thedy” and “w” strings, respectively. Proceeding in this way,
we must end our string with the pair $ afii, respectively. Now, if we eliminate the initial
symbol #, the final symbol $, and all the intermediftgymbols from our solution for’,
beginning at the first distinct paif;, y;;, we obtain a solution forl. That establishes the

clam. O

Now we reduce RPCP to weak realizability. Given a finitelsef MSCs, letL* denote
the MSC graph that consists of the complete graph itlvertices one per MSC in the set
L, dummy initial and terminal vertices, vt with empty MSCs, and edges froop to all
vertices ofL and from those tot. Thus, an MSC of this graph is simply a concatenation of
MSCs from the sek. In the sequel, we say that a processynchronously sends a message
m to procesg, if p sendsn to g immediately followed by; sending the messageback
to p. In figures, such messages will be depicted by double arrows.

Givenaninstancd = {(v1, w1), ..., (U, w;)} of RPCP, we build a sét of MSCs over
4 processes as follows. For a stringetu’ denote thé'th character of the string. For each
pair (v;, w;) we build two MSCsM? and M}, which are depicted in Fig. Thus inM?,
process 1 sends synchronougl\0) to process 2 then sends the indéxprocess 4, and then
process 4 sends synchronougly0) to process 3. After that, process 2 synchronously sends
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the sequence of characterspto process 3 (note we assumis the length ofy; andd the
length ofw; in the figure),Ml.l is similar. Observe that the communication graph of each of
these MSCs is strongly connected and involves all the processes, and hence, the MSC graph
L* is bounded.

Claim1: 4 € RPCP iff L* is not weakly realizable

Proof. For the “only if” direction, suppos® = (i1, a1, b1, i2, az, ba, ..., iy, ay, by) are
the indices for a solution td, and the bits:; andb; indicate which stringa;; or w;,) is
chosen to go into the two (left and right) long strings.

Consider the new MSCx andM’ obtained from the sequencis = M“3L .M and
the sequencd/’ = M,bl l’" Executions of both of these (sequences of) MSCs must
exist in any reallzatlon oL* We then look at the projectiond |1, M|2, M|3, andM |4 of
M,andM’|1, M'|2 , M’'|3 andM’|4 of M’ onto the 4 processes. Now consider an MBC
formed fromM’|1, M’|2, M |3, andM |4. The claim is that the combined MS®Z” is weakly
implied by L*. By definition, the only thing to establish is that” is indeed an MSC, in
the sense that it is acyclic, well-formed and complete. The only new situation in terms of
communication il” is the communication betwedn and P4, and betweerP, and Ps.

But the communication betwedn and P4 is consistent in’|1 andM |4 (i.e. the sequence

of messages sent froiy to P4 in M’|; is equal to the sequence of messages received in

M |4), and the communication betweéh and Ps is consistent im1’|, and M |3 because

R is a solution to the RPCP. Furthermore, the acyclicityf follows from the property

of the solution that the string formed by the fifstvords on processes 1 and 2 is always a
prefix of the string formed by the firgt words on processes 3 and 4. Consequently each
message fron®; to Py is sent before it needs to be received. But note Miatannot itself

be in L* because there must be some indexwherea; # b;, and no MSC exists il

where, after process 1 announces the index, what process 2 sends is not identical to what
process 3 receives.

Now, for the “if” direction, suppose there is some M&(€ which exists in any realization
of L*, but is not inL* itself. We want to derive a solution td from M@. First, it is clear
that the projectior @|, must consist of a sequence of pairs of messages (the first of each
pair acknowledged), sent from process 1 to process 2 and 4, respectively, with messages
(i, b) andi, respectively. Likewise, it is clear that, in order for process 2 to receive those
messagesy @|, must consist of a sequence of receipt$iob) pairs, and after eadt, b),
eitherv; or w; is sent to process 3, based on whethet 0 or b = 1, before the next
index pair is received. Likewisa/@|, consists of a sequence of receipt of an index
from process 1 followed by sending @f 0) or (i, 1) to process 3, and/@|; consist of
a sequence of receipt of, 0) or (i, 1) followed by receiptv; or w;, respectively. Now,
since M@ is not in L*, for some index the choice ofv; or w; must differ on process
2 and process 3. (Note, we are assuming that the buffers between processes are FIFO.)
Furthermore, because of the precedences, the prefix formed by thjevfiostls on process
2 must precede thg + 1)th message from process 1 to process 4, which in turn precedes
the (j + 1)th message from 4 to 3, and hence the+ 1)th word on process 3. That
is, the string formed by the first words on process 2 is a prefix of the string formed
by@ghe firstj words on process 3. Therefore, we can readily build a solutiont fiyom
M@, 0O



R. Alur et al. / Theoretical Computer Science 331 (2005) 97-114 107

P1 P2 P1 P2 P1 P2

1 1 2 2 1 2

MSC3 MSC4 MSC5

Fig. 4. Safe realizability.

3.2. Safe realizability

As a motivation for safe realizability, consider the MSCs in Bigin MSGCs, both pro-
cesses send each other the value 1, while in W 3®0th processes send each other the
value 2, and thus, they agree in both cases. From these two, we should be able to infer
a partial scenario, depicted in M§Jdn which the two processes start by sending each
other conflicting values, and the scenario is then completed in some way. However, the set
containing only MSG and MSG is weakly realizable. A closer examination reveals that
the distributed implementation of these two scenarios can potentially deadlock when one
process decides to send the message 1 while the other decides to send the message 2. We
need a stronger version of implication closure.

To define this formally, consider a st of concurrent automata and the proddct
IT; A;. A stateg of the productA is said to be aleadlockstate if no accepting state df
is reachable frony. For instance, a rejecting state in which all processes are waiting to
receive messages which do not exist in the buffers will be a deadlock state. The ptoduct
is said to bedeadlock-freaf no state reachable from its initial state is a deadlock state. A
setL of MSCs is said to beafely realizablef L = L(I1A;) for some(A;|1<i <n) such
thatI14; is deadlock-freet

There is an equivalent characterization of safe realizability as followgreétL) denote
the set of prefixes of the MSCs or wordslin Then, a sel. of MSCs is safely realizable
iff it satisfies the following two closure conditions:

(1) for a well-formed wordw (i.e. a partial MSC), if for all Xi <n, there exists a word
v; € pref(L) such thatw|; = v;|;, thenw is in pref(L);
(2) for a well-formed and complete word (i.e. an MSC) inpref(L), if for all 1 <i <n,
there exists a word; € L such thatw|; = v;|;, thenw isin L.
The first closure condition says that the set of partial MSCs (i.e. prefixdg can be
constructed from the projections of the MSCdimnto individual processes. The second
condition is similar to the closure condition for weak realizability, but allows us to focus
attention only on complete MSCs that are themselves prefixes of MSCs already lre
second condition is not implied by the first, as pointed olfij. For the proof that these
two conditions capture safe realizability, please consult the full versi¢h] of

1 Recall that we identify MSCs with their linearizations, and thus, a set of MSCs with the set of all linearizations
of all the MSCs in that set.
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The MSC-graplG is said to be safely realizable if the 9etG) of MSCs is. For a finite
set of MSCs, we known that weak realizability is coNP-complete while safe realizability
has a polynomial-time solutiofi]. For bounded graphs, even though weak realizability
is undecidable, checking safe realizability is decidable. In bounded graphs, if we consider
the behaviors corresponding to the paths in the graphs, a process cannot be far ahead of its
communication partner, thus keeping the buffer size bounded. While checking safe realiz-
ability, when we consider the possible interactions among local behaviors (i.e. projections)
of different processes, if the communication buffer between any pair of processes exceeds
this bound, we can immediately flag an error. In contrast, while checking weak realizability,
even when the buffer size exceeds the bound, we need to check if there is a “complete”
MSC that can extend this partial behavior. We establishxasBAacEupper bound, as well
as Bpracehardness, for checking safe realizability. Note that both the bounds also hold if
we use alternate communication architecture by relaxing the FIFO requirement on buffers.

Theorem 3. Checking safe realizability of a bounded MSC-graph iEXPSPACE

Proof. SinceG is bounded, we know that(G) is definable by an exponential sized au-
tomatonA each of whose states can be encoded in polynomial §8hdakewise, we can
build a concurrent product’ = I1; A;, where each; is the local automaton formed by
the projection onto proce$®f G, and then determinized and minimizedLIfG) is safely
realizable, then we know that’ is such a realizatiofil]. Moreover, since5 is bounded,
there is a polynomial bound (actually, linear in the number of verticeg)ahat we can
place on the lengths of queues 4ri such that if ever the queue length is exceeded we
will know that the partial MSC which exceeded the bound is not a prefix of an MSC in
L(G). Thus, we first check to see whether there is an executioti of which the buffer
bound is exceeded. This can be done $r4ZEby guessing a bad path. If there is such an
execution, we halt and report tha{G) is not realizable. Thus, we assume thaenforces
the polynomial bound on the buffers.

Next, we check whether the automatahis deadlock-free. Note that checking whether
a state ofd’ is a deadlock state is inSPACE PsPACEis closed under negation, and to show
that a state is not a deadlock state, it suffices to guess a path from the state to an accepting
state, and this can be done iBHACEby a routine argument. Now, to show thé&tis not
deadlock-free, we simply guess a state, and show it be reachable as well as to be a deadlock
state. Consequently, checking deadlock-freedom’ad$ in PSPACE

Finally, we need to show thdt(A’) andL(G) are identical. Consider the complement
automatonA for L(G) (we do not actually buildi, but compute its states using the subset
construction as we need them). We then need to know whétheh N L(A) is empty or
not. If it is, thenA’ realizesL(G). If not, thenL(G) is not safely realizable. Since each
state ofA requires exponential size to encode, we can determine whet#éy N L(A) is
nonempty in KPSPACEbY guessing an accepting path in each automatan.

Theorem 4. Checking safe realizability of a bounded MSC-grapRdsacehard.

Proof. We reduce the $Pacecomplete problem of determining whether a given NBA4,
acceptsX™, to checking safe realizability. Assume= (Q, X, 9, ginit, [, F) is 2Z-labeled



R. Alur et al. / Theoretical Computer Science 331 (2005) 97-114 109

on states rather than on transitions, i.e.Q — X, ando € QO x Q. LetX = {ay, ..., ax}
andQ = {q1, ..., qn}- We build fromA an MSC graphG, which will have nodesQ’ =
{q1, - ... q,}) U {start, left, right} U (V = {v,,, ..., vq}). The edges between vertices in
O’ will be identical to the transition relatiohover Q, and every nodg’ € Q' is labeled by
an MSC with one synchronous (acknowledged) message from pr8¢céss,, where the
content of the messagelig ). The verticed/ will form a complete subgraph ang € V is
labeled by an MSC wherB; sends: (synchronously) ta?,. The start nodstartis labeled
with the empty MSC. It has edges to both th& andright nodes. The nodkeft is labeled
by an MSC whereP; sends the (synchronous) message “leftPtcand the (synchronous)
message “go” taP;. The noderight is labeled by an MSC wher&s sends the (synch)
message “right” taP, and the (synch) message “go” R3. Theright node has an edge to
the initial statey; . € Q. Theleft node has edges to all verticeslin The terminal nodes
of G are all nodes of/ as well as those node$ € Q' such thay € F.

We claim thatL (G) is safely realizable iffL(A) = X*. Let us consider whether the
productlITA; of the component automats, each associated with corresponding process
P;, can deadlock. The component automatanwaits for the message “go” frorfis, acks
it, and then synchronously sends all possible message sequeegNote that this is so
because the projection &f onto process; accepts all possible strings following a “go”.)

Supposd.(A) = X*. Then, the automata#; waits for the message “left” or “right” from
P3, and then can receive every possible message fip(each message is acknowledged).
Hence the produdt 4; is a safe realization. I£.(4) # 2™, then letw be a string such that
w € L(A). SupposePs sends the “right” instruction t&, and “go” to P1. After P; receives
the “go” instruction frompPs, let P; attempt to sendv to P, (by moving through théeft
node into theV component). Since ¢ L(A), there is some prefin’ of w such that, after
P; sendsw’ there is no execution af, (necessarily in thg’ component) that receives it,
i.e., no path forP, which after receiving the “right” instruction receives. HenceL (G) is
not safely realizable. (I

4. \ferification

Now we turn our attention to the verification problem where the system to be verified is
described by an MSC-grah. We will consider two semantics for the verification problem,
the setL (G) of all the MSCs specified b§, and the seL ™ (G) of all the MSCs in the weak
closure. First suppose the specification is given by an automgaémtepting linearizations
corresponding to “bad” behaviors. If the semantics of an MSC-gi@pk L(G), then
the verification problem, namely, checking emptinesé. aff) N L(A), is undecidable in
general and 8pacecomplete for bounded graplifi3]. As our results will indicate, when
the semantics oy is L (G), the verification problem is undecidable even for bounded
graphs. Since MSCs specify partially ordered executions, we proceed to consider partial-
order specifications.

4.1. MSC membership

Given MSC graplG and given an MSQ@/, we wish to know (1) i € L(G)? and (2) is
M € LY (G)? There are at least two reasons to consider this problem. Hinstay specify
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an undesirable scenario, so a positive answer to any of these two questions imply existence
of a bug. SecondM may specify a desired behavior, and answering these questions can
help avoid redundancy.

As discussed earlier, we can equate an MSC évamocesses with a “well-formed?-
tuple(s1, ..., sx) of stringss;, wheres; indicates the linearly ordered sequence of messages
sent and received by process

First we consider the question of checking if a given M&belongs toL (G). There
are two cases to this question depending on whether the number of protesstse
MSCs is fixed or not. We observe that for a fixed number of processtfe question can
be answered in tim® (»%), and we show that for an arbitrary number of processes the
question is NP-complete. Boundedness is not relevant to these results.

Theorem 5. Given an MSC-graply and an MSQV overk processeghere is an algorithm
that decides ir0 (|G|| M [¥) time whethe®M € L(G).

Proof. Let M = (s1, ..., s¢). Lets;[j, j'] denote, for Q< j < j' <|s;|, the substring of;
starting at positio and ending at positioji. Sincek is fixed, we can build a grapi whose
nodes arév, d), wherev is anode ofz and wherel = (d1, . . ., di), 0<d; <|s;|. There will

be an edg&v, d) — (v/,d’) in H if and only if there is an edge — v’ in G andu(v') =
(s1ld14+1,d1], ..., seldi+1, d;]). We mark an initial node off, namely the nodévinit, d)
such thawjyjt is the initial node of the MSC graph, apdvinit) = (s1[0, d1], - . ., sk [0, di]).

(If this initial node does not exist, then we already knbivg L(G).) Now, M € L(G) iff

(v, (Is1], . .., |sx)) is reachable for some terminal vertexof G. The size ofH is at most
O((IG||M[%)), hence we can compute reachability in that time bound. Note that we need
not actually construct/, but can compute reachability on it on the fly, computing nodes
only as needed. [

Next we show NP-completeness for the membership problem. Our proof is very similar
to the proof given byf14] for “template matching” in MSC graphs, but because template
matching offers more flexibility than finding a given MSC, we need a reduction from a
slightly different NP-complete problem. The result can also be derived from an earlier
result on membership problems for trace languggp$Ve give our explicit proof, because
it also yields the stronger facts that the result remains true for complete MSC-graphs and
acyclic MSC-graphs.

Theorem 6. Given an MSC-graplG and an MSCM, it is NP-complete to determine if
M e L(G), even wherG is a complete grapfor wheng is an acyclic graph

Proof. The problem is contained in NP because we can guess a p&thmad easily verify
that the path generatés.

To show NP-hardness, we provide a reduction from the NP-complete prabME:
IN-THREE-3-SAT16]: given a 3-CNF formulap, is there a satisfying assignment to the
variables such that each clausepofetsexactly one literahssignedrue ? From a 3CNF
formulagp = C1 A ... A Cpy, OVer variablessy, .. ., x,, we define an MSC grap&f and
an MSCM over 2n + 2n processes. The underlying graph @fis a complete graph,
and M does not depend op. For each claus€;, we have two processe 1 and P; o,
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and for each variable;, we have two processes; 1 and Q; 2. The complete grapty has
2n verticesV = {v;, w; | 1<i <n}, wheren is the number of variables ip. All vertices of
G are initial vertices. For eaahwe labely; by an MSCM,; in which there is one message
(labeled, sayg) from processP; 1 to P; > precisely when variable; appears positively in
C;. In addition, there is a messagesent fromQ; 1 to Q; > in M,,. Likewise,w; is labeled
by an MSCM¢,, which does the opposite df,,: there is one message labeledrom
processP; 1 to P; » when variabler; appears negatively. Again, in addition, the message
is sent fromQ; 1 to Q; 2.

Finally, we defineM, which does not depend ap. In M, for eachj, there is one:-
message sent froR; ; to P; », and for eacli there is am-message sent frof; 1 to Q; ».
It is not difficult to see thaM € L(G) iff there is a satisfying assignment tothat sets
precisely one literal in each clause to trué.l

Now we consider the membership question for weak-closure semanti¢szig. " (G)?
This problem turns out to be much easier:

Theorem 7. Given an MSC-grapl; and an MSCM, there is an algorithm that in time
O(|G||M|) determines whethe¥l € L¥(G).

Proof. SupposeG andM = (s1, ..., sx) are defined ovet processes. Checking whether
M e L"(G) amounts to simply checking whether, for each proéesscan be generated
by the automaton given by the “projection” 6f onto process (see[1]).

For each process let G; be the projection of; onto the events of processG; is like
G, but each vertex in G; is labeled with the projection onto processf the MSC labeling
v;j in G. The accept states 6f; are the same as those®f G, can be viewed as an ordinary
automaton over the alphabet of events belonging to prac&senM € LY (G) iff s; € G;
for eachi. Building G;’s can be done in linear time, and checking whether G; can be
done in timeO (|G;||s;]), for eachi € [k]. Thus, the total time i® (|G||M]). O

4.2. Checking local properties

Given G, we want to know whetheL” (G) satisfies a property. A property ¢ is
linearization independent if it will hold for one linearization of an MSC iff it holds for
all. A property ¢ of MSCs is said to bdocal if it (syntactically) only refers to events
on one processP;. Such local properties are clearly linearization independent, because
every linearization of an MSC preserves the local order of events on a given process.
Boolean combinations of linearization independent properties are also clearly linearization
independent. In order to make this a precise definition, we need to fix a specification logic.
However, our upper bound results are applicable irrespective of the particular choice as long
as checking whether a particular word satisfies a property can be done in polynomial-time,
and our negative results use properties of a very limited form such as “ewmntually
OCcurs on process;”, or “eventx never occurs on process”. As an example of such a
specification logic, consider the following: a property is a Boolean combination of atomic
properties, and an atomic property is a regular language over the events of a single process,
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specified by a deterministic finite automaton. Another example is the restricted temporal
logic T LC~ interpreted over partially ordered structuf2s].

Theorem 8. There are local properties; and ¢, such that for a finite MSC sdt, it is
coNP-complete to determine if every MSQLifi satisfiesp; V ¢,.

Proof. The problem is in coNP, because we can guess projections on each process, check
that they combine into a valid MSC, and then check that the respective local strings satisfy
the simple eventuality described by the local propertieg and—g,.

The hardness proof is a reduction from 3SAT. let= (Cy,..., Cy) be the clauses
of the 3SAT formula, ordered in some arbitrary way, andxlet. . ., x,, be its variables.
We will add new variables andzi, ..., z,;. Our new ordered list of clauses will be=
(yV=z1,yV=z2, ..., yV=z7,C1Vz1,C2V 22, ..., CyVzy). Clearly, I has a satisfying
assignment ifid has a satisfying assignment with= 0. LetA|’{ denote the firsk clauses
in the list4. Notice that for every clausg; and for every assignment to variables occurring
in C;, there is a satisfying assignmentAt)n"lJ””_1 which agrees with that assignment (just
sety =1, andz; = 1 for j < i. Now you are free to set the variablesGpin whichever
way).

Now we are ready to describe our MSC set, and our propeptiesdp,. The MSC set
will consist of one process for every variable and every claust in addition, there will
be an extra process callé®}, which will serve to tabulate whether the formula has been
satisfied or not. There will be one MS@®{, based on the “trivial” satisfying assignment
to I', namely P, will sendtrue to every clause that contains it, in their lexicographical
order. Likewise, theP;;'s will sendtrue to every clause that contains respectively. The
x; variables, can either seritle or falseto their clauses, it does not matter here. Each
clause proces8, after receiving its truth assignment in messages (which it reads in the
lexicographical order of the variables), then receives a message from its predecessor clause
(if there is one) which either indicates that the prior clauses have all been satisfied or
not. If the prior clauses have been satisfied, an@’iftself has also been satisfied, then
C’ propagates the “satisfied” message to the next clause in the ordered list. Otherwise, it
propagates “not satisfied”. The last clausépropagates this messageRg, which does
nothing other than to receive it. Clearly, for the assignment on whicks based P, will
receive a satisfied message.

Next, for each claus€; v z;, and for each satisfying assignmento the variables in
C; Vv z; (there are only a constant number of these, sifices a 3CNF clause), we will
add a new MSQV¢, , which mimics the same thing as above, only the assignment to the
variables is one consistent with bgifand the assignment mentioned above which satisfies
A|"l+”"1. Finally, we add another MS@/,, whose only purpose is to exhibit one MSC
such that the “assignment” tois false

Our setL of MSCs containgV;, M, and the MSC39c, ,. Consider an MSQ/ e L.
If P; receives a “satisfied” message, then we can construct a satisfying assignmént for
from M. Moreover, if P, senddalses in M, then we can construct a satisfying assignment
which assighs = 0, i.e., a satisfying assignmentfo We claim that the converse holds as
well, i.e., if there is such a satisfying assignment, then there will b& ameakly-implied
by L whereP, senddalse(call this—¢,) and P receives “satisfied” (call thisg,).
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finite set bounded graphs unbounded
weak | coNP-complete undecidable undecidable
safe P-time EXPSPACE-complete| undecidable

Fig. 5. Summary of results on realizability.

To see this, note that, locally, each variable process sees both assignments to that variable
in some MSC inL. Moreover, locally each clause process sees every satisfying assignment
to that clause. Now, if there is global satisfying assignment thatysetfalse then it must
be possible to construct it by combining the local satisfying assignment in a consistent way,
i.e., by having an implied MS@7 € L which exhibits this satisfying assignment_]

It follows that checking whether every MSC i’ (G), for an acyclic MSC-graplt,
satisfies a boolean combination of local properties is coNP-complete.

Theorem 9. There is a boolean combinatiop of local properties such that given a
bounded MSC-graply, it is undecidable to check if every MSCIiff (G) satisfiesp.

Proof. The proof uses precisely the same complete MSC graphs given in the proof of
Theoreml, which reduce an instance of RPCP to checking whethié) = L* (G). Note

that in that setting, if there is an implied but unspecified M&C that is, if there is a
solution to the RPCP, then by the construction, there is a solution in which the two strings
use exclusively words from different lists. In the notation of the proof of Theorem &, all
bits are 0, and abb; bits are 1, that is, in the implied MS®, every message sent by the
processPy to P is of the form(i, 1) (let's call this property),) and every message sent by
the process, to Ps is of the form(i, 0) (let’s call this propertyyr,). Conversely, if there

is an implied MSC that satisfies the propegty A \,, then RPCP has a solution. Hence,
RPCP has no solution iff every MSC Iit* (G) satisfies the propertyy, v —,. Clearly,

W4 andyr, are local properties)(; depends only on the events of proc&ssandyr, on the
events of procesB,). O

5. Conclusions

We have studied various algorithmic questions related to checking realizability and verify-
ing MSC-graphs and bounded MSC-graphs. A subsequent recent paper by Lohrey solves the
two gaps in our resultfd 1]: checking safe realizability for bounded HMSCs isPEPACE
hard, and is undecidable in the general case. The table irbRgmmarizes the compu-
tational complexity of various realizability problems. Note that our undecidability proof
for weak realizability applies only in the setting with FIFO communication architecture,
and a recent result by Morid 2] establishes decidability of weak realizability of bounded
MSC-graphs under a non-FIFO architecture.
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