
May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

Chapter 10

The Theory of Message Sequence Charts

K. Narayan Kumar

Chennai Mathematical Institute
H1 SIPCOT IT Park, Siruseri, India

Message Sequence Charts or MSCs are a visual formalism used in the specification
of systems in many domains including telecommunications, object oriented design
and forms a part of the UML language. Consequently, the formal study of MSCs
has received considerable attention over the last decade. We survey some of the
key results in this area with particular emphasis on the notion of regularity and
its relationship to automata, logics and model-checking.

10.1. Message sequence charts

Message Sequence Charts (MSCs) [1] are an appealing visual formalism used in a
number of software engineering notational frameworks such as SDL [2] and UML [3].
An MSC is a representation of a single behaviour or run of a system consisting of a
collection of processes communicating with each other asynchronously via buffered
channels. In this paper we shall restrict ourselves to systems with first-in-first-out
(FIFO) channels. Fig. 10.1 shows an MSC involving three processes p, q and r

and three messages. An MSC is to be read from top to bottom, the vertical lines
denote processes and the arrows represent messages. Formally, MSCs are defined
as labelled partial orders.

Let P = {p, q, r, . . .} be a finite set of processes that communicate with each
other through messages via reliable FIFO channels using a finite set of message
types M. For p ∈ P , let Σp = {p!q(m), p?q(m) | p ̸= q ∈ P ,m ∈ M} be the
set of communication actions in which p participates. The action p!q(m) is read
as p sends the message m to q and the action p?q(m) is read as p receives the
message m from q. We set Σ =

⋃

p∈P Σp. We also denote the set of channels by
Ch = {(p, q) ∈ P2 | p ̸= q}. Whenever the set of processes P is clear from the
context, we write Σ instead of ΣP , etc. Observe that our notation restricts us to a
single channel from a process p to any other process q, however this is merely for
notational convenience and the results do not change if we permit multiple channels
between pairs of processes.

Labelled posets A ΣP -labelled poset is a structure M = (E,≤,λ) where (E,≤)
is a partially ordered set and λ : E → ΣP is a labelling function. For e ∈ E, let

289

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

290 K. Narayan Kumar

↓e = {e′ | e′ ≤ e}. For p ∈ P and a ∈ ΣP , we set Ep = {e | λ(e) ∈ Σp} and
Ea = {e | λ(e) = a}, respectively. For (p, q) ∈ Ch, we define the relation <pq:

e <pq e′
def
= ∃m ∈ M such that λ(e) = p!q(m), λ(e′) = q?p(m) and

|↓e ∩ Ep!q(m)| = |↓e′ ∩Eq?p(m)|

The relation e <pq e′ says that channels are FIFO with respect to each message—if
e <pq e

′, the message m read by q at e′ is the one sent by p at e.
Finally, for each p ∈ P , we define the relation ≤pp= (Ep × Ep) ∩ ≤, with

<pp standing for the largest irreflexive subset of ≤pp. We write Chn(e) = p!q if
λ(e) = p!q(m) and Chn(e) = p?q if λ(e) = p?q(m).

Definition 10.1. An MSC over P is a finite ΣP -labelled poset M = (E,≤,λ)
where:

(1) Each relation ≤pp is a linear (total) order.
(2) If p ̸= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
(3) If e <pq e′, then |↓e ∩

(
⋃

m∈M Ep!q(m)

)

| = |↓e′ ∩
(
⋃

m∈M Eq?p(m)

)

|.
(4) The partial order ≤ is the reflexive, transitive closure of

⋃

p,q∈P <pq.

The second condition ensures that every message sent along a channel is received.
The third condition says that every channel is FIFO across all messages.

p q r

p1

p2

q1

q2 r1

r2

m1

m2

m3

Fig. 10.1. An MSC

In diagrams, the events of an MSC are presented in visual
order. The events of each process are arranged in a vertical
line and messages are displayed as horizontal or downward-
sloping directed edges. Fig. 10.1 shows an example with three
processes {p, q, r} and six events {p1, p2, q1, q2, r1, r2} corre-
sponding to three messages—m1 from p to q, m2 from q to r

and m3 from p to r.
For an MSC M = (E,≤,λ), we let Lin(M) =

{λ(π) | π is a linearization of (E,≤)}. For instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one lin-
earization of the MSC in Fig. 10.1. We write Lin(M) for the set of linearizations of
an MSC M .

Note that under the FIFO assumption an MSC can be reconstructed from any
one linearization — the relation <pp is determined by the order of the p events in
the linearization while <pq is determined by matching the ith p!q event with the ith

q?p event.

Definition 10.2. Let M be an MSC and B ∈ N. We say that w ∈ Lin(M)
is B-bounded if for every prefix v of w and for every channel (p, q) ∈ Ch,
∑

m∈M |v!{p!q(m)}| −
∑

m∈M |v!{q?p(m)}| ≤ B, where v!Γ denotes the projec-
tion of v on Γ ⊆ ΣP .

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 291

p q r

Fig. 10.2. A 3-bounded MSC

This means that along the sequential execution of M described by w, no chan-
nel ever contains more than B-messages. Consider the MSC in Fig. 10.2. The
linearization p!q q?p p!r p!q q?p q!r r?q p!q q?p r?p is 1-bounded while the lineariza-
tion p!q p!r p!q p!q q?p q?p p!r q?p r?q r?p is 3-bounded.

Definition 10.3. We say that M is universally B-bounded if every w ∈ Lin(M) is
B-bounded and that M is existentially B-bounded if there is a w ∈ Lin(M) which
is B-bounded. (We sometimes write B-bounded to mean universally B-bounded.)

The MSC in Fig. 10.2 is universally 3-bounded. The 1-bounded linearization
listed earlier shows that this MSC is also existentially 1-bounded. The follow-
ing proposition (paraphrased) from [4] characterizes universal B-boundedness for
MSCs.

Proposition 10.1. An MSC M is not B-bounded if and only if there are processes
p, q and p!q labelled events e1 <pp e2, . . . <pp eB+1 such that the q?p labelled event
e′ with e1 <pq e

′ is not below eB+1.

Optimal linearizations: Given an MSC M the smallest B for which it is B-
bounded can be computed in linear time as shown in [5]. In particular, an optimal
linearization w.r.t. boundedness can be computed by the following greedy strategy
— at each step, extend the linearization, if possible, by a receive event; otherwise
extend it by picking from the set of candidate send events the one that minimizes
the maximum number of undelivered messages in any channel. Applying this greedy
strategy to the MSC in Fig. 10.2 we get p!q q?p p!r p!q q?p q!r r?q r?p p!q q?p which
is a 1-bounded linearization.

10.1.1. Concatenation of MSCs

The concatenation of M1 and M2 written as M1 ◦M2 denotes the behaviour where
each process participates in its events in M1 and then follows it by participating in
its events in M2. It is not necessary for all processes to complete the events in M1

before any process enters M2.
Formally, the (asynchronous) concatenation of MSCs is defined as follows.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

292 K. Narayan Kumar

A1

p q r

A2

p q r

A1 ◦A2

p q r

Fig. 10.3. MSC Concatenation

Definition 10.4. Let M1 = (E1,≤1,λ1) and M2 = (E2,≤2,λ2) be a pair of MSCs
such that E1 and E2 are disjoint. The (asynchronous) concatenation of M1 and
M2 yields the MSC M1 ◦M2 = (E,≤,λ) where E = E1∪E2, λ(e) = λi(e) if e ∈ Ei,
i ∈ {1, 2}, and <pp = <1

pp ∪<2
pp ∪ (E1

p ×E2
p) and for (p, q) ∈ Ch , <pq = <1

pq ∪<2
pq.

MSCs over a given alphabet form a monoid with the empty MSC as the identity
(i.e. concatenation is an associative operation). Fig. 10.3 describes the concatena-
tion of two MSCs. In the linearization p!r p!q q?p q!r r?q p!q q?p r?p of A1 ◦ A2

observe that the last event of A1 occurs after both the events of A2.
We can repeatedly decompose MSCs into the concatenation of smaller (nontriv-

ial) MSCs till we are left with MSCs that cannot be decomposed.

Definition 10.5. An MSC M is said to be an atom if it cannot be expressed as
the concatenation of two nontrivial MSCs.

The MSCs A1 and A2 in Fig. 10.3 are atoms. The MSC M in Fig. 10.2 is the
concatenation A2 ◦ A1 ◦ A2. In this case, the decomposition of M into atoms is
unique. In general this need not be the case. To understand the exact nature of
the decomposition of MSCs into atoms we need some terminology from the theory
of traces.

10.1.2. MSCs and Traces

A dependence alphabet is a pair (Σ, D) where the alphabet Σ is a finite set of
actions and the dependence relation D ⊆ Σ × Σ is reflexive and symmetric. The
independence relation I is the complement of D. For A ⊆ Σ, the set of letters
independent of A is denoted by I(A) = {b ∈ Σ | (a, b) ∈ I for all a ∈ A} and the
set of letters depending on (some action in) A is denoted by D(A) = Σ \ I(A).

A Mazurkiewicz trace is a labelled partial order t = (V,≤,λ) where V is a set
of vertices labelled by λ : V → Σ and ≤ is a partial order over V satisfying the
following conditions: For all x ∈ V , the downward set ↓x = {y ∈ V | y ≤ x} is
finite, (λ(x),λ(y)) ∈ D implies x ≤ y or y ≤ x, and x! y implies (λ(x),λ(y)) ∈ D,
where ! = < \ <2 is the immediate successor relation in t.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 293

Let ≡I be the equivalence relation on Σ∗ given by the reflexive transitive closure
of the relation uabv ∼ ubav whenever (a, b) ∈ I. The set of linearizations of a trace
t is an equivalence class of ≡I . Conversely, it is possible to reconstruct the trace
from any given linearization. For a more detailed introduction to Trace theory, the
reader is referred to ??.

We are now in a position to characterize the different decompositions of an MSC
into atoms. Let A be any finite collection of atoms over the set of processes P . One
can equip A with natural dependence alphabet structure (A,D) where (a, b) ∈ D if
and only if there is a process p that is active in both a and b.

Proposition 10.2. Let M be an MSC, A be a finite set of atoms that contains
the atoms that appear in M and (A,D) be the corresponding dependence alphabet.
Then, if M = a1 ◦ a2 ◦ . . . ak and M = a′1 ◦ a

′
2 ◦ . . . a

′
l then a1a2 . . . ak ≡I a′1a

′
2 . . . a

′
l.

Thus, the decomposition of an MSC into atoms is unique up to commutations of
independent atoms. In particular, the set of atoms that are necessary to decompose
an MSC M , denoted by A(M), is unambiguously defined. We shall write At(M)
to denote the trace (or equivalently the linearizations of the trace) over atoms
associated with M .

There is a second dependence alphabet associated with MSCs which yields an
alternative characterization of B-bounded MSCs. Let ΣB = ΣP × {0, 1, . . . , B − 1}
for some natural number B. Let D be the dependence relation given by (x, i)D(y, j)
if either x and y occur in the same process or if Chn(x) = p!q, Chn(y) = q?p and
i = j. In a B-bounded MSC, the ith receive on a channel must necessarily occur
before the (i+B)th send on the same channel justifying the demand for an ordering
between them in the dependency alphabet.

Given an MSC M = (E,≤,λ) we transform it into a ΣB-labelled partial order
tr(M). Let tr(M) = (E,≤,λ′) where λ′(e) = (λ(e), i) where i = |{e′ | e′ <

e, Chn(e′) = Chn(e)}|. That is, we tag each event by its channel count modulo B.
Does this yield a trace w.r.t the alphabet (ΣB , D)?

(p!q, 0)

(p!r, 0)

(p!q, 1)

(p!q, 0)

(q?p, 0)

(q?p, 1)

(q!r, 0)

(q?p, 0)

(r?q, 0)

(r?p, 0)

Fig. 10.4.

There are two kinds of dependencies in
the definition of the relation D. A depen-
dency of the first kind, within a process,
is also enforced in the MSC. An event la-
belled p!q is guaranteed to be below the cor-
responding receive event labelled q?p in the
MSC. However, no ordering is necessary be-
tween other occurrences of events labelled
by these two letters. Thus, the second kind
of dependency demanded by D is in gen-
eral stronger than the ordering in the MSC.
Fig. 10.4 describes the trace tr(M) over the

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

294 K. Narayan Kumar

alphabet ΣP × {0, 1} corresponding to the MSC in Fig. 10.2. Observe that there
is no ordering between the first q?p and the third p!q in the MSC whilst they are
ordered in the trace.

However, for B-bounded MSCS we have the following result.

Proposition 10.3. [6; 7] Let M be an MSC. Then tr(M) is a trace over the al-
phabet ΣB if and only if M is a universally B-bounded MSC.

Thus, universally B-bounded MSCs are traces over the aforementioned depen-
dence alphabet. This allows us to exploit the well-developed theory of traces in the
study of B-bounded MSCs.

Finally, let us examine existentially B-bounded MSCs and their relationship
to traces. By definition, an MSC is not existentially B-bounded iff it cannot be
linearized into a B-bounded word, and what rules out such a linearization is the
following scenario — a p!q event whose associated receive is above the next B p!q-
labelled events under ≤. This can be formalized as follows.

Definition 10.6. Let (E,≤,λ) be a given MSC and B a natural number. The
relation <rev on E, defined below, relates the ith receive on a channel with the
(i+B)th send on the same channel.

e <rev e′
def
= ∃f. f <pq e & λ(f) = λ(e′) & |{e′′|f < e′′ ≤ e′,λ(e′′) = λ(f)}| = B

Existentially B-bounded MSCs are precisely those that do not violate <rev.

Proposition 10.4. [8] Let M = (E,≤,λ) be an MSC and <rev be as defined above.
M is existentially B-bounded if and only if ≤ ∪ <rev is acyclic. Existential B-
boundedness of an MSC M can be decided in linear-time.

p q r

Fig. 10.5.

In the MSC in Fig. 10.5, with B = 2, we find that the <rev

edge marked with the dotted line induces a cycle. For B = 3,
<rev is consistent with the ordering of this MSC implying that
this MSC is existentially 3-bounded.

Let M = (E,≤,λ) and ≤B= (≤ ∪ <rev)∗. If M is existentially
B-bounded then (E,≤B,λ) is a labelled partial order. Let tr′(M)
be the labelled partial order (E,≤B,λ

′) where λ′ is the labelling
function described earlier.

Proposition 10.5. [8] If an MSC M is existentially B-bounded
then the labelled partial order tr′(M) is a trace over the alphabet
(ΣB, D). (If M is not existentially B-bounded then tr′(M) is not
even a partial order, leave alone a trace.)

It worth noting that for a universally B-bounded MSC M ,
<rev⊆≤ and therefore tr′(M) = tr(M). Thus, Prop. 10.5 can be thought of as a
generalization of Prop. 10.3.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 295

10.1.3. MSC Languages and regularity

An MSC language is a (finite or infinite) collection of MSCs over a given set of
processes P and messages M. Given the correspondence between MSCs and their
linearizations, we may also regard a language of MSCs as a collection of words over
ΣP given by the linearizations of the MSCs in the language. In what follows we
shall use these two notions interchangeably.

Definition 10.7. [9] A language of MSCs is said to be regular if the word language
of its linearizations is a regular language.

In any prefix of a linearization of an MSC the number of p!q events is at least as
many as the number of q?p events for any pair of processes p and q. We say that a
word over ΣP is proper if it satisfies this property. In any linearization of an MSC,
there are as many p!q events as there are q?p events for every pair of processes p

and q. We use complete to denote this property. Thus linearizations of MSCs are
proper and complete words while their prefixes are proper words.

Let (Q,Σ, δ, s, F) be a deterministic finite automaton accepting a regular MSC
language L. We further assume that every state is reachable and that a final state is
reachable from every state. Suppose, u and v are two proper words that lead to the
same state q from s. Let w be any word that leads from q to some final state. Thus,
uw and vw are both complete words. Thus |#p!q(v)| − |#q?p(v)| = |#p!q(v)| −
|#q?p(v)| for each pair of processes p and q (where #a(w) denotes the number of
a’s in the word w). This leads to the following result from [9] which assures us that
regular languages are bounded.

Lemma 10.1. Every regular MSC language L is B-bounded for some B. In par-
ticular, B can be chosen to be smaller than the size of the minimal automaton
accepting the linearizations of L.

The converse of this lemma is obviously false — for instance, consider the lan-
guage {(p!q q?p)i (r!s s?r)i | i ≥ 0}. We end this section with the definition of
finitely generated MSC languages.

Definition 10.8. A language L of MSCs is said to be finitely generated if
⋃

M∈L A(M) is a finite set.

The MSC language given by the complete words p!q (q!p p?q)∗ q?p is not finitely
generated. As a matter of fact, every word in this language is an atom.

10.2. Message Sequence Graphs

The ITU standard Z.120 describing MSCs also proposes a mechanism to describe
collections of MSCs. This mechanism called HMSC (or High-level Message Sequence
Charts) or Message Sequence Graphs (MSGs) allows branching, concatenation and
iteration.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

296 K. Narayan Kumar

Definition 10.9. A Message Sequence Graph is a structure G = (Q,→, Qin, F,Φ),
where Q is a finite and nonempty set of states, → ⊆ Q × Q, Qin ⊆ Q is a set of
initial states, F ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such that
(qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) = M0 ◦M1 ◦
M2 ◦ · · · ◦ Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn is a run if
q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is L(G) = {M(π) |
π is a run through G}. We say that an MSC language L is MSG-definable if there
exists an MSG G such that L = L(G).

An example of an MSG is depicted in Fig. 10.6. The initial state is marked
⇒ and the final state has a double line. The MSC M corresponding to the path
q0 → q1 → q0 → q2 → q0 is also given in the figure.

q0
m

m′

q1
m q2

m′

⇓ m ✲
m′✛
m ✲
m ✲
m′✛
m′✛
m ✲
m′✛

Fig. 10.6. A message sequence graph

It can be verified that the language generated by the MSG in Fig. 10.6 is a
regular language. However, this need not always be the case. There are two reasons
why MSGs can generate non-regular languages.

The first reason, as illustrated in Fig. 10.7, is its combination of concurrency
and iteration. The language L generated by this MSG is {(M1 ◦ M2)n | n ≥ 0}.
The events in M1 and M2 are completely independent (concurrent) of each other.
Thus, we may choose to linearize an MSC of the form (M1 ◦M2)n by first listing
all the events involving p and q and then listing the events involving r and s. As
a consequence, L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗

such that |σ!p!q(m)| = |σ!r!s(m)|, which is not a regular string language. Hence L is
not a regular MSC language.

The second reason, as illustrated by the producer-consumer example in Fig. 10.8,
is that the buffers can be unbounded. The linearized language of this MSG is
{w | #p!qw = #q?pw & ∀v ≤ w. #p!qv ≥ #q?pv}.

However, the language of an MSG is always finitely generated since every MSC
in the language can be decomposed using the MSCs that label the nodes of the
MSG.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 297

⇒

p q r sm

m

p q r s

m

m

Fig. 10.7.

Proposition 10.6. [10] Let G be a MSG. Let LN be the set of MSCs that label the
nodes of G and let L be the language generated by G. Then, L is a finitely generated
MSC language and in particular, A(L) = A(LN).

q0

Fig. 10.8.

This also means that MSGs are not sufficient to describe
every regular MSC language. For example, the language
p!r p!q q?p (q!r r?q r!q q?r)∗ r?p is a regular MSC language that
is not finitely generated and hence not MSG definable.

10.2.1. Communication Graph

The key to understanding the non-regularity of MSGs lies in studying
their communication graphs.

Definition 10.10. For an MSC M = (E,≤,λ), CGM , the communication graph
of M , is the directed graph (P , 3→) where:

• P is the set of processes of the system.
• (p, q) ∈ 3→ iff there exists an e ∈ E with λ(e) = p!q(m).

p q r

Fig. 10.9.

The communication graph of the MSC M in Fig. 10.2 is in
Fig. 10.9. This graph is not strongly connected. This means
that M∗, the iteration of M , is not a bounded language. The
reasoning goes as follows: After participating in the events in
the first copy of M , the process p can go ahead and participate

in its events in the second copy and then the third copy and so on, before q or r

participate in any event at all, forcing the channel from p to q to be unbounded.
Suppose we modify the MSC M by adding a message from q to p. The iteration
of M would still be unbounded — now the processes p and q can participate in all
their events in copy one, and then copy two and so on before process r completes
any event, forcing the channel from q to r to be unbounded. However the addition
of an event from r to p would force the iteration of M to be bounded. But, this
also makes the communication graph strongly connected.

Definition 10.11. A (communication) graph is locally strongly connected if the
graph is the disjoint union of a collection of strongly connected components. An

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

298 K. Narayan Kumar

MSG G is locally strongly connected if the communication graph of the MSC gen-
erated by every cycle (simple loop) in G is locally strongly connected.

The communication graph of every word in the language generated by the MSG
in Fig. 10.7 is the same and is described in the Fig. 10.10. It is locally strongly
connected and thus the MSG is locally strongly connected.

p q r s

Fig. 10.10.

Suppose that the communication graph of an MSC
M is locally strongly connected and let X ⊆ P be one
of the strongly connected components. Let p, q ∈ X .
Since there is a path from q to p in the communication
graph of length at most |X |, in any MSC of the form
M |X| (i.e. M ◦M ◦ . . . ◦M , |X | times), there is p event which is above the q events
in the first M . Thus, p can at most be in the (|X |+ 1)st copy before q completes
its events in the first copy, ensuring that the channel from p to q is bounded. This
argument does not rely on the fact that all the “copies” are identical but only uses
the fact that all the copies have the same communication graph. Extending this
argument gives

Lemma 10.2. [11; 8] Let G be an MSG and M be an MSC.

(1) If the communication graph of M is locally strongly connected then M∗ is a
B-bounded MSC language for B ≥ |M |× |P|.

(2) If G is locally strongly connected then L(G) is a B-bounded language for any
B ≥ |G|.|P|.Max where Max is the maximum number of send events in a MSC
labelling any one node of G.

(3) If every node in G is reachable from an initial node and in turn can reach an
accepting node and L(G) is a bounded MSC language then G is locally strongly
connected.

Boundedness, a necessary condition for regularity, by itself does not guarantee
regularity — the MSG in Fig 10.7 has a locally strongly connected communication
graph yet generates a non-regular language (In particular iterating M1 ◦M2 gener-
ates a non-regular language). A further structural restriction on MSGs is needed to
rule out the other reason for non-regularity in MSG definable languages — iterations
of concurrent behaviours.

Intuitively, the reason for the non-regularity of (M1 ◦M2)∗ is that (M1◦M2)N =
MN

1 ◦ MN
2 , due to the independence of the events in M1 and M2, thus implicitly

maintaining a counter.
Suppose the communication graph of an MSC M consists of a single nontrivial

(i.e. of size at least 2) strongly connected component and a collection of trivial
components (corresponding to each process that does not participate in any event
in M). If p and q are two processes that participate in M , then in any segment
of MN of the form M |P|+1 there is a p event that depends on a previous q event
within the segment and vice versa. Thus all independence is within small segments

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 299

(of size M |P|+1 or less) and the buffers are also bounded. This is sufficient ([12]) to
ensure that M∗ is a regular MSC language. This leads to the following definition.

Definition 10.12. An MSC M is said to be locally synchronized if its commu-
nication graph contains only one nontrivial strongly connected component and a
collection of isolated vertices.

An MSG is said to be locally synchronized if the communication graph of the
MSC generated by any loop in the MSG is locally synchronized. (Locally syn-
chronized MSGs have also been called bounded MSGs or com-connected MSGs in
literature.)

The following result shows that local synchronization is sufficient to guarantee
regularity.

Lemma 10.3. [13; 14] The language of any locally synchronized MSG is regular.

Note that the definition of locally synchronized MSGs places a demand on all
loops in the MSG and not just the cycles. Consider the MSG in Fig 10.11, adapted
from [14]. The states q0 and q2 are labelled by the empty MSC. The states q1,
q3 and q4 are labelled by the MSCs M1,M3 and M4 (described in the figure) re-
spectively. Observe that every cycle in this MSG generates a locally synchronized
MSC, however, the language accepted by this MSG is not regular. Every time the
processes p and q switch from exchanging the message m to exchanging the message
n (or vice versa) the processes r and s exchange a pair of messages. It is easy to
derive the non-regularity from this observation.

⇓

q4 q0 q1 q2 q3

p q r s
m m

M4

p q r s

M1

p q r s
n n

M3

Fig. 10.11.

Interestingly, if we prohibit the labelling of nodes by the empty MSC, then the
definition of a locally synchronized MSG can be weakened.

Proposition 10.7. Let G be an MSG in which every node is labelled by a nontrivial
MSC. If every cycle in G describes a locally synchronized MSC then G is locally
synchronized.

This can be seen as follows: Note that every loop that is not a cycle must
properly contain a cycle. Let p0p1 . . . pk=q0q1 . . . qm = pk+m . . . p0 be a loop that
contains the cycle q0q1 . . . qm. The loop p0p1 . . . pkpk+m+1 . . . p0 is smaller and by
the induction hypothesis generates a locally synchronized MSC. So does the cycle
q0q1 . . . qm. Any process that participates in the MSC labelling q0 (and there is at

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

300 K. Narayan Kumar

least one such process) is in the single nontrivial SCC of the communication graph
of the smaller loop as well as the single nontrivial SCC of the communication graph
of the cycle. Thus, the communication graph of the union of the loop and the cycle
is also locally synchronized. Thus,

Lemma 10.4. Let G be an MSG in which every node is labelled by a nontrivial
MSC. If every cycle in G generates a locally synchronized MSC then the language
of G is regular.

Earlier, we remarked that not all regular MSC languages can be described using
MSGs. The following result characterizes the collection of MSG definable regular
MSC languages.

Lemma 10.5. [10; 11] A regular MSC language L is definable using MSGs if and
only if it is finitely generated. Any such language can also be described using a
locally synchronized MSG.

The proof in [11] (which incidentally defines MSGs as regular expressions con-
structed using MSCs) exploits the translation from MSCs to traces over the under-
lying set of atoms and pulls back the corresponding result for traces ([15]).

We have seen that locally strongly connected MSGs are guaranteed to be
bounded but place no restrictions on independent iterations. Interestingly, we can
also exclude the complications of independent iterations without forcing bounded-
ness (or regularity).

Definition 10.13. [16; 17] An MSC is said to be globally cooperative if the symmet-
ric closure of its communication graph is the union of a single strongly connected
component and a collected of isolated vertices.

An MSG G is said to be globally cooperative if the MSC generated by any loop in
G is globally cooperative. (In [17], globally cooperative MSGs are called c-HMSCs.)

The motivation for this definition comes from trace theory. A word w over a
dependence alphabet (Σ, D) is said to be connected if the graph (Σw, D ↓Σw), on
the letters that appear in w and the dependency relation restricted to these letters,
consists of a single connected component. Fix a dependence alphabet (Σ, D). A
finite automaton over Σ in which every loop generates a connected word is said to
be loop connected. Let the language L be the language of a loop connected finite
automaton. Then, the language {tr(w) | w ∈ L} of traces represented by words
in L is a regular trace language. Equivalently the trace-closure of L, {w′ | ∃w ∈
L.w′ ∼ w}, is a regular language ([18]).

We can easily transform an MSG into an equivalent one where every state is
labelled by an atom— simply replace each node labelled by the MSC A1◦A2 . . .◦Ak,
by a sequence of k nodes each labelled by an atom. (This transformation takes a
globally cooperative MSG to a globally cooperative MSG.) Thus, MSGs can be

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 301

thought of as finite automata over the alphabet of atoms where the states are
labelled by letters instead of transitions.

Lemma 10.6. Let G be an MSG labelled by atoms and let A(G) be the set of atoms
labelling the nodes of G. Then, G is globally cooperative if and only if it is loop
connected as a finite automaton over the dependency alphabet (A(G), D) where aDb

whenever there is a process that is active in both a and b.

This leads to the following regularity theorem for a globally cooperative MSGs.
This proves to be a very useful tool in resolving a number of decision problems for
globally cooperative MSGs.

Theorem 10.1. [19] Let G be a globally cooperative MSG. Then, the language
{At(M) | M ∈ L(G)} is a regular language and a finite automaton accepting this
language with size at most 2|G|.|P| can be constructed.

The following result from [19] shows that the if you take away independent
iteration what is needed to ensure regularity is the boundedness of channels.

Proposition 10.8. An MSG G is locally synchronized if and only if it is globally
cooperative and accepts a bounded language.

10.2.2. Decision problems

The language of an MSG is nonempty if and only if there is a path in the MSG
from a start state to a final state. Thus, emptiness is decidable.

By Lemma 10.2, to decide whether a MSG accepts a universally bounded lan-
guage it suffices to check if it is locally strongly connected. Every MSG accepts an
existentially bounded language: in particular, if all the MSCs labelling the nodes of
an MSG G are existentially B-bounded, then the language of G is also existentially
B-bounded. The paper by Lohrey and Muscholl [8] establishes a comprehensive col-
lection of the decidability results for a variety boundedness problems for MSGs and
MSCs. Most importantly they demonstrate lower bounds for a variety of problems.

Theorem 10.2. Let G be an MSG.

(1) G is always existentially bounded.
(2) Given G and B we can check whether G is existentially B-bounded in linear

time ([8]).
(3) Checking whether G is universally bounded is decidable ([11]). This problem is

co-NP complete ([8]).
(4) Given G and B checking whether G is universally B-bounded is co-NP complete.

This problem is co-NP complete even if B is fixed to the constant 1 ([8]).

There are many factors that contribute to the size of an MSC or an MSG —
the number of processes in P , the size of the message alphabet M and the number

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

302 K. Narayan Kumar

of events. Theorem 10.2 holds as it is even if M is a singleton set ([8]). More often
than not, the number of events is likely to be several orders of magnitude larger
than the number of processes. Fortunately, if we fix the size of P , all the above
problems become efficiently solvable.

Theorem 10.3. [8] Fix a set P of processes. The problem of checking whether
a MSG over P is universally bounded (universally B-bounded for a given B) is
in NL.

The following lower-bound for checking structural properties of MSGs is from
in [19]. Note that this result uses the assumption that the number of processes is
part of the input.

Proposition 10.9. Deciding whether a given MSG is locally synchronized (globally
cooperative) is co-NP complete.

Local synchronization provides a sufficient condition for regularity. However,
there is no hope of obtaining an exact characterization.

Proposition 10.10. [4; 11] Checking whether an MSG accepts a regular language
is an undecidable problem.

The reason for this undecidability is the following: It is easy to translate a de-
pendency alphabet (Σ, D) into a collection of atoms A over a set of processes
P by assigning an atom A(a) for each letter a ∈ Σ in such a way that aDb if
and only if A(a) and A(b) share an active process. For instance, the MSCs M1,
M3 and M4 (from Fig. 10.11) can be used to represent the dependence alpha-
bet ({a, b, c}, (b, c)). Using this representation we can transform finite automata
over Σ into MSGs over (A, D). The language of this MSG is regular if and only
if the trace-closure of the original language is regular. However, checking the
regularity of trace-closure is in general an undecidable problem (see for eg. [20;
21]).

Model-checking: A specification describes a collection of behaviours. These
could be a set of allowed behaviours that the system should conform to, or a set of
disallowed behaviours that the system must avoid. This results in two versions of
the model checking problem, the positive and negative model checking problems. In
the positive model checking problem the task is to verify that the set of behaviours
of the system, Lsy, is a subset of the set of behaviours, Lsp, described by the
specification. In the negative model checking problem, the task is to verify that
Lsy ∩ Lsp = ∅.

Suppose the specification as well as the system are described by MSGs.

Theorem 10.4. [22; 13] For MSGs the following problems are undecidable:

(1) Given G1 and G2, is L(G1) ⊆ L(G2)?

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 303

(2) Given G1 and G2, is L(G1) ∩ L(G2) = ∅?

Once again, translations from the corresponding problems in trace theory suffices
to prove the undecidability. As a matter of fact if we rule out independent iterations
these problems become decidable.

Theorem 10.5. [22] For globally cooperative MSGs the following problems are de-
cidable:

(1) Given G1 and G2, is L(G1) ⊆ L(G2)?
(2) Given G1 and G2, is L(G1) ∩ L(G2) = ∅?

The proofs exploit the regular representation via atoms provided by Theorem 10.1
— L(G1) ⊆ L(G2) if and only if At(L(G1)) ⊆ At(L(G2)) and L(G1) ∩ L(G2) = ∅ if
and only if At(L(G1)) ∩ At(L(G2)) = ∅. Theorem 10.1 makes globally cooperative
MSGs perhaps the most general of the classes of MSGs amenable to algorithmic
analysis.

At this point we turn our attention to a regularity property that holds for all
MSG definable languages.

Definition 10.14. A set X of linearizations is a set of representatives for an MSC
language L if {M | Lin(M) ∩X ̸= ∅} = L.

Languages that have a regular set of representatives are needless to say interest-
ing. If L is a regular MSC language then Lin(L) is a regular set of representatives for
L. However, as we shall see, the class of languages with regular set of representatives
is much larger.

Let G be an MSG. For each state q ∈ G, fix a linearization wq of the MSC
labelling q. For any path π = q1 → q2 → . . . → qk, let w(π) = wq1wq2 . . . wqk . Then,
{w(π) | π is a run through G } is a regular set as well as a set of representatives for
L(G).

Proposition 10.11. [23] Every MSG definable language has a regular set of rep-
resentatives.

As such regular representations for Lsy and Lsp by themselves do not render
the model-checking problems effective (as is clear from Theorem 10.4). Even if
L1 ⊆ L2, it is easy to find representative sets X1 and X2 respectively in such a way
that X1 ∩X2 = ∅. However,

Theorem 10.6. [24] Suppose Lsy is given by a regular set of representatives Xsy

and Lsp is a regular MSC language. Then, the positive and negative model checking
problems are decidable. Thus, MSGs can be model-checked w.r.t. regular MSG
specifications.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

304 K. Narayan Kumar

In proof note that the positive model-checking problem boils down to checking
if Xsy ⊆ Lin(Lsp) which is merely the containment of regular languages, and the
negative model-checking involves deciding if Xsy ∩ Lin(Lsp) = ∅.

An argument identical to the one used to prove Lemma 10.1 ensures that all the
words in any regular representation of an MSC language are B-bounded for some
B. Thus,

Proposition 10.12. If L has a regular set of representatives then L is existentially
B-bounded for some B.

Let LinB(L) be the set of linearizations of L that are B-bounded. Theorem 10.6
can be strengthened as follows: from a regular set of representatives Xsy for the
system we can derive a bound B such that every word in Xsy is B-bounded. Now,
Xsy ⊆ Lin(Lsp) if and only if Xsy ⊆ LinB(Lsp) and Xsy ∩ Lin(Lsp) = Xsy ∩
LinB(Lsp). Thus, it suffices that LinB(Lsp) be an (effectively constructible) regular
set.

Theorem 10.7. [24] Let Lsy be given by a regular set of representatives Xsy and
let Lsp be such that LinB(Lsp) is effectively regular for some B such that every word
in Xsy is B-bounded. Then, the positive and negative model-checking problems are
decidable.

Later in this section we shall see that B-bounded linearizations of any glob-
ally cooperative MSG language is a regular language. Moreover, as we shall
see in Section 10.4 there is another natural class of systems for which B-
bounded linearizations are regular for any B. These results, drawn from [24;
25] and [19] show that the model-checking problem for MSGs is decidable for a
fairly generous class of specifications.

10.2.3. Compositional MSGs

There have been several attempts at extending the definition of MSGs to increase
their expressive power. For instance, the netcharts model ([26; 27]) attempts at
combining the features of MSGs and petri-nets to obtain a model that can generate
all regular MSC languages. In this section we consider a natural weakening of the
definition of MSCs and MSGs that results in a richer specification language and yet
retains most of the useful properties of MSGs.

A compositional MSC is essentially a segment of an MSC, and thus may contain
receive events without matching send events and send events without matching
receive events. Any association between sends and receives included must satisfy
the FIFO assumption. Formally,

Definition 10.15. [28] A CMSC over P is a finite ΣP -labelled poset M =
(E,≤,λ,msg) (with the notation defined in section 10.1) where

(1) Each relation ≤pp is a linear (total) order.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 305

p q
q

p

q

p

Fig. 10.12. A CMSC M and two elements of M ◦M

(2) msg is a partial injective mapping from S to R where

• S = {e ∈ E | λ(e) = p!q(m) for some p, q,m}
• R = {e ∈ E | λ(e) = p?q(m) for some p, q,m}

satisfying

(a) if msg(s) = r then s = p!q(m) and r = q?p(m) for some p, q,m. We write
s <pq msg(s) in that case.

(b) if s1 ≤pp s2, Ch(s1) = Ch(s2) = p!q and msg(s1) and msg(s2) are defined
then msg(s1) ≤qq msg(s2).

(3) ≤= (∪p∈P ≤pp ∪ ∪(p,q)∈Ch <pq)∗.

In Fig. 10.12 we have a CMSC with one unmatched send and one unmatched receive
events.

Every MSC is a CMSC. It is easy to check that a CMSC is an MSC if and
only if msg is total and onto. Following [25], we define the concatenation of two
CMSCs M1 and M2 as a set of CMSCs: for each process, the events in M1 precede
its events in M2, further send events in M1 may be matched with receive events in
M2, as long as it does not violate the FIFO condition. The result is a set as we are
not obliged to match up unmatched sends in M1 with unmatched receives in M2

and there may be more than one way to match up unmatched sends in M1 with
unmatched receives in M2.

Definition 10.16. Let Mi = (Ei,≤i,λi,msgi), i = 1, 2 be CMSCs with E1 ∩E2 =
∅. The concatenation M1 ◦M2 is the collection of CMSCs of the form M = (E1 ∪
E2,≤,λ,msg) where

(1) M ↓Ei
= Mi for i = 1, 2, where M ↓F is the restriction of ≤, λ and msg to the

events in F .
(2) For each e ∈ E2, if e ≤ e′ then e′ ∈ E2 (i.e.) send events of E2 cannot be

matched with receive events in E1.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

306 K. Narayan Kumar

Figure 10.12 illustrates CMSC concatenation by listing two CMSCs that belong
to M ◦M . The FIFO assumption ensures that if M1 ◦M2 contains an MSC then
it is unique. The operation ◦ can be extended to sets of CMSCs, S ◦ T = {M ◦
M ′ | M ∈ S & M ′ ∈ T }. On sets of MSCs, the operation ◦ is associative, i.e.,
S ◦ (T ◦ U) = (S ◦ T) ◦ U . We generalize MSGs to CMSGs in the obvious manner.

Definition 10.17. [28] A Compositional Message Sequence Graph is a structure
G = (Q,→, Qin, F,Φ), where Q is a finite and nonempty set of states, → ⊆ Q×Q,
Qin ⊆ Q is a set of initial states, F ⊆ Q is a set of final states and Φ labels each
state with a CMSC.

A path π = q0 → q1 → · · · → qn is an accepting run if q0 ∈ Qin and qn ∈ F .
The language of MSCs accepted by G, L(G), is the set of MSCs in the set

{Φ(q0) ◦ Φ(q1) ◦ . . . ◦ Φ(qk) | q0 → q1 → . . . qk is an accepting run of G}

We say that an CMSC language L is CMSG-definable if there exists an CMSG G
such that L = L(G).

First of all note that some CMSGs may generate an empty MSC language even
though there are paths from the initial state to final states. For instance, a CMSG
with a single state that is initial and final, a self-loop, and labelled by the CMSC
M from Fig. 10.12 is one such CMSG. Any CMSC generated by this CMSG has
unmatched sends (and receives).

Observe that the CMSC M1 ◦M i ◦M2, where M is the CMSC from Fig 10.12,
M1 is the CMSC with just a single p!q event and M2 is the CMSC with a single
q?p event, is an atom for all i ≥ 0. Thus, CMSG recognizable languages need not
be finitely generated. As a matter of fact, as shown in [28], it is quite easy to show
that any regular MSC language is CMSG-definable — roughly speaking, we may
replace each edge labelled p!q (or q?p) in the finite automaton for this language
by a node labelled by an MSC with a single p!q (or q?p) event. This construction
actually implies something stronger:

Proposition 10.13. If L is an MSC language with a regular set of representatives
then L is a CMSG-definable language.

Interestingly, since every path in this CMSG corresponds to a valid linearization
of an MSC in L, every path in this CMSG generates at least one MSC. Checking
whether a CMSG generates any MSC or not is undecidable ([28]). Thus, CMSGs
are somewhat unrestrained for a specification language.

Definition 10.18. [25] A CMSG G is said to be safe if for any accepting path
q0 → q1 → . . . → qk the set Φ(q0) ◦ Φ(q1) ◦ . . . ◦ Φ(qk) contains at least one MSC.

Every MSG is a safe CMSG. The property of being safe is decidable and safety
gives a sufficient condition to ensure analyzability of CMSGs. Fix a lineariza-
tion wq for each node q of a safe CMSG G. It is easy to see that the language

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 307

{wq0wq1 . . . wqk | q0 → q1 → . . . qk is an accepting run } is regular and a set of rep-
resentatives of the language of G. Combining this with the observation following
Proposition 10.13 gives

Proposition 10.14. [29] An MSC language L has a regular set of representatives
if and only if it is the language of a safe CMSG. Thus, every safe CMSG language
is existentially B-bounded for some B.

Safe CMSGs should be as analyzable as the class of MSGs; after all, they enjoy
the only regularity property that we have been able to associate with MSGs! To
verify this, let us generalize some of the structural restrictions on MSGs to CMSGs.

Definition 10.19. [25] The communication graph of a CMSC is the directed graph
whose vertices are the elements of P and there is an edge from p to q whenever
there is a p!q event and a q?p event (the two need not necessarily be matched) in
the CMSC.

The communication graph of the CMSC M in Fig. 10.12 is the complete directed
graph on two vertices. The notions of locally synchronized CMSCs and globally
cooperative CMSCs is defined as before. Finally, a CMSG G is locally synchronized
if it is safe and every CMSC generated by every loop in G is locally synchronized.
A CMSG G is globally cooperative if it is safe and every CMSC generated by every
loop in G is globally cooperative.

Theorem 10.8. [25] Let G be a globally cooperative CMSG and let B be an integer
such that B ≥ |G|. Then, the set of B-bounded linearizations of L(G) is a regular
language (recognized by a finite automaton whose size is O(|G|Poly(|G|,B,|P|)).)

The proof relies on the relationship to Mazurkiewicz traces. Combining this
with Theorem 10.7 we get

Theorem 10.9. [25] The positive and negative model checking problems are decid-
able when Lsy is the language of a safe CMSG and Lsp is the language of a globally
cooperative CMSG.

The essence of this story, which took some time to develop and culminate in
the papers [19; 25], is the following: of the two suspected reasons for the non-
analyzability of MSG (CMSG) based specifications, the culprit is independent (con-
current) iterations and eliminating that via a structural restriction (globally coop-
erative MSGs) delivers a generous decidability result for model-checking.

10.3. Monadic second order logic over MSCs

Monadic second order logic (or MSO) is the logical counter part to automata. Büchi
and Elgot ([30; 31]) showed that MSO over finite words has the same expressive
power as finite automata, Büchi then extended this to MSO over infinite words

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

308 K. Narayan Kumar

and automata over infinite words that bear his name. These connections are not
isolated and a host of similar connections have been established between MSO and
automata. The most relevant of these results to our context is the one relating
regular trace languages and MSO over traces due to Wolfgang Thomas ([32]) and
extended to infinite traces by Ebinger and Muscholl ([33]).

Definition 10.20. Fix a set P of processes and messages. The formulas of the
monadic second order logic over MSCs (MSO) are as follows:

ϕ ::= a(x) | x ∈ X | x ≤ y | x ≤pp y | x!p y | x <pq y | ¬ϕ | ϕ ∧ ϕ | ∃X.ϕ | ∃x.ϕ

where a ∈ ΣP and (p, q) ∈ Ch.

We will also be interested in the fragment of existential monadic second-order
formulas (EMSO) which are of the form ∃X1∃X2 . . . ∃Xk. ϕ where ϕ is a first order
formula. We will also be interested in restricted versions of these logics obtained by
permitting only a subset of the 4 relational symbols in the syntax, and this will be
made explicit by listing the allowed subset: for eg. MSO(!p, <pq) to stand for the
fragment that does not use ≤ and ≤pp.

An MSO formula is interpreted over an MSC. The first order variables range over
the events in the MSC, second order variables over sets of events and the relational
operators have the obvious interpretation: ≤ is the ordering on the events of the
MSC, ≤pp is the ordering on events in process p, !p is the immediate successor
relation within a process p, and <pq is the message induced ordering between a
send from p and the corresponding receive in q. Observe that the first two relations
are ordering relations while the latter two are not. Finally a(x) is true with x = e if
λ(e) = a. The interpretation of the logical operators and quantifiers is as usual. It
is quite easy to see that ≤pp and !p can be defined using ≤, but it turns out that
<pq cannot be so defined. Sentences in MSO define languages of MSCs, L(ϕ) =
{M | M |= ϕ} and in this case we say that L is MSO-definable.

Here is a sentence that characterises universally 2-bounded MSCs.
∧

(p,q)∈Ch

∀x.∀y.∀z. (p!q(x) ∧ p!q(y) ∧ p!q(z) ∧ (x < y) ∧ (y < z)) =⇒

∃w. (x <pq w) ∧ (w < z))

It asserts that in any sequence of 3 sends, the receive corresponding to the first
send must be in the past of the third send (see Prop. 10.1). This can be generalized
to describing universally B-bounded MSCs for any fixed B.

It is well-known that the transitive closure of a relation is definable in any
monadic second order logic: xR∗y if and only if the smallest set containing x and
closed under R also contains y. However, such a definition makes essential use of
universal quantification over sets and consequently, such a translation is not always
possible in the existential fragment of monadic second order logic. Since ≤ and

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 309

≤pp can be defined as transitive closure of !p∪ <pq and !p respectively, MSO over
MSCs is equivalent to MSO(!p, <pq).

In [9; 4] the following characterization theorem is presented.

Theorem 10.10. A B-bounded language L is regular if and only if L = L(ϕ) ∩
{M | M is universally B-bounded} for some MSO(≤) formula ϕ.

The result holds even if the logic is restricted to be EMSO(≤). The proof ([9;
4]) is based on the ideas used in similar results for MSO over traces in [32; 34]. In
one direction, given a MSO(≤) formula ϕ, we construct a formula ψ in MSO over
words such that w |= ψ if and only if (i) w is a B-bounded complete and proper
word and (ii) the MSC Mw generated by w satisfies ϕ and (iii) Mw is universally
B-bounded. Establishing (i) and (ii) shows that the set of B-bounded linearizations
of L(ϕ) is a regular language (which implies Theorem 10.11 below).

Part (i) is easy as the set of B-bounded proper and complete words is a regular
language and one may appeal to the Büchi-Elgot theorem. For part (ii), the proof
proceeds by defining, in MSO over words, a binary relation ≼ on the positions of
the word in such a way that for any B-bounded w and positions i and j in w, i ≼ j

if and only if the corresponding events (say ei and ej) are ordered under ≤ in Mw.
Clearly, ei ≤pp ej in Mw if and only if i < j and i and j are p events in w. We still
have to show that <pq is definable. This makes essential use of the B-boundedness
of w. The formula asserts that there is a k ∈ {0, 1, . . . , B−1} such that i is labelled
by p!q, the number of positions to its left labelled by p!q is k(modulo B), j is to
the right of i, it is a labelled by q?p and the number of positions to its left labelled
by q?p is k(modulo B) and there is no position between i and j labelled by q?p
for which the number of positions to its left labelled q?p is k(modulo B). Since
transitive closure is definable in MSO the result follows. (The transitive closure can
be avoided by a slightly more elaborate argument using the fact that one has to
hop across processes at most |P| number of times.) Finally, part (iii) follows from
the fact that with ≼ and ≤, universally B-boundedness can be defined as explained
in the example above.

The other direction is somewhat more involved. Given a regular MSC language
and B, use Büchi-Elgot theorem to pick a formula ψ in MSO over words describing
the linearizations of this language. Then show that in MSO(≤) one can define a
relation ≼ over the MSC that fixes a canonical linearization of the MSC (using
techniques from [34]), and then interpret ψ over this linearization.

This result generalizes to MSO over infinite MSCs and regular languages of
infinite MSCs as shown by D. Kuske ([7]). As a matter of fact, [7] provides a
complete theory of regular languages of infinite MSCs. For the relationship between
existentially B-bounded languages and MSO we have the following theorem:

Theorem 10.11. [29] For any MSO formula ϕ and any B, LinB(L(ϕ)) is a regular
language.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

310 K. Narayan Kumar

An immediate consequence is that any existentially B-bounded language de-
scribed by an MSO formula has a regular set of representatives. As a corollary to
the previous two theorems we have

Corollary 10.1. The problem of checking whether an MSO(≤) formula (or a MSO
formula) is satisfiable over universally B-bounded MSCs is decidable. Similarly,
checking satisfiability over existentially B-bounded MSCs is decidable.

The natural question then is to ask “Can we model check safe CMSGs (or MSGs)
w.r.t. to MSO?”. The answer is affirmative. In proof note that, any safe CMSG has
a regular set of representatives, Theorem 10.11 implies that LinB(L(ϕ)) is regular
for any B and any ϕ in MSO and thus Theorem 10.7 is applicable.

Theorem 10.12. [23; 29] The problem of deciding whether every MSC generated
by a safe CMSG (or MSG) satisfies a MSO formula is decidable.

B.Bollig and M. Leucker [35] study the expressiveness of MSO and EMSO over
MSCs and using techniques from [36] show that

Theorem 10.13.

(1) The monadic quantifier alternation hierarchy of the logic MSO (over MSCs) is
infinite. Thus, MSO(!p, <pq) is strictly more expressive than EMSO(!p, <pq).

(2) The logics MSO(≤) and EMSO(!p, <pq) are incomparable.

We shall return to the expressive power of MSO over MSCs a little later after
we introduce an implementation model for MSCs.

10.4. Message Passing Automata

Safe CMSGs, MSGs and MSO are elegant and expressive languages to describe
collections of MSCs. However, they are far removed from an execution model where
each process is situated at a different location and there are limitations on what each
process actually knows of the global state. The natural execution model for MSCs
is that of message passing automata (also referred to as communicating finite-state
machines).

A message passing automaton consists of a collection of finite state processes
which communicate with each other by sending messages on FIFO channels. Each
transition in a process involves either sending a message to some process or con-
suming a message from one of its input channels. It is possible to enrich these
automata with local moves, however since it has no effect on the results in this
section, we work without them. Fig. 10.13 illustrates a message passing automaton
implementing a producer-consumer system and an MSC accepted by it. Formally,
an MPA is defined as follows:

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 311

p q

p!q(m) q?p(m)
p q

✲
✲
✲

m

m

m
...

✲m

Fig. 10.13. An MPA

Definition 10.21. [37] Let ΣP be the communication alphabet over the set of
processes P and message alphabet M. A message-passing automaton (MPA) over
ΣP is a structure A = ({Ap}p∈P ,∆, sin, F) where:

• ∆ is a finite alphabet of auxiliary messages.
• Each component Ap is of the form (Sp,→p) where Sp is a finite set of p-local
states and →p ⊆ Sp × Σp ×∆× Sp is the p-local transition relation.

• sin ∈
∏

p∈P Sp is the global initial state.
• F ⊆

∏

p∈P Sp is the set of global final states.

Observe that our definition allows the tagging of each message with auxiliary con-
tents drawn from the set ∆.

The local transition relation →p specifies how the process p sends and receives
messages. The transition (s, p!q(m), x, s′) says that in state s, p can send the mes-
sage m to q tagged with auxiliary information x and move to state s′. Similarly,
the transition (s, p?q(m), x, s′) signifies that at state s, p can receive the message
m from q tagged with information x and move to state s′.

A global state of A is an element of
∏

p∈P Sp. For a global state s, sp denotes
the pth component of s. A configuration is a pair (s,χ) where s is a global state
and χ : Ch → (M×∆)∗ is the channel state describing the message queue in each
channel c. The initial configuration of A is (sin,χε) where χε(c) is the empty string
ε for every channel c. The set of final configurations of A is F ×{χε}. Observe that
in a final configuration all the channels must be empty.

A global move of the automaton involves one of the process depositing a mes-
sage into a channel (sending a message) or consuming a message from the channel
(receiving a message) according to its local transition relation. Suppose, (s,χ) is

a configuration and (sp, p!q(m), x, s′p) ∈ →p. Then, (s,χ)
p!q(m)
=⇒ (s′,χ′) where for

r ̸= p, sr = s′r, for each r ∈ P , χ′((p, q)) = χ((p, q)) · (m,x), and for c ̸= (p, q),
χ′(c) = χ(c). Similarly, if (s,χ) is a configuration and (sp, p?q(m), x, s′p) ∈ →p,

then there is a global move (s,χ)
p?q(m)
=⇒ (s′,χ′) where for r ̸= p, sr = s′r, for each

r ∈ P , χ((q, p)) = (m,x) · χ′((q, p)), and for c ̸= (q, p), χ′(c) = χ(c).
A run of the automaton is a sequence of such global moves and we write ConfA

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

312 K. Narayan Kumar

s1

s2

s3

t1

t2 t3

p!q(m)

p!q(m)p?q(m)

q!p(m)q?p(m)

q?p(m)

p q

❍❍❍❍❍❥
❍❍❍❍❍❥
❍❍❍❍❍❥

m

m

m

%
%

%
%%✠ %

%
%

%%✠

m

m

Fig. 10.14. An MPA accepting infinite number of atoms

for the set of reachable configurations of A. A run is accepting if it ends in a final
configuration. For instance

((p, q), ε)
p!q(m)
=⇒ ((p, q),m)

p!q(m)
=⇒ ((p, q),mm)

q?p(m)
=⇒ ((p, q),m)

q?p(m)
=⇒ ((p, q), ε)

is an accepting run the automaton in Fig. 10.13 on the word
p!q(m)p!q(m)q?p(m)q?p(m).

We define L(A) = {σ | A has an accepting run over σ}. Since all channels are
empty in the initial and final configurations and a message can be received only if
it has already been sent, it is easy to check that any word accepted by an MPA is
proper and complete. It is not difficult to see that if L(A) contains one linearization
of an MSC M then it contains all the linearizations of the MSC M . As a matter
of fact, it is quite easy to define runs of MPAs directly on MSCs as a mapping
from events on the MSC to global states of the automaton. Thus L(A) is the set of
linearizations of an MSC language. As usual we shall use L(A) to denote the MSC
language accepted by A as well as its linearizations.

Each configuration of an MPA records the messages sent and as yet undelivered.
For B ∈ N, a configuration (s,χ) is B-bounded if |χ(c)| ≤ B for every channel c ∈ Ch
and A is a B-bounded automaton if every reachable configuration (s,χ) ∈ ConfA
is B-bounded. Clearly a B-bounded automaton accepts a universally B-bounded
language. The global state space of any B-bounded MPA is therefore finite and
consequently, everyB-bounded MPA accepts a regular MSC language. The converse
is also true but we shall get to that a little later. The MPA in Fig. 10.13 accepts a
unbounded language.

From any MPA A and a natural number B we can generate a finite automaton
accepting precisely those B-bounded words that are accepted by A and thus

Proposition 10.15. For any MPA A and any natural number B, the language
LinB(L(A)) is a regular language.

The language of an MPA need not be finitely generated. Fig. 10.14 describes an
MPA and one of the MSCs it accepts. This MPA accepts a regular MSC language

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 313

s1

s2

t2

t1

r1

r2 r3

p!q

p!r q?r

q?p

r?p

r!q

Fig. 10.15. An MPA with an existentially unbounded language

and every MSC accepted by this automaton is an atom. Thus, there are MPA
acceptable languages that cannot be described by MSGs.

Finally, MPAs can also accept languages that are not existentially bounded (for
any B), thus MPAs are capable of accepting languages that cannot be described
using safe CMSGs. The MPA in Fig. 10.15 accepts the language of MSCs generated
by the words (p!q)n p!r r?p r!q q?r (q?p)n and it is easy to verify that this is not
an existentially bounded language.

Definition 10.22. An MPA is said have local accepting states if F =
∏

p∈P Fp

for some Fp ⊆ Sp.

10.4.1. MPAs without auxiliary messages

We first examine the power of MPAs without auxiliary message alphabets (i.e.)
MPAs whose auxiliary alphabet is singleton.

Definition 10.23. An MSC language L is said to be weakly realizable if it is the
language of an MPA with a singleton auxiliary message alphabet and with local
accepting states.

Consider the language {M1,M2} of MSCs (from Fig. 10.16). This set is not
weakly realizable — Suppose A is an MPA accepting this language. From the

accepting run on M1, we know that there are runs p0
p!q(m)
−→ p1

p!s(m)
−→ p2 and q0

q?p(m)
−→

q1 for p and q ending in accepting states. Similarly, from the accepting run on M2,

we know that there are runs r0
r!s(m)
−→ r1 and s0

s?r(m)
−→ s1

s?p(m)
−→ s2 ending in

accepting states. This means that the MSC M is also accepted, since p and q may
behave exactly as they do in accepting M1 and r and s may behave exactly as they
do in accepting M2 and all four processes end up in an accepting states on M .

The language of an MPA with local accepting states and over a singleton aux-
iliary message alphabet is merely the shuffle or free product of the local languages

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

314 K. Narayan Kumar

p q r s

M1

✲m

✲m

p q r s

M2

✲m

✲m

p q r s

M

✲m ✲m

✲m

Fig. 10.16. An implied scenario

of the processes and this is formalized as follows:
Given an MSC M (or any linearization w of M) and a process p, M!p is the

word over Σp consisting of the projection of M (or equivalently w) to the events
in process p. For eg. M1!p = p!q(m)p!s(m) for the MSC M1 in Fig. 10.16. For a
language L, Lp = {M!p | M ∈ L}. Finally, given word languages Lp over Σp for
each p ∈ P , let

∏

p∈P Lp = {M | M!p ∈ Lp} (the usual free product).

Definition 10.24. Given a set L of MSCs its implied closure Imp(L) is defined
as follows

Imp(L) = {M | ∀p ∈ P . ∃Mp ∈ L. M!p = Mp!p}

If M ∈ Imp(L) \ L then we say that L has an implied scenario and that M is an
implied scenario of L.

In Fig 10.16, M is an implied scenario of {M1,M2}. The following characteri-
zation (albeit non-effective) is easy to prove.

Proposition 10.16. [12] If L is weakly realizable then L = Imp(L). Conversely,
suppose L is an MSC language and L!p is a regular language for each p, then L is
weakly realizable only if L = Imp(L).

p M1 q

p M2 q

M1

M1

M1

M1

M2

M2

M2

M2

M1

M1

M1

M1

Fig. 10.17.

Implied scenarios are of practical inter-
est. Often, a designer specifies a system as a
collection of MSCs using say an MSG. The
existence of an implied scenario indicates
that an implementation by MPAs (w/o aux-
iliary tagging) would result in behaviours
not foreseen by the designer (these might
or might not be bad). So it would be use-
ful to check if a given MSC language L has
any implied scenarios at all, and construct
a representation for Imp(L). The implied
closure of a B-bounded language may contain MSCs that are not B-bounded. As

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 315

a matter of fact, the implied closure of a B-bounded regular language need not be
bounded at all.

In Fig. 10.17 observe that the two MSCs M1 and M2 have complete commu-
nication graphs. Therefore, the language (M1 + M2)∗ is a regular MSG-definable
language. On the other hand, for each k ∈ N, the MSC in which the p-projection
matches M2k

1 Mk
2 and the q-projection matches Mk

2M
2k
1 has a global cut where the

channel (p, q) has capacity k + 1. The figure shows the case k = 2. The dotted
line marks the global cut where the channel (p, q) has maximum capacity. Thus,
Imp(L) need not be a regular MSC language when L is a regular MSC language.
It gets worse.

Theorem 10.14. [38] The problem of checking whether Imp(L) = L is undecidable
even for regular MSC languages presented as locally synchronized MSGs.

Let us examine this result a little. Let B be the bound on the channels in
L. From the definition of Imp(L) it is not difficult to check that if L is weakly
realizable then an MPA A implementing L can be constructed as follows: For
each process p pick a minimal finite automaton (w/o dead or unreachable states)
accepting the language L!p as Ap and set F =

∏

p∈P Fp. Thus we have a candidate
implementation. Yet, weak realizability is undecidable because it is not possible to
check whether the language accepted by A equals L. By restricting A to runs where
no channel has more than B messages, we have a finite automaton accepting the
set of B-bounded words in Imp(L). Thus, checking if there is a B-bounded implied
scenario for L is decidable. The difficulty is in finding if there are implied scenarios
violating the B-bound. In particular, the existence of a partial run reaching a
configuration where some channel has more than B messages does not mean that
there are implied scenarios. This is because such a partial run may not be extendable
to an accepting run. (However, this means that this partial run has ended in a
configuration from where no final configuration is reachable. We shall return to this
point a little later.)

Theorem 10.14 has been strengthened [39] to show that this problem is undecid-
able even when L is a 1-bounded language and undecidability holds even with just
2 processes. These undecidability arguments make essential use of the fact that the
channels are FIFO (and therefore requires the message alphabet to have at least
two messages.) Restriction to the trivial message alphabet yields the first positive
result.

Proposition 10.17. [17] The problem of checking whether the language of a lo-
cally synchronized MSG over a singleton message alphabet is weakly realizable is
decidable.

Since weak realizability is impossible to analyze, it is natural to look for stronger
notions of implementability. Alur et al. propose a notion called safe realizability
which is amenable to algorithmic analysis.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

316 K. Narayan Kumar

Definition 10.25. A configuration χ of an MPA A is a deadlock if there are
no reachable final configurations. An MPA is said to be deadlock-free if it has no
reachable deadlock configurations. A language is said to be safely realizable if it is
the language of a deadlock-free MPA with local accepting states and over a singleton
auxiliary message alphabet.

It is also possible to characterize safely realizable languages as a closure property
akin to Prop. 10.16 (see [12; 40]).

Proposition 10.18. L is safely realizable if and only if it is weakly realizable and
satisfies the following closure property:

{w | ∀p.∃up ∈ L. w!p ≤ up} ⊆ {w | ∃u ∈ L.w ≤ u}

The closure condition demands that any partial MSC (or proper word) whose pro-
jections on every process is consistent with some accepting run of the process must
be extendable to an MSC (or proper complete word) in L. Fortunately, safe realiz-
ability is analyzable.

Theorem 10.15. The problem of checking whether a given globally cooperative
MSG generates a safely realizable language or not is decidable in EXPSPACE and
the problem is EXPSPACE-complete even for locally synchronized MSGs. However,
the safe realizability problem for arbitrary MSGs is undecidable.

We go back to our analysis of why the availability of a candidate implementa-
tion does not suffice to ensure decidability of weak implementation. The analysis
there ends with a conclusion placed within parenthesis. This conclusion stated in
our recently acquired terminology states that the candidate implementation A has
deadlocks or implied scenarios whenever it reaches a configuration violating the
B-bound on some channel. Thus, if A ever reaches a configuration violating the
B-bound on some channel, it cannot be a safe implementation of L. Finally, it is
not difficult to verify, using Prop. 10.18 that if at all L is safely realizable then A
is such a realization. That completes our sketch of the decidability argument.

The decidability for locally synchronized MSGs appears in [38], that for globally
cooperative MSGs in [17] and the exact complexity result as well as the undecid-
ability result is from [40].

10.4.2. MPAs with auxiliary messages

In this section we study the expressive power of MPAs with no restriction on the use
of auxiliary message contents. We begin by showing that the collection {M1,M2}
from Fig. 10.16 can be implemented using auxiliary messages. An MPA with aux-
iliary messages drawn from the set {1, 2} is described in figure 10.18 The process p
signals the process s using the auxiliary information regarding the identity of the
MSC (The auxiliary information in all the other messages can be ignored.)

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 317

p1

p2 p3

q1

q2

r1

r2

s1

s2 s3

(p!s(m,2)

(p!q(m,1)

p!s(m,1)

q?p(m,1) r!s(m,2) s?r(m,2)

s?p(m,2)

s?p(m,1)

Fig. 10.18. An MPA accepting {M1,M2}

This example illustrates the use of auxiliary information: it allows a process to
convey information about its past (in this case p conveys the information “I sent a
message to q” to s by tagging the message with a 1 instead of a 2.) However, since
the auxiliary message alphabet is a finite set, it only allows a bounded amount of
information about the past to be conveyed in any message. It turns out that this
ability to forward bounded amount of information is very powerful.

Theorem 10.16. [9; 4] An MSC language L over a set of process P and messages
M is regular if and only if there is an an MPA A, over the same alphabet and with
an auxiliary message alphabet ∆, such that L = L(A).

The proof of this theorem is beyond the scope of this paper. However we provide
a brief sketch of the difficulties and main ideas involved.

This theorem is an example of a distributed synthesis theorem — it states that
given the global description of a regular MSC language, it is possible to construct a
distributed implementation as an MPA. The key ingredients that go into the proof
are drawn from the celebrated result of W. Zielonka [41] showing that every regular
trace language is recognized by an asynchronous automaton.

Let us examine the main difficulty in proving such a result. Suppose the global
description is a finite automaton G. We can equip each local process with a copy
of G if necessary. Yet, after a sequence of events w, which process is to keep
track of the current state of G? Observe that every event takes place only in one
process and each process directly observes only the events that it participates in,
so it is not possible for any one process to maintain the state of G correctly. For
the moment assume that we may tag the messages with unbounded amount of
auxiliary information. Then, every process can send the entire history of all the
events it has participated in as well as all the events about which it has learnt from
others through messages it has received. So, whenever a message is received, the
receiving process knows the entire set of events that are below this event in the
MSC order. However, an MSC could have up to |P| maximal events and thus even

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

318 K. Narayan Kumar

with this passing around of unbounded amount of information, no one process has
information about the entire MSC.

Suppose the processes are 1, 2, . . .K. Process 1 has with it all the events that
occur below the maximal 1 event in the MSC. Now, we would like process 2 to
provide us with not all the events in its past, but only those that appear in its past
but not in the past of process 1. For this, we need information about the events
in each process j ∈ {2, 3, 4, . . . ,K}, that are in the past of 2 but not in the past of
1 (called the 1 residue at 2). With this information we can piece together all the
events in the past of 1 and 2 without any ambiguity. Then, we need to obtain from
process 3 information about events in {3, 4, . . . ,K} that do not appear in the past
of 1 and 2 (the {1, 2} residue at 3) and so on. Then, the MSC can be reconstructed
from the residues available at 1, 2, . . .K.

The reduction from unbounded to bounded information hinges on the fact that
instead of keeping any partial MSC M (or a linearization w) of the history of a
process, we might as well keep the transition function that this word or partial
MSC defines on the state space of G.

The ability to program each process to maintain its residues w.r.t. to other
processes requires a sophisticated time stamping algorithm from [42] which can
perform comparisons such as “is my information about j more recent than
i’s information about j?”. Most importantly this time-stamping algorithm re-
quires each process to maintain only a bounded amount of information and tags
each message with only a bounded amount of information. The proof in [43;
4] proceeds along these lines.

An alternative is to use the connection to regular trace languages, then use
Zielonka’s construction to obtain an asynchronous automaton and then translate
back such an automaton into an MPA. This is the structure of the proof in [6]. The
above theorem can be strengthened.

Definition 10.26. [43] An MPA is said to deterministic if

• If (s, p!q,m1, s
′
1) ∈ −→p and (s, p!q,m2, s

′
2) ∈ −→p then

m1 = m2 and s′1 = s′2.
• If (s, p?q,m, s′1) ∈ −→p and (s, p?q,m, s′2) ∈ −→p then s′1 = s′2.

Determinacy requires that the nature of the message sent from p to q depends only
on the local state of the sender p. Note, however, that from the same state, p may
have the possibility of sending messages to more than one process. When receiving
a message, the new state of the receiving process is fixed uniquely by its current
local state and the content of the message. Once again, a process may be willing
to receive messages from more than one process in a given state. This definition
ensures that a deterministic automaton has at most one run on any w ∈ Σ∗

P . Now,
we are in a position to state the main characterization theorem for regular MSC
languages.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 319

Theorem 10.17. [4] Let B be any integer and L be a language of universally B-
bounded MSCs. Then the following are equivalent:

(1) L is a regular MSC language
(2) L is definable in MSO(≤) (or EMSO(≤))
(3) L is the language of a deterministic B-bounded MPA.
(4) L is the language of a B-bounded MPA.

This theorem has been generalized to infinite MSCs by D.Kuske (see [7]). There
are couple of other points worth noting: first of all the definition of MPAs uses
a global set of final states and the physical realizability of such a global set of
acceptance states is debatable. Secondly, the automata constructed in the proof of
the above theorem may deadlock, and once again this makes its usability some what
limited. In a recent series of papers, N. Baudru and R. Morin [44; 45], have shown
that every regular MSC language can be implemented using (nondeterministic)
MPAs that are deadlock free and whose acceptance set is local (i.e. F =

∏

p∈P Fp

for some collection (Fp)p∈P .)

10.4.3. Implementing existentially bounded languages

The characterization in Theorem 10.17 shows that every regular MSC language can
be implemented using a deterministic MPA. The corresponding question for MSC
languages with a regular set of representatives was solved by Genest, Kuske and
Muscholl [24; 25]. An earlier paper [19] set the stage for such a result through a host
of results on the virtues of existentially bounded languages including the analyzabil-
ity of globally cooperative CMSGs (Theorem 10.7) and efficient implementability (as
MPAs) for a subclass (locally cooperative MSGs) of globally cooperative CMSGs.
The proof of this characterization uses the translation to traces from existentially
B-bounded MSCs (described in Section 10.1) to Mazurkiewicz traces.

Theorem 10.18. [25] Let B be an integer and let L be a language of existentially
B-bounded MSCs. Then the following statements are equivalent.

(1) LinB(L) is a regular set of representatives for L.
(2) L is generated by a globally cooperative CMSG.
(3) L is MSO (EMSO) definable.
(4) L is implementable using an MPA.

We have already seen some of the relationships: Theorem. 10.8 shows that one
can go from globally cooperative CMSGs to languages with LinB(L) as a regular set
of representatives. Theorem 10.11 allows us to move from MSO definable languages
to languages with LinB(L) as a regular set of representatives. Prop. 10.13 shows that
any language with a regular set of representatives can be translated to a safe CMSG
and Proposition 10.14 shows that every safe CMSG generates a language with a
regular set of representatives. These relationships are strengthened to restrict the

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

320 K. Narayan Kumar

class of CMSGs to globally cooperative CMSGs in [25] using Ochmanski’s theorem
([15]). Finally by Prop. 10.15 the set LinB(L) is regular for any MPA.

This leaves the difficult part: a decomposition theorem showing that every exis-
tentially B-bounded language has a distributed implementation as an MPA and this
involves a fairly complex argument via Mazurkiewicz trace theory and is beyond the
scope of this article. The automaton constructed is a nondeterministic automaton
and this is unavoidable.

Proposition 10.19. [5] There are existentially bounded languages recognized by
nondeterministic MPAs that cannot be recognized by deterministic MPAs.

Translating MPAs to EMSO is quite routine, but the converse is not. A remark-
able result due to Bollig and Leucker shows the following:

Theorem 10.19. [35] An MSC language L is EMSO(!p, <pq) definable if and only
if it is the language of an MPA.

In contrast to Theorems 10.17 and 10.18 this theorem applies to arbitrary MSCs.
This theorem in combination with Theorem 10.13 shows that

Theorem 10.20. [35] The class of languages accepted by MPAs is not closed under
complementation.

10.4.4. Decision Problems

Every channel is a queue and it is quite easy to simulate counter machines with
MPAs. Consequently, general MPAs are too expressive for any sort of analysis:

Theorem 10.21. [5]

(1) The language emptiness problem for deterministic MPAs is undecidable.
(2) Given a B checking whether a deterministic MPA accepts a universally B-

bounded language is undecidable for every B > 0.
(3) Given a deterministic, deadlock-free automaton in which every global state is

accepting, checking whether it accepts a universally bounded language is unde-
cidable.

(4) Given a B checking whether a deterministic MPA accepts a existentially B-
bounded language is undecidable for every B > 0.

(5) Given a deterministic, deadlock-free automaton in which every global state is
accepting, checking whether it accepts a existentially bounded language is unde-
cidable.

Items (3) and (5) become decidable for a fixed B, since for a deadlock-free
automaton it suffices to check if a configuration with B+1 messages in the channel
is reachable.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 321

10.5. Conclusion

In this article we have surveyed a selection of the results from the theory of MSCs.
These are by no means exhaustive. A number of results that have been omitted
here due to lack of space — to name a few, there is a host of decidability (and
undecidability) results for the so called “‘pattern matching” problems on MSCs
(see for instance [46; 47]), the related problem of whether a class of MSCs can
be implemented by MPAs with additional messages (not merely the addition of
auxiliary content to existing messages; see for instance [48]), branching time speci-
fication and analysis (see for instance [49; 50; 51] and finally there have been some
recent results in extending the theory of MSCs with time (see for instance [52; 53;
54]).

Acknowledgments

This work was partially supported by Timed-DISCOVERI, a project under the
Indo-French Networking Project, the ARCUS Ile de France-Inde and the CMI-TCS
Academic Alliance.

References

[1] ITU-TS. Itu-ts recommendation z.120: Message Sequence Chart (MSC), (1997).
[2] E. Rudolph, P. Graubmann, and J. Grabowski, Tutorial on Message Sequence Charts,

Computer Networks and ISDN Systems. 28(12), 1629–1641, (1996).
[3] J. R. G. Booch, I. Jacobson, Unified Modeling Language User Guide. (Addison-

Wesley, Reading, MA, 1997).
[4] J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. A. Sohoni, and P. S. Thia-

garajan, A theory of regular MSC languages, Information and Computation. 202(1),
1–38, (2005).

[5] B. Genest, D. Kuske, and A. Muscholl, On Communicating Automata with Bounded
Channels, Fundam. Inform. 80(1-3), 147–167, (2007).

[6] D. Kuske. A Further Step towards a Theory of Regular MSC Languages. In eds.
H. Alt and A. Ferreira, STACS, vol. 2285, Lecture Notes in Computer Science, pp.
489–500. Springer, (2002). ISBN 3-540-43283-3.

[7] D. Kuske, Regular sets of infinite message sequence charts, Information and Compu-
tation. 187(1), 80–109, (2003).

[8] M. Lohrey and A. Muscholl, Bounded MSC communication, Information and Com-
putation. 189(2), 160–181, (2004).

[9] J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Regular
Collections of Message Sequence Charts. In eds. M. Nielsen and B. Rovan, MFCS,
vol. 1893, Lecture Notes in Computer Science, pp. 405–414. Springer, (2000). ISBN
3-540-67901-4.

[10] J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. On Message
Sequence Graphs and Finitely Generated Regular MSC Languages. In eds. U. Mon-
tanari, J. D. P. Rolim, and E. Welzl, ICALP, vol. 1853, Lecture Notes in Computer
Science, pp. 675–686. Springer, (2000). ISBN 3-540-67715-1.

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

322 K. Narayan Kumar

[11] R. Morin. On Regular Message Sequence Chart Languages and Relationships
to Mazurkiewicz Trace Theory. In eds. F. Honsell and M. Miculan, FoSSaCS,
vol. 2030, Lecture Notes in Computer Science, pp. 332–346. Springer, (2001).
ISBN 3-540-41864-4.

[12] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. In
ICSE, pp. 304–313, (2000).

[13] R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts. In eds.
J. C. M. Baeten and S. Mauw, CONCUR, vol. 1664, Lecture Notes in Computer
Science, pp. 114–129. Springer, (1999). ISBN 3-540-66425-4.

[14] A. Muscholl and D. Peled. Message Sequence Graphs and Decision Problems on
Mazurkiewicz Traces. In eds. M. Kutylowski, L. Pacholski, and T. Wierzbicki, MFCS,
vol. 1672, Lecture Notes in Computer Science, pp. 81–91. Springer, (1999). ISBN 3-
540-66408-4.

[15] E. Ochmanski, Regular behaviour of concurrent systems, Bulletin of the EATCS. 27,
56–67, (1985).

[16] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-State High-Level MSCs:
Model-Checking and Realizability. In eds. P. Widmayer, F. T. Ruiz, R. M. Bueno,
M. Hennessy, S. Eidenbenz, and R. Conejo, ICALP, vol. 2380, Lecture Notes in
Computer Science, pp. 657–668. Springer, (2002). ISBN 3-540-43864-5.

[17] R. Morin. Recognizable Sets of Message Sequence Charts. In eds. H. Alt and A. Fer-
reira, STACS, vol. 2285, Lecture Notes in Computer Science, pp. 523–534. Springer,
(2002). ISBN 3-540-43283-3.

[18] M. Clerbout and M. Latteux, Semi-commutations, Inf. Comput. 73(1), 59–74, (1987).
[19] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun, Infinite-state high-level MSCs:

Model-checking and realizability, J. Comput. Syst. Sci. 72(4), 617–647, (2006).
[20] A. Muscholl and H. Petersen, A Note on the Commutative Closure of Star-Free

Languages, Inf. Process. Lett. 57(2), 71–74, (1996).
[21] J. Sakarovitch. The ”Last” Decision Problem for Rational Trace Languages. In ed.

I. Simon, LATIN, vol. 583, Lecture Notes in Computer Science, pp. 460–473. Springer,
(1992). ISBN 3-540-55284-7.

[22] A. Muscholl, D. Peled, and Z. Su. Deciding Properties for Message Sequence Charts.
In ed. M. Nivat, FoSSaCS, vol. 1378, Lecture Notes in Computer Science, pp. 226–242.
Springer, (1998). ISBN 3-540-64300-1.

[23] P. Madhusudan. Reasoning about Sequential and Branching Behaviours of Message
Sequence Graphs. In eds. F. Orejas, P. G. Spirakis, and J. van Leeuwen, ICALP,
vol. 2076, Lecture Notes in Computer Science, pp. 809–820. Springer, (2001). ISBN
3-540-42287-0.

[24] B. Genest, A. Muscholl, and D. Kuske. A Kleene Theorem for a Class of Communi-
cating Automata with Effective Algorithms. In eds. C. Calude, E. Calude, and M. J.
Dinneen, Developments in Language Theory, vol. 3340, Lecture Notes in Computer
Science, pp. 30–48. Springer, (2004). ISBN 3-540-24014-4.

[25] B. Genest, D. Kuske, and A. Muscholl, A Kleene theorem and model checking al-
gorithms for existentially bounded communicating automata, Inf. Comput. 204(6),
920–956, (2006).

[26] M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Netcharts: Bridging the gap
between HMSCs and executable specifications. In eds. R. M. Amadio and D. Lugiez,
CONCUR, vol. 2761, Lecture Notes in Computer Science, pp. 293–307. Springer,
(2003). ISBN 3-540-40753-7.

[27] N. Baudru and R. Morin. The Synthesis Problem of Netcharts. In eds. S. Donatelli

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

The Theory of Message Sequence Charts 323

and P. S. Thiagarajan, ICATPN, vol. 4024, Lecture Notes in Computer Science, pp.
84–104. Springer, (2006). ISBN 3-540-34699-6.

[28] E. L. Gunter, A. Muscholl, and D. Peled. Compositional Message Sequence Charts. In
eds. T. Margaria and W. Yi, TACAS, vol. 2031, Lecture Notes in Computer Science,
pp. 496–511. Springer, (2001). ISBN 3-540-41865-2.

[29] P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs. In eds. R. Har-
iharan, M. Mukund, and V. Vinay, FSTTCS, vol. 2245, Lecture Notes in Computer
Science, pp. 256–267. Springer, (2001). ISBN 3-540-43002-4.

[30] J. R. Buechi, Weak second-order arithmetic and finite automata, Z. Math. Logik
Grundl. Math. 6, 66–92, (1960).

[31] C. C. Elgot, Decision problems of finite automata design and related arithmetics.,
Transactions of the American Mathematical Society. 98, 21–52, (1960).

[32] W. Thomas. Automata over infinite objects. In ed. J. van Leeuwen, Handbook of
Theoretical Computer Science, Volume B, pp. 133–191. Elsevier, (1990).

[33] W. Ebinger and A. Muscholl, Logical Definability on Infinite Traces, Theor. Comput.
Sci. 154(1), 67–84, (1996).

[34] P. S. Thiagarajan and I. Walukiewicz. An Expressively Complete Linear Time Tem-
poral Logic for Mazurkiewicz Traces. In LICS, pp. 183–194, (1997).

[35] B. Bollig and M. Leucker, Message-passing automata are expressively equivalent to
EMSO logic, Theor. Comput. Sci. 358(2-3), 150–172, (2006).

[36] O. Matz and W. Thomas. The Monadic Quantifier Alternation Hierarchy over Graphs
is Infinite. In LICS, pp. 236–244, (1997).

[37] D. Brand and P. Zafiropulo, On Communicating Finite-State Machines, J. ACM. 30
(2), 323–342, (1983).

[38] R. Alur, K. Etessami, and M. Yannakakis. Realizability and Verification of
MSC Graphs. In eds. F. Orejas, P. G. Spirakis, and J. van Leeuwen, ICALP,
vol. 2076, Lecture Notes in Computer Science, pp. 797–808. Springer, (2001).
ISBN 3-540-42287-0.

[39] P. Bhateja, P. Gastin, M. Mukund, and K. Narayan Kumar. Local Testing
of Message Sequence Charts Is Difficult. In eds. E. Csuhaj-Varjú and Z. Ésik,
FCT, vol. 4639, Lecture Notes in Computer Science, pp. 76–87. Springer, (2007).
ISBN 978-3-540-74239-5.

[40] M. Lohrey, Realizability of high-level message sequence charts: closing the gaps,
Theor. Comput. Sci. 309(1-3), 529–554, (2003).

[41] W. Zielonka, Notes on Finite Asynchronous Automata, ITA. 21(2), 99–135, (1987).
[42] M. Mukund, K. Narayan Kumar, and M. A. Sohoni, Bounded time-stamping in

message-passing systems, Theor. Comput. Sci. 290(1), 221–239, (2003).
[43] M. Mukund, K. Narayan Kumar, and M. A. Sohoni. Synthesizing Distributed Finite-

State Systems from MSCs. In ed. C. Palamidessi, CONCUR, vol. 1877, Lecture Notes
in Computer Science, pp. 521–535. Springer, (2000). ISBN 3-540-67897-2.

[44] N. Baudru and R. Morin. Safe Implementability of Regular Message Sequence Chart
Specifications. In eds. W. Dosch and R. Y. Lee, SNPD, pp. 210–217. ACIS, (2003).
ISBN 0-9700776-7-X.

[45] N. Baudru and R. Morin. Synthesis of Safe Message-Passing Systems. In eds.
V. Arvind and S. Prasad, FSTTCS, vol. 4855, Lecture Notes in Computer Science,
pp. 277–289. Springer, (2007). ISBN 978-3-540-77049-7.

[46] A. Muscholl. Matching Specifications for Message Sequence Charts. In ed.
W. Thomas, FoSSaCS, vol. 1578, Lecture Notes in Computer Science, pp. 273–287.
Springer, (1999). ISBN 3-540-65719-3.

[47] B. Genest and A. Muscholl. Pattern Matching and Membership for Hierarchical Mes-

May 16, 2011 16:16 World Scientific Review Volume - 9.75in x 6.5in chap10

324 K. Narayan Kumar

sage Sequence Charts. In ed. S. Rajsbaum, LATIN, vol. 2286, Lecture Notes in Com-
puter Science, pp. 326–340. Springer, (2002). ISBN 3-540-43400-3.

[48] B. Genest. On Implementation of Global Concurrent Systems with Local Asyn-
chronous Controllers. In eds. M. Abadi and L. de Alfaro, CONCUR, vol. 3653, Lecture
Notes in Computer Science, pp. 443–457. Springer, (2005). ISBN 3-540-28309-9.

[49] W. Damm and D. Harel, LSCs: Breathing Life into Message Sequence Charts, Formal
Methods in System Design. 19(1), 45–80, (2001).

[50] D. Harel and R. Marelly, Specifying and executing behavioral requirements: the play-
in/play-out approach, Software and System Modeling. 2(2), 82–107, (2003).

[51] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-out of Behavioral Re-
quirements. In eds. M. Aagaard and J. W. O’Leary, FMCAD, vol. 2517, Lecture Notes
in Computer Science, pp. 378–398. Springer, (2002). ISBN 3-540-00116-6.

[52] S. Akshay, B. Bollig, and P. Gastin. Automata and Logics for Timed Message Se-
quence Charts. In eds. V. Arvind and S. Prasad, FSTTCS, vol. 4855, Lecture Notes
in Computer Science, pp. 290–302. Springer, (2007). ISBN 978-3-540-77049-7.

[53] S. Akshay, M. Mukund, and K. Narayan Kumar. Checking Coverage for Infinite
Collections of Timed Scenarios. In eds. L. Caires and V. T. Vasconcelos, CONCUR,
vol. 4703, Lecture Notes in Computer Science, pp. 181–196. Springer, (2007). ISBN
978-3-540-74406-1.

[54] S. Akshay, B. Bollig, P. Gastin, M. Mukund, and K. Narayan Kumar. Distributed
Timed Automata with Independently Evolving Clocks. In eds. F. van Breugel and
M. Chechik, CONCUR, vol. 5201, Lecture Notes in Computer Science, pp. 82–97.
Springer, (2008). ISBN 978-3-540-85360-2.

