Concurrency Theory, January–April 2017

Assignment 2, 13 February, 2017 Due: 19 February, 2017

Note: Only electronic submissions accepted, via Moodle.

- 1. Let (Σ, I) be a trace alphabet with $\Sigma = \{a, b, c\}$ and $I = \{(a, b), (b, a)\}$.
 - (a) Draw the trace [abacabbccbaa] as a labelled partial order (E, \leq, ℓ) .
 - (b) For a trace $t = (E, \leq, \ell)$ and $a \in \Sigma$, we define the *a*-view of *t* to be the trace consisting of the events $\{e \mid e \leq \max_a(t)\}$, where $\max_a(t)$ is the maximum *a*-labelled event in *t*. Draw the *a*-view, *b*-view and *c*-view of the trace [*abacabbccbaa*].
- 2. Let (Σ, I) be a trace alphabet. An $I \diamond$ transition system $TS = (S, s_{in}, \rightarrow)$ is one in which the following property holds for any $(a, b) \in I$.
 - If $s \xrightarrow{a} s_a \xrightarrow{b} s_{ab}$ then there exists s_b such that $s \xrightarrow{b} s_b \xrightarrow{a} s_{ab}$.

A finite state automaton (NFA or DFA) is said to be an $I \diamond$ automaton if its underlying transition system is an $I \diamond$ transition system.

- (a) Given an $I \diamondsuit$ automaton \mathcal{A} over (Σ, I) , is the language $L(\mathcal{A})$ that it accepts always a regular trace language?
- (b) Show that every regular trace language is accepted by an $I \diamondsuit$ automaton. (*Hint:* Consider the minimum DFA.)
- 3. In an event structure, a configuration c is *prime* if the following holds: whenever $c \subseteq \bigcup C$ for a subset of configurations C, then $c \subseteq c'$ for some $c' \in C$.

Define a transition relation $c \xrightarrow{e} c'$ if $c' = c \cup \{e\}$. Show that if $c_1 \xrightarrow{e_1} c$ and $c_2 \xrightarrow{e_2} c$, where $e_1 \neq e_2$, then c cannot be a prime configuration.

- 4. The figure on the right below shows the configurations of an event structure ordered under inclusion.
 - (a) Draw the corresponding event structure. Use \longrightarrow to indicate causality and # to indicate conflict.
 - (b) Draw an unlabelled 1-safe net that generates this behaviour.

5.

- (a) Construct the unfolding upto depth 3 of the net on the right. Recall that the depth of a transition t is the maximum length k among sequences of the form $t_1 < t_2 < \cdots < t_k$ where $t_k = t$.
- (b) Identify all cutoff events at this depth using the following definition of an adequate order for configurations.

$$C \prec C'$$
 iff
$$\mathrm{Mark}(C) = \mathrm{Mark}(C') \text{ and } |C| < |C'$$