
Concurrency Theory, January–April 2017

Assignment 2, 13 February, 2017
Due: 19 February, 2017

Note: Only electronic submissions accepted, via Moodle.

1. Let (Σ, I) be a trace alphabet with Σ = {a, b, c} and I = {(a, b), (b, a)}.

(a) Draw the trace [abacabbccbaa] as a labelled partial order (E,≤, `).
(b) For a trace t = (E,≤, `) and a ∈ Σ, we define the a-view of t to be the trace consisting

of the events {e | e ≤ maxa(t)}, where maxa(t) is the maximum a-labelled event in t.

Draw the a-view, b-view and c-view of the trace [abacabbccbaa].

2. Let (Σ, I) be a trace alphabet. An I3 transition system TS = (S, sin,→) is one in which
the following property holds for any (a, b) ∈ I.

• If s
a−−→ sa

b−−→ sab then there exists sb such that s
b−−→ sb

a−−→ sab.

A finite state automaton (NFA or DFA) is said to be an I3 automaton if its underlying
transition system is an I3 transition system.

(a) Given an I3 automaton A over (Σ, I), is the language L(A) that it accepts always a
regular trace language?

(b) Show that every regular trace language is accepted by an I3 automaton. (Hint: Consider
the minimum DFA.)

3. In an event structure, a configuration c is prime if the following holds: whenever c ⊆
⋃
C

for a subset of configurations C, then c ⊆ c′ for some c′ ∈ C.

Define a transition relation c
e−−→ c′ if c′ = c ∪ {e}. Show that if c1

e1−−→ c and c2
e2−−→ c,

where e1 6= e2, then c cannot be a prime configuration.

4. The figure on the right below shows the configurations of an event structure ordered under
inclusion.

(a) Draw the corresponding event
structure. Use −→ to indicate
causality and # to indicate conflict.

(b) Draw an unlabelled 1-safe net that
generates this behaviour.

{e1, e2, e4}

{e1, e2} {e2, e3}

{e1} {e2}

∅

5.

(a) Construct the unfolding upto depth 3 of the
net on the right. Recall that the depth of a
transition t is the maximum length k among
sequences of the form t1 < t2 < · · · < tk
where tk = t.

(b) Identify all cutoff events at this depth using
the following definition of an adequate order
for configurations.

C ≺ C ′ iff
Mark(C) = Mark(C ′) and |C| < |C ′|

p1 p2

p3 p4

t1 t2

t3 t4

