An Improvement of McMillan’s Unfolding Algorithm

Javier Esparza and Stefan Romer * ({esparzal|roemer}@in.tum.de)
Institut fiur Informatik, Technische Universitat Minchen, Arcisstr. 21, D-80333
Miinchen, Germany

Walter Vogler! (walter.vogler@informatik.uni-augsburg.de)
Institut fiur Informatik, Universitit Augsburg, Universititsstr. 14, D-86159
Augsburg, Germany

Abstract. McMillan has recently proposed a new technique to avoid the state
explosion problem in the verification of systems modelled with finite-state Petri
nets. The technique requires to construct a finite initial part of the unfolding of the
net. McMillan’s algorithm for this task may yield initial parts that are larger than
necessary (exponentially larger in the worst case). We present a refinement of the
algorithm which overcomes this problem.

Keywords: unfolding, partial-order semantics, Petri nets

1. Introduction

In a seminal paper [12], McMillan has proposed a new technique to
avoid the state explosion problem in the verification of systems mod-
elled with finite-state Petri nets. The technique is based on the concept
of net unfoldings, a well known partial-order semantics of Petri nets
introduced in [15], and later described in more detail in [4] under the
name of branching processes. The unfolding of a net is another net,
usually infinite but with a simpler structure. McMillan proposes an
algorithm for the construction of a finite initial part of the unfolding
which contains full information about the reachable states. We call such
an initial part a finite complete prefiz. He then shows how to use these
prefixes for deadlock detection.

The unfolding technique has later been applied to other verifica-
tion problems. In [8, 9, 13] it is used to check relevant properties of
speed independent circuits. In [5], an unfolding-based model checking
algorithm for a simple branching time logic is proposed.

Although McMillan’s algorithm is simple and elegant, it sometimes
generates prefixes much larger than necessary. In some cases a minimal
complete prefix has size O(n) (where n is the size of the Petri net),

* Partially supported by the Teilprojekt A3 SAM of the Sonderforschungsbereich
342 “Werkzeuge und Methoden fiir die Nutzung paralleler Rechnerarchitekturen”.

T Work on this paper was partially supported by the DFG (Project “Halbord-
nungstesten”).

';:‘ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

ervneu.tex; 15/06/2000; 15:38; p.1

while the algorithm generates a prefix of size O(2"). In this paper we
provide an algorithm which generates a minimal complete prefix (in a
certain sense to be defined). The prefix is always smaller than or as
large as the prefix generated with the old algorithm, and it is never
larger (up to small constant) than the state space of the Petri net.

The paper is organised as follows. Section 2 and 3 contain basic
definitions about Petri nets and branching processes, respectively. In
Section 4 we show that McMillan’s algorithm is just an element of
a whole family of algorithms for the construction of finite complete
prefixes. The algorithms of this family depend on the choice of a so-
called adequate order; this is a partial order on the configurations of
a branching process. In Section 5 we improve McMillan’s algorithm by
exhibiting a finer adequate order. In Section 6 we define for 1-safe net
systems an adequate order which is total. Section 7 extends this idea to
n-bounded systems; for the representation of the process net another
partial-order semantics is used, so-called executions. Finally, in Section
8 we present aspects of an efficient implementation of the algorithms,
accompanied by experimental results.

2. Petri nets

A net is a triple (S, T, W), where S and T are disjoint sets of places
(Stellen in Petri’s original notation) and transitions, respectively, and
W is a function (S x T) U (T x S) — {0, 1}. Places and transitions are
generically called nodes. If W (z,y) = 1 then we say that there is an arc
from z to y. Thus, a net can be considered as a directed graph. A path
in such a graph is — as usual — a nonempty sequence of nodes without
repetitions such there is an arc from each node to the following (if there
is one).

The preset of a node z, denoted by ®z, is the set {y € SUT |
W (y,z) = 1}. The postset of x, denoted by z°*, is the set {y € SUT |
W(z,y) =1}

A marking of a net (S,T,W) is a mapping M : S — IN (where
IN denotes the natural numbers including 0). We identify M with the
multiset containing M (s) copies of s for every s € S. For instance, if
S ={s1,s2} and M (s1) =1, M(s2) =2, we write M = {s1, 2,52}

A 4-tuple X = (S, T, W, My) is a net system if (S,T, W) is a net and
My is a marking of (S,T, W) (called the initial marking of X).

General assumptions In this paper we consider only nets in which

every transition has a nonempty preset and a nonempty postset. We
further assume that all net systems are finite.

2

A marking M enables a transition ¢ if it marks each place s € *¢ with
a token, i.e. if M(s) > 0 for each s € *¢. If t is enabled at M, then it can
fire or occur, and its occurrence leads to a new marking M’, obtained by
removing a token from each place in the preset of £, and adding a token
to each place in its poset; formally, M'(s) = M(s) — W(s,t) + W(t, s)
for every place s. For each transition ¢ the relation Y5 is defined as

follows: M —s M if t is enabled at M and its occurrence leads to M.
A sequence of transitions o = t1to ... 1, is an occurrence sequence if
there exist markings My, My, ..., M, such that

t t: t
M0—1>M1—2)...Mn_1—n>Mn

M,, is the marking reached by the occurrence of o, also denoted by
My =5 M,. M is a reachable marking if there exists an occurrence
sequence o such that My —— M. The reachability graph of a net system
is the labelled graph having the reachable markings of the system as

nodes, and the L relations (more precisely, their restriction to the set
of reachable markings) as arcs.

A marking M of a net is n-safe if M (s) < n for every place s. A net
system 3 is n-safe if all its reachable markings are n-safe, and safe if it
is n-safe for some number n.

Labelled nets A labelled net is a pair (N,[) (also represented as a 4-
tuple (S,7,W,1)), where N is a net and [is a labelling function that
assigns to each node x of N a label [(x) taken from some set. Notice that
different nodes can carry the same label. For each label a we define the

relation —— between markings as follows: M —— M’ if M L5 M for
some transition ¢ such that [(t) = a. The reachability graph of a labelled
net system is the labelled graph having the reachable markings of the
system as nodes, and the —— relations (more precisely, their restriction
to the set of reachable markings) as arcs.

3. Branching processes

In this section we describe branching processes, a partial-order seman-
tics of Petri nets. Before giving any formal definitions, we give some
intuitive ideas.

Counsider a directed graph G with a root node. It is well-known
that such a graph can be “unfolded” into a labelled tree (whose nodes
are the paths in G starting at the root). The nodes of the tree are
labelled with the nodes of the graph (i.e. with the last node of the
respective path). The unfolding process can be stopped at different

3

times yielding different trees, but there is a unique labelled tree, usually
infinite, obtained by unfolding “as much as possible”. This labelled tree
is called the unfolding of the graph.

In the same way, net systems can be “unfolded” into labelled occur-
rence nets, a subclass of nets with a particularly simple, tree-like struc-
ture. The nodes of the occurrence net are labelled with the places and
transitions of the net. The labelled occurrence nets obtained through
unfolding of a net are called branching processes. The unfolding process
can be stopped at different times yielding different branching processes,
but there is a unique, usually infinite, branching process obtained by
unfolding “as much as possible”. This branching process is called the
unfolding of the net system.

In the next two subsections we formally define occurrence nets,
branching processes and the unfolding.

3.1. OCCURRENCE NETS

First of all, we need to define the causal, conflict, and concurrency
relations between nodes of a net.

— Two nodes x and y are in causal relation, denoted by = < y, if the
net contains a path with at least one arc leading from = to y.

— x and y are in conflict relation, or just in conflict, denoted by z#v,
if the net contains two paths st; ...z and sto ... xo starting at the
same place s, and such that ¢; # t2. In words, z; and zs are in
conflict if the net contains two paths leading to 1 and z2 which
start at the same place and immediately diverge (although later
on they can converge again).

— « and y are in concurrency relation, denoted by x co y, if neither
x <y nory <z nor r#y.

An occurrence net is a net O = (B, E, F) such that:
(1) |*b| <1 for every b € B;
(2) O is acyclic, or, equivalently, the causal relation is a partial order;

(3) O is finitely preceded, i.e., for every z € BU E, the set of elements
y € BU FE such that y < x is finite;

(4) no element is in conflict with itself.

It is easy to see that any two nodes of an occurrence net are either
in causal, conflict, or concurrency relation.

4

The elements of B and E are usually called conditions (Bedingungen
in Petri’s original notation) and events, respectively.

Min(O) denotes the set of minimal elements of BUFE with respect to
the causal relation, i.e., the elements that have an empty preset. Since
we only consider nets in which every transition has a nonempty preset,
the elements of Min(O) are conditions.

3.2. BRANCHING PROCESSES

Those labelled occurrence nets obtained from net systems by “un-
folding” are called branching processes, and have the following formal
definition:

A branching process of a net system 3 = (S, T, W, My) is a labelled
occurrence net § = (O, p) = (B, £, F, p) where the labelling function p
satisfies the following properties:

(i) p(B) € Sandp(E) CT
(p preserves the nature of nodes);

(ii) for every e € E, the restriction of p to ®e is a bijection between ®e
(in X) and *p(e) (in), and similarly for e®* and p(e)®
(p preserves the environments of transitions);

(iii) the restriction of p to Min(O) is a bijection between Min(O) and
My
(B “starts” at My);

(iv) for every ey, ez € E, if ®*e; = ®ey and p(e1) = p(ez) then e; = e
(6 does not duplicate the transitions of X).

Figure 1 shows a 1-safe net system (part (a)), and two of its branch-
ing processes (parts (b) and (c)).

Branching processes differ on “how much they unfold”. It is natural
to introduce a prefix relation formalising the idea “a branching process
unfolds less than another”.

Let 5’ = (O',p') and g = (O, p) be two branching processes of a net
system. (' is a prefiz of 8 if O’ is a subnet of O satisfying

— Min(O) belongs to O';

— if a condition b belongs to O, then its input event e € *b in O also
belongs to O (if it exists); and

— if an event e belongs to O, then its input and output conditions
*eUe® in O also belong to O’,

5

52

S1 <

g o
AT

%%P x 3//0

I_I

? 7 ta t5 tq t5
.0, 0, 0O,

(@P B C@P 3,0,.0,0, G,
O0=0=Qs : i :
(b)

(c)

Figure 1. A net system (a) and two of its branching processes (b,c)

and p’ is the restriction of p to O'.

It is shown in [4] that a net system has a unique maximal branching
process with respect to the prefix relation. To be precise, this process
is unique up to isomorphism, i.e., up to renaming of the conditions
and the events. This is the branching process that “unfolds as much as
possible”. We call it the unfolding of the system. The unfolding of the
1-safe system of Figure 1 is infinite.

A branching process has a natural initial marking, namely the mark-
ing that puts one token in each minimal condition, and no tokens
anywhere else. When we talk of the reachable markings and the reach-
ability graph of a branching process, we refer to the natural initial
marking.

With this, we can formulate how an unfolding describes the be-
haviour of a net as follows: Let X be a net system, and let § be its
unfolding. The reachability graphs of > and 3 have isomorphic un-
foldings (as graphs as described above). More in detail, the reachable

markings of 3 are those p(M) where M is a reachable marking of ;
for a reachable marking M of 3 and a marking M" and a transition ¢
of ¥, there are M’ and e with p(M') = M", p(e) =t and M -~ M’ in
A if and only if p(M) - M" in X.

3.3. CONFIGURATIONS AND CUTS

In order to work with branching processes we need the notions of
configuration and cut.

A configuration C of a branching process is a set of events satisfying
the following two conditions:

— e€C = Ve <ee €C (Cis causally closed).
— Ve,e' € C:=(e#e’) (C is conflict-free).

The set of events {1,3,4,6} in Figure 1(b) is a configuration, but
the sets {3,4} (not causally closed) and {1,2} (non conflict-free) are
not. Intuitively, a configuration is a set of events ‘firable’ from the
natural initial marking, i.e., there is a firing sequence from the natural
initial marking in which each event of the set occurs exactly once. For
{1,3,4,6} we can first fire 1 and 3, then 4 and then 6, but neither {3,4}
nor {1,2} are firable from the natural initial marking.

A set of conditions of a branching process is a co-set if its elements
are pairwise in co relation. A maximal co-set with respect to set in-
clusion is called a cut. In Figure 1(b), the set containing the (unique)
output condition of event 6 and the output condition of event 4 labelled
by s7 is a cut.

A marking M of a system Y is represented in a branching process
B = (0,p) of ¥ if B contains a cut ¢ such that, for each place s of X,
¢ contains exactly M(s) conditions b with p(b) = s. For instance, the
marking {si, s7} is represented in the branching process of Figure 1(b)
because of the cut mentioned above. It is easy to prove using results of
[1, 4] that every marking represented in a branching process is reach-
able, and that every reachable marking is represented in the unfolding
of the net system. Observe in particular that {s;, sy} is reachable.

Finite configurations and cuts are tightly related. Let C be a fi-
nite configuration of a branching process § = (O,p). Then the co-set
Cut(C), defined below, is a cut:

Cut(C) = (Min(0) U C*) \ *C.

In particular, given a configuration C' the set of places Cut(C) rep-
resents a reachable marking, which we denote by Mark(C). Loosely
speaking, Mark(C') is the marking we reach by firing the configuration

7

C. In the branching process of Figure 1(b) we have Mark({1,3,4,6}) =
{s1, 87}

4. An algorithm for the construction of a complete finite
prefix

4.1. CONSTRUCTING THE UNFOLDING

We give an algorithm for the construction of the unfolding of a net
system. First of all, let us describe a suitable data structure for the
representation of branching processes.

We implement a branching process of a net system X as a set
{ni1,...,n,} of nodes. A node is either a condition or an event. A
condition is a record containing two fields: a place of 3, and a pointer
to an event (the unique input event of the condition), or to NIL, in case
the condition has an empty preset. In the pseudocode description of our
algorithms we represent a condition as a pair (s,e) or (s,0). An event
is also a record with two fields: a transition of 3, and a list of pointers
to conditions (the input conditions of the event). In pseudocode we
represent an event as a pair (¢, X).

Notice that the flow relation and the labelling function of a branch-
ing process are already encoded in its set of nodes. How to express the
notions of causal relation, configuration or cut in terms of this data
structure is left to the reader.

We need the notion of “events that can be added to a given branch-
ing process”. Let t be a transition of ¥ with output places s1,...,s,.
Formally, a pair e = (¢, X) is a possible extension of a branching pro-
cess {ny,...,ng}if {ni,...,ng,e,(s1,€),...,(sn,e)} is also a branching
process. PE () denotes the set of possible extensions of a branching
process (3.

The following characterisation follows easily from the definitions:

PROPOSITION 4.1.

Let B be a branching process of a net system %. The possible ex-
tensions of (8 are the pairs (t, X), where X is a co-set of conditions
of B and t is a transition of X such that

— p(X)="t, and
— (¢, X) does not already belong to (. m4l

The algorithm for the construction of the unfolding starts with the
branching process having the conditions corresponding to the initial

8

marking of 3 and no events. New events are added one at a time
together with their output conditions. Observe that the initial marking
My is a multiset, and so a place can appear several times in it. If
My(s) = k, then Unf contains k minimal conditions labelled by s, i.e.,
k elements (s,).

ALGORITHM 4.2. The unfolding algorithm

input: A net system ¥ = (N, My), where My = {s1,...,sp}.
output: The unfolding Unf of X.
begin
UTLf = {(317 0)7 R (Sna 0)},
pe := PE(Unf);
while pe #) do
add to Unfan event e = (t, X) of pe and a condition (s, e)
for every output place s of t;
pe := PE(Unf)
endwhile
end w42

The algorithm does not necessarily terminate. In fact, it terminates
if and only if the input system ¥ does not have any infinite occurrence
sequence. It is correct only under the fairness assumption that every
event added to pe is eventually chosen to extend Unf (the correctness
proof follows easily from the definitions and from the results of [4]).

CONSTRUCTING A FINITE COMPLETE PREFIX

We say that a branching process 3 of a net system X is complete if for
every reachable marking M there exists a configuration C in 8 such
that:

— Mark(C) = M (i.e., M is represented in 3), and

— for every transition ¢ enabled by M there exists a configuration
C U {e} such that e ¢ C and e is labelled by ¢.

The unfolding of a net system is always complete. A complete prefix
contains as much information as the unfolding, in the sense that we can
construct the unfolding from it as the least fixpoint of a suitable oper-
ation. This property does not hold if we only require every reachable
marking to be represented. For instance, the net system of Figure 2(a)
has Figure 2(b) as unfolding. Figure 2(c) shows a prefix of the unfolding
in which every reachable marking is represented. The prefix has lost
the information indicating that to can occur from the initial marking.
Observe that the prefix is not complete.

AN A A
N S G

OSZ OSz 082 OSZ
(a) (b) ()

Figure 2. A 1-safe net system (a), its unfolding (b), and a prefix (c)

Since an n-safe net system has only finitely many reachable mark-
ings, its unfolding contains at least one complete finite prefix. We
transform the algorithm above into a new one whose output is such
a prefix. The key idea (due to McMillan) is to identify certain events,
called cut-off events, at which the construction can be stopped without
losing information; stopped means that no new events causally related
to the cut-off event are added.

We start with some Given a configuration C of a branching process
B = (0,p), we define {} C' as the pair (O',p’), where O is the unique
subnet of O whose set of nodes is {z |z ¢ CU*C AVy € C: =(z#y)}
and p’ is the restriction of p to the nodes of O'. Loosely speaking, {} C
is the part of 3 lying “after” C.

The following result can be easily proved, directly from the defini-
tions:

PROPOSITION 4.3.

If B is a branching process of (N, My) and C is a configuration of 3,
then {}C is a branching process of (N, Mark(C)). Moreover, if [3 is
the unfolding of (N, My), then {tC is the unfolding of (N, Mark(C'))
(up to isomorphism). m4.3

Given a configuration C, we denote by C'@ E the fact that CUE is
a configuration such that CNE = (). We say that C @ E is an extension
of C, and that F is a suffiz of C. Obviously, for a configuration C’, if
C C C' then there is a nonempty suffix £ of C such that C&® E = C'.

Now, let C} and C be two finite configurations leading to the same
marking, i.e. Mark(C)
= M = Mark(C5). By Proposition 4.3 {+C; and {}Cy are isomorphic to
the unfolding of (N, M), and so they are isomorphic to each other. Let
I? be an isomorphism between #C; and §#C5. This isomorphism induces
a mapping from the finite extensions of C) onto the finite extensions
of Cy: it maps C & E onto Cy & Ilz(E)

10

/®\ /OSI\
t1 tz 1 t2

& }{ - gD dogD-
|]__| 7 |_'__|ts [7]t7 [L0] 5 B @ts

Oy _Ow 0w Ow Ow On

t9

OSU
(a) (b)

Figure 3. A l-safe net system (a) and a prefix of its unfolding (b)

«o
«o
—Q
¢
—Q
0

We can now introduce the three basic notions needed by the al-
gorithm: adequate order, local configuration, and cut-off event. We
present the formal definitions together with the intuition behing them.

McMillan’s idea [12] is to attach to each event e added by the un-
folding algorithm a reachable marking of 3. For this, we first compute

the local configuration [e] of e, defined below, and then we associate to
e the marking Mark([e]).

DEFINITION 4.4. Local configuration

The local configuration [e] of an event e of a branching process is
the set of events €’ such that ¢’ < e.! m4.4

Now, assume that a new event ¢ is added to the current branching
process, such that some event ¢’ added before satisfies Mark([e]) =
Mark([€']). We know that 1} [¢] and 1} [¢/] are isomorphic, and so it is
sufficient to pursue the construction of one of the two. Intuitively, it
seems possible to mark e as “cut-off” event, and so stop the construc-
tion of 1 [e]. However, the following example (independently found by
McMillan and one of the authors) shows that this strategy is incorrect.
Consider the 1-safe net system of Figure 3(a).

The marking {s;2} is reachable. However, we can generate the prefix
of Figure 3(b), in which this marking is not represented. The names

! Tt is immediate to prove that [e] is a configuration.

11

of the events are numbers which indicate the order in which they are
added to the prefix. The events 8 and 10 are marked as “cut-oft” events,
because their corresponding markings {s7, sg, s10} and {sg, ss, s11} are
also the markings corresponding to the events 7 and 9, respectively.
Although no events can be added, the prefix is not complete, because
{s12} is not represented in it.

The choice between [e] and [€/] is made on the basis of a partial
order. We show below that all orders satisfying three properties make
the correctness proof work, i.e., lead to finite complete prefixes. We call
these orders adequate.

DEFINITION 4.5. Adequate order

A partial order < on the finite configurations of the unfolding of a
net system is an adequate order if:

— < is well-founded,
— (4 C Cy implies Cq < Cs, and

— < ispreserved by finite extensions; if C; < Cy and Mark(Cy) =
Mark(Cs), then the isomorphism I? from above satisfies C; @
E < Co@®IZ(E) for all finite extensions C; & E of Cy. m4.5

In [12] [¢'] is smaller than [e] if it contains less events, i.e. if |[¢']| <
I[e]]- It is easy to see that this order is adequate. We can now formally
define cut-off events with respect to an adequate order.

DEFINITION 4.6. Cut-off event

Let < be an adequate order on the configurations of the unfolding
of a net system. Let 3 be a prefix of the unfolding containing an
event e. The event e is a cut-off event of B (with respect to <) if 8
contains a local configuration [e'] such that

(a) Mark([e]) = Mark([e']), and
(b) [¢] < [e]. m 46

The new algorithm is in fact a family of algorithms: each adequate
order < leads to a different algorithm. Events are respecting the <
order, and cut-offs are identified and marked. The algorithm terminates
when no event can be added.

12

ALGORITHM 4.7. The complete finite prefiz algorithm

input: An n-safe net system X = (N, My),
where My = {s1,...,s¢}.
output: A complete finite prefix Fin of Unf.
begin
Fin := (s1,0),..., (sk,0);
pe := PE(Fin);
cut-off := 0;
while pe #) do
choose an event e = (¢, X) in pe such that [e] is minimal
with respect to <;
if [e] N cut-off =) then
append to Fin the event e and a condition (s, e)
for every output place s of t;
pe := PE(Fin);
if e is a cut-off event of Fin then
cut-off := cut-off U {e}
endif
else pe :=pe \ {e}
endif
endwhile
end m4.7

The correctness of Algorithm 4.7 is proved in the next two proposi-
tions.

PROPOSITION 4.8.
Fin is finite.

Proof: Given an event e of Fin, define the depth of e as the length of
a longest chain of events e; < ez < ... < e; the depth of e is
denoted by d(e). We prove the following results:

(1) For every event e of Fin, d(e) < n + 1, where n is the
number of reachable markings of 3.
Since cuts correspond to reachable markings, every chain
of events e; < e2 < ... < e, < ep41 of Unf contains two
events e;, e;, i < j, such that Mark([e;]) = Mark([ej]).
Since [e;] C [e;], we have [e;] < [ej], and therefore [e;] is a
cut-off event of Unf. Should the finite prefix algorithm gen-
erate e;, then it has generated e; before and e; is recognized
as a cut-off event of Fin, too.

13

(2) For every event e of Fin, the sets *e and e® are finite.
By the definition of prefix, there is a bijection between e®
and p(e)®, where p denotes the labelling function of Fin,
and similarly for ®*e and *p(e). The result follows from the
finiteness of N.

(3) For every k > 0, Fin contains only finitely many events e
such that d(e) < k.
By complete induction on k. The base case, k = 0, is trivial.
Let E} be the set of events of depth at most k. We prove
that if £}, is finite then Ejq is finite.

By (2) and the induction hypothesis, E} is finite. Since
*Eri1 C© Ep U Min(Fin), we get by property (iv) in the
definition of a branching process that Ej; is finite.

It follows from (1) and (3) that Fin only contains finitely many
events. By (2) it contains only finitely many conditions.
m48

PROPOSITION 4.9.

Fin is complete.

Proof: (a) Every reachable marking of ¥ is represented in Fin.

Let M be an arbitrary reachable marking of ¥. There exists a
configuration Cy of Unf such that Mark(Cy) = M. If Cy is not a
configuration of Fin, then it contains some cut-off event e;, and
so C1 = [e1] ® E for some set of events E;. By the definition of
a cut-off event, there exists a local configuration [e] such that
[e2] < [e1] and Mark([e2]) = Mark([e1]).

Consider the configuration Cy = [e2] @ I2(E)). Since < is pre-
served by finite extensions, we have Cy < C;. Morever, Mark(C5)
= M. If Cs is not a configuration of Fin, then we can iterate the
procedure and find a configuration Cj such that C3 < Cy and
Mark(C3) = M. The procedure cannot be iterated infinitely
often because < is well-founded. Therefore, it terminates in a
configuration of Fin.

(b) If a transition ¢ can occur in X, then Fin contains an event
labelled by t.

If ¢ occurs in 3, then some reachable marking M enables .
The marking M is represented in Fin. Let C' be a minimal
configuration with respect to < such that Mark(C) = M. If

14

»

80 /OSO\\
? 1 t2
Minimal
s S1 §1 complete
prefix
P) e
|
| t3 ta
|
s S2 S2 1 S2 S2
|
_——f N == =
: ! : : :

OsQ !+ 27 copies of s, -+ OQsQsn

Figure 4. A Petri net and its unfolding

S
A

Q

C contains some cut-off event, then we can apply the arguments
of (a) to conclude that Fin contains a configuration C' < C such
that Mark(C') = M. This contradicts the minimality of C. So
C countains no cut-off events, and therefore Fin also contains a
configuration C' @ {e} such that e is labelled by ¢. m49

Notice that the adequacy of an order is a sufficient but not necessary
condition for the correctness of Algorithm 4.7. For example, a look at
the proof of Proposition 4.9 reveals that the preservation of the order
by finite extensions is only applied to local configurations. So in the
third property of Definition 4.5 C; and Cy could be replaced by [e;]
and [ez].

5. An adequate order for arbitrary net systems

As we mentioned in the introduction, McMillan’s algorithm may be
inefficient in some cases. An extreme example due to Kishinevsky and
Taubin is the family of systems on the left of Figure 4. While a minimal
complete prefix has size O(n) in the size of the system (see the dashed
line on the right of the figure), the branching process generated by
McMillan’s algorithm has size O(2"). The reason is that for every
marking M all the local configurations [e] satisfying Mark([e]) = M
have the same size, and therefore there exist no cut-off events with
respect to McMillan’s order. 2

2 It is not important that the nets in Figure 4 are not simple, i.e. have transitions

with the same pre- and postset; we could also replace each transition by a sequence
of two transitions to obtain a suitable family of simple nets.

15

Our parametric presentation of Algorithm 4.7 suggests how to im-
prove this: we find a new adequate order that refines McMillan’s order.
Such an order induces a weaker notion of cut-off event. More precisely,
every cut-off event with respect to McMillan’s order is also a cut-off
event with respect to the new order, but maybe not the other way
round. Therefore, the instance of Algorithm 4.7 which uses the new
order generates at least as many cut-off events as McMillan’s instance,
and maybe more. In the latter case, Algorithm 4.7 generates a smaller
prefix.

Let ¥ = (N, My) be a net system, and let < be an arbitrary total
order on the transitions of ¥. Given a set F of events, let ¢(FE) be that
sequence of transitions which is ordered according to <, and contains
each transition t as often as there are events in F with label ¢. For
instance, if we have t; < t9 < t3 < t4, and the set F contains
four events labelled by t1, to, to, and t3, then ¢(E) = titatats. (¢ is
somewhat similar to a Parikh-vector.) We say p(F1) < ¢(FE2) if ¢(E))
is lexicographically smaller than ¢(F;) with respect to the order <.

DEFINITION 5.1. Partial order <g

Let C; and Cy be two configurations of the unfolding of a net
system. C, <g C5 holds if

- |C1| < |C2|7 or
— |C1] =1Cy|, and p(C1) < ¢(Cy). m5.1
THEOREM 5.2.

Let B be the unfolding of a net system. <p is an adequate order on
the finite configurations of [3.

Proof: 1t is easy to show that < is a well-founded partial order implied
by inclusion. To show that < is preserved by finite extensions,
assume C7 <g Cs. For every finite extension Cy & E of Cy
we have |E| = |I?(E)|, since I? is a bijection, and ¢(FE) =
¢(I3(E)), since I? preserves the labelling of events. If |C;| <
|CQ|, then |C1 @E| < |C2 @Igf(E” If (p(Cl) < (,O(CQ), then by
the properties of the lexicographic order p(C; & E) < ¢(Co &
IZ(E)). m5.2

If we take <p as adequate order, the complete prefix generated

by Algorithm 4.7 for the net system of Figure 4 is the minimal one
corresponding to the dotted line.

16

eV

O s Os2
(a) (b)

Figure 5. A 1-safe net system (a) and its unfolding (b)

The question is whether there can be other examples in which <g
performs poorly. We would like to have an adequate order which guar-
antees that the complete prefix is at most as large as the reachability
graph. A slightly weaker guarantee is provided by total adequate orders.
In this case, whenever an event e is generated after some other event ¢’
such that Mark([e]) = Mark([€']), we have [¢/] < [e] (because events are
generated in accordance with the total order <), and so e is marked as
a cut-off event. So total adequate orders have the following important

property:
PROPOSITION 5.3. A property of total adequate orders

Let < be an adequate total order, and let Fin be the output of
Algorithm 4.7 on input 3. The number of non-cut-off events of Fin
does not exceed the number of reachable markings of 3. m5.3

Unfortunately, <p is not total. Consider the net system on the left
of Figure 5, and its unfolding on the right of the same figure. The
configurations C1 = {ej,es} and Cy = {e2,es} have size 2, and we
have p(C1) = t1ty = ¢(C2) (assuming t; < t2). So neither C; <p Cy
nor Cy <p C].

The existence of a total adequate order for arbitrary net systems is
an open problem. However, in the next section we provide a total ade-
quate order <p for 1-safe systems, the most relevant case in practice.
Moreover, in Section 7 we show that the unfolding of a net system can
also be defined in another way; with this new definition the order <p
is total for arbitrary net systems, and Theorem 5.3 holds.

17

6. A total order for 1-safe systems

In the sequel, let ¥ = (N, Mj) be a fixed net system, and let < be
an arbitrary total order on the transitions of ¥. We first introduce the
Foata normal form of a configuration. Given a finite configuration C|
its Foata normal form FC' is the list of sets of events constructed by
the following algorithm [3]:

ALGORITHM 6.1. Foata normal form of a configuration

input: A configuration C of a branching process
output: The Foata normal form FC of C.
begin
FC =)
while C #) do
append Min(C) to FC;
C:=C\ Min(C)
endwhile
end m6.1

Loosely speaking, the Foata normal form is obtained by repeatedly
slicing out the set of minimal events.

Given two configurations C] and Cy, we can compare their Foata
normal forms FC; = Cy;...Cyy,, and FCy = Cy; ... Cyy,, with respect
to the order <: we say F(Cy < F(Csy if there exists 1 < ¢ < ny such
that

— @(C1j) = ¢(Cy;) for every 1 < j < i, and
— ¢(Cu) < 9(Ca).

Now, we define
DEFINITION 6.2. Order <p

Let C; and Cy be two configurations of the unfolding of a net
system. C; < C5 holds if

— |C1| < |C2|, or
— [C1| =[Gy and ¢(C1) < ¢(C3), or
— (C1) = p(Cy) and FC, <€ FC,. 6.2

In other words, in order to decide if C'y <p Cy we compare first the
sizes of C} and Cy; if they are equal, we compare ¢(C1) and ¢(C2); if
they are equal, we compare F'C; and F (5.

Observe that <p is a refinement of <g. We now prove that <p is
indeed adequate and total. The key property of 1-safe systems that
yields to this result is:

18

PROPOSITION 6.3.

Any two concurrent conditions of the branching process of a 1-safe
net system carry different labels.

Proof: Assume that two concurrent conditions by and by carry the same
label s. Since {b1, b} is a co-set, there is a cut ¢ containing both
by and by. This cut corresponds to a reachable marking that puts
at least two tokens on the place s, which violates 1-safeness.

m6.3

THEOREM 6.4.

Let B = (O,p) be the unfolding of a 1-safe net system. <p is an
adequate total order on the configurations of 3.

Proof: a) <p is a well-founded partial order.

This follows immediately from the fact that <g is a well-founded
partial order as is the lexicographic order on transition sequences
of some fixed length.

b) C; C Cy implies Cy <p Co.
This is obvious, since C; C Cy implies |C1] < |Ca|.
¢) <p is total.

Assume that C; and Cy are two incomparable configurations
under <p, ie. |C1| = |Cyf, ¢(C1) = ¢©(C2), and p(FC) =
@(FCy). We prove C; = C3 by induction on the common size
k=|Ci| =|Csl

The base case k = 0 gives C| = Cy = (), so assume k > 0.

We first prove Min(C)) = Min(Cy). Assume without loss of
generality that e; € Min(Cy) \ Min(Csy). Since p(Min(Cy)) =
@(Min(C3)), Min(C3) contains an event ez such that p(e;) =
p(e2). Since *Min(C}) and * Min(C?) are subsets of Min(O), and
all the conditions of Min(O) carry different labels by Proposition
6.3, we have ®*e; = ®ez. This contradicts condition (iv) of the
definition of branching process.

Since M’L’I’L(Cl) == M’L’I’L(Cg), both C’l\Mzn(C’l) and CQ\MZH(CQ)
are configurations of the branching process f}Min(Cy) of (N,
Mark(Min(C1))) (Proposition 4.3), and they are incompara-
ble under < by construction. Since the common size of Cj \
Min(Cy) and Cy \ Min(Cy) is strictly smaller than k, we can
apply the induction hypothesis and conclude Cy = Cs.

19

d) <p is preserved by finite extensions.

Take C) <p Cy with Mark(Cy) = Mark(Cs). We have to show
that C, ® E <p Co ® I?(E). We can assume that F = {e} and
apply induction afterwards. (Notice that Mark(C}) = Mark(C?>)
implies Mark(C1 @ {e}) = Mark(Ca® I?({e}).) The cases |C1| <
|Cy] and Cy <g Cy are easy. Hence assume |C1| = |Cs| and
©(C1) = ¢(Cs). We show first that e is a minimal event of
C} = Cy U {e} if and only if I?(e) is a minimal event of C}, =
CaU{Ii(e)}-

So let e be minimal in C7, ie. the transition p(e) is enabled
under the initial marking. Let s € °®p(e); then no condition
in *Cy U C7 is labelled s, since these conditions would be in
co relation with the s-labelled condition in ®e, contradicting
Proposition 6.3. Thus, Cy contains no event ¢’ with s € *p(e’),
and the same holds for Cy since ¢(C) = ¢(C2). Therefore, the
conditions in Cut(C%) with label in *p(e) are minimal conditions
of B, and I?(e) = e is minimal in C4. The reverse implication
holds analogously, since about C; and Cs we have only used the
hypothesis ¢(C1) = p(C3).

With this knowledge about the positions of e in C| and I%(e) in
CY, we proceed as follows. If Min(C1) <g Min(Cs), then we now
see that Min(C7) <g Min(C}), hence p(FC]) < ¢(FCY) and
so we are done. If o(Min(C1)) = ¢(Min(C3)) and e € Min(CY),
then

C1\ Min(C1) = C1\ Min(Cy) <p Gz \ Min(Cz) = C3 \ Min(C3)

hence C] <p C). Finally, if o(Min(C1)) = ¢(Min(C2)) and
e ¢ Min(Cy), we again argue that Min(C)) = Min(Cs) and
that, hence, C; \ Min(C1) and Cy \ Min(C2) are configurations
of the branching process ff Min(C4) of (N, Mark(Min(C1))); with
an inductive argument we get C7 \ Min(C]) <p C4\ Min(CY)
and are also done in this case. m6.4

7. The n-safe case

In this section we study the problem of computing a complete finite
prefix for an n-safe but not necessarily 1-safe-system.

In the case of n-safe systems the partial order < is neither adequate
nor total. Figure 6 shows a 2-safe system (left) and one of its branching
processes (right). Take t; < t9, and consider the configurations C; =

20

A&
t H__'tg tl t2 t2 tl

DS P N

tl tz t1 tz

Os O» O» O=
(a) (b)

Figure 6. A 2-safe system (a) and one of its branching processes (b)

(?sl (PSI (Psl
T o

off O= O=
(a) (b)

Figure 7. A 2-safe net system (a) and its unfolding (b)

{e1,e3} and Cy = {e1, e5}; since their Foata normal forms are {e; }{es}
and {e1,e5} we have C; <p Cs.

The processes f} C; and {} Cy are isomorphic because Mark(C,) =
{s1,81} = Mark(C3). There are two possible isomorphisms I?; the first
one satisfies I?(eg) = es, and the second I?(eg) = e4. However, we have
both C; & {es} =r C2 ® {es} and C, & {es} =r Cy ® {e4}. So <p is
not preserved by extensions.

Figure 7 shows a 2-safe net system (a) and its unfolding (b). The
configurations {e; } and {es} are not ordered by <. So < is not total.

7.1. A DIFFERENT UNFOLDING AND FINITE PREFIX

It is not known whether there exists a total adequate order for the n-
safe case. To deal with this case, we propose a different definition for
the unfolding of a net system (similar ideas have been independently
devoloped by Haar in [7]). The old and the new definition are essentially
equivalent for 1-safe systems. For n-safe systems, the new definition
leads to branching processes with less concurrency. We accept this loss
of concurrency for two reasons. First, the new definition allows to make
use of our total adequate order <. Second, as we will see at the end of
the section, the branching processes according to the new definition can
be more compact — independently of the adequate order used. So the

21

loss of concurrency does not necessarily lead to a poorer performance,
as one might think.

Fix a net system ¥ = (N, M;) for the rest of this section. For
the moment we do not impose any condition on ¥; it could even be
unsafe. Using a well-known folklore construction of net theory (to our
knowledge first presented in [18]), we show that there exists a 1l-safe
system Y = (Ny, My;) such that the reachability graphs of ¥ and
31 are isomorphic. We then define the new unfolding of ¥ as the old
unfolding of ¥.

The system >; has infinitely many places and transitions; later we
show how to deal with this problem. A completely formal definition of
Y1 can be found in page 229 of [19]. Here we give a less formal, but
hopefully precise description.

— For each place s of N we add places [s,0],[s, 1], [s,2],... to Nj.
The intended meaning of a token in the place [s,4] of N is that
the place s of N currently contains ¢ tokens.

— For each transition ¢ we add to N; as many transitions as there
are markings for the input and output places of ¢t. More precisely,
given a transition ¢ of N, we call a function

m: (*tUt®) - IN

a firing mode of t if m(s) > 0 for every place s € *t. The net NV}
contains a transition [¢,m] for each firing mode m of ¢. The input
and output places of [t,m] are determined by m in the natural
way: if s € *t U t® and m(s) = k, then [s,k] € *[t,m] and [s,k —
W (s, t) + W (t,s)] € [t,m]*.

— In order to determine the initial marking of ¥y, we first associate
to each marking M of N a 1-safe marking M; of N in the following
way: for each place s of N, if M puts k tokens on s, then M; puts
one token on [s, k] and no tokens on any other place [s,i] with
i # k. We choose My, the 1-safe marking associated to the initial
marking My, of X, as the initial marking of 3;.

It is proved in [19] that X; is indeed 1-safe, and that the reachability
graphs of 3 and 3; are isomorphic up to the projection of the labels
[t,m] of the transitions of 3; onto their first components. These results
are immediate consequences of the following fact

For every transition ¢t of ¥, we have M Ly M if and only if there
. . t,
exists a firing mode m of ¢ such that M, [—mQ M

22

which can be easily proved using the definitions. As long as we are
only interested in properties that can be decided by inspection of the
reachability graph (such as deadlock freedom, reachability of a marking
etc.), we can use the complete prefix of ¥1 instead of the complete prefix
of 3.

If the system ¥ is n-safe then the places of £; of the form [s, k] with
k > n never become marked, and the transitions [¢, m| where m(s) > n
for some place s never become enabled. All these places and transitions
can be removed from ¥; without changing its behaviour in any way,
and so we obtain a finite 1-safe system. Figure 8 shows the finite 1-safe
system obtained in this way from the 2-safe system of Figure 7.

Since Y1 is infinite, we cannot compute the new complete prefix of 3
by first constructing 3¢, and then computing the old complete prefix of
31. Fortunately, the old complete prefix of 31 can be directly computed
from X. It suffices to slightly modify Algorithm 4.7. Given a branching
process 3 of Xy, let PE;(3) denote the possible extensions of 3 as a
branching process of .

ALGORITHM 7.1. The complete prefiz algorithm (arbitrary systems)

input: An n-safe net system ¥ = (N, My) with {s1,...,s,} as set
of places.
output: A complete finite prefix of 3;’s unfolding.
begin
Fin, = ([81, Mg(Sl)], 0), ceey ([Sn, Mo(Sn)], @),
pe := PE(Fin,);
cut-off := 0;
while pe #) do
choose an event e = ([t,m], X) in pe such that [e] is minimal
with respect to <;
if [e] N cut-off = () then
append to Fin; the event e and a condition ([s, k], e)
for every output place [s, k] of [t, m];
pe := PE(Fin,);
if e is a cut-off event of Fin; then
cut-off := cut-off U {e}
endif
else pe :=pe \ {e}
endif
endwhile
end m7.l

23

[51:0] [5171] [5172]

[tl’(l’o)] [tl’(271)]

@)

[32’0] [527 1] [327 2]

Figure 8. 1-safe system equivalent to the 2—safe system of Figure 7

We still have to show how to compute PE;(f3) for a branching pro-
cess 3 of ;. We consider each transition ¢ of X in turn, and look in
Finy for co-sets of conditions X such that

— p(X) = *[t,m] for some firing mode m of ¢, and
— Flin; contains no event e satisfying p(e) = [t, m] and ®e = X.

Clearly, the nodes ([t,m], X) are the possible extensions of 3.

In order to determine the existence of a firing mode m such that
p(X) = °[t, m], the only information we need are the sets of input and
output places of ¢; this information can be directly retrieved from .

We have the following result:

THEOREM 7.2.

Let Finy be the complete prefiz of 31 generated by Algorithm 7.1
on input X with <p as adequate order. The number of non-cut-off
events of Finy does not exceed the number of reachable markings of

3.

Proof: By Theorem 5.3, the number of non-cut-off events of Fin; does
not exceed the number of reachable markings of ;. Since the
reachability graphs of ¥ and ¥; are isomorphic, it does not
exceed the number of reachable markings of ¥ either. m7.2

It follows from this theorem that the algorithm terminates whenever
the system X is n-safe for some number 7.

Note that the maximum number of tokens on each place of the
bounded net system can easily be obtained after computation of the
finite prefix. This can be achieved by linearly searching through the
list of conditions, remembering the maximum token values of the re-
spective place nodes. In [14], a graph representing the co-relation of

24

A A
= 2.

Sz
(a) Example 1 (c) Example 3
S1 a ED) asz an Sn+1 by Snt+2 bo b, S2n+1

O-0O<O-Oz O-1-0O=-O0— =~

50

(b) Example 2

Figure 9. Examples for the n—safe algorithm

the underlying McMillan prefix has to be constructed to determine the
maximum number of tokens.

7.2. PARTIAL-ORDER SEMANTICS AND COMPARISON

The complete prefixes obtained from the same system ¥ through the
application of Algorithm 4.7 and Algorithm 7.1 generate the same
reachability information, as we have seen. However, they can be very
different. They correspond to two different semantics of Petri nets,
which are usually called the process semantics (Algorithm 4.7) and
the ezecution semantics (Algorithm 7.1). The latter has been defined
and compared to the former in [19]. In this paper we are interested in
the sizes of the complete prefixes obtained with the two semantics. We
have not found any general relationship between the sizes; the following
examples show that none of them lead to smaller complete prefixes in
all cases.

If we treat Example 1 of Figure 9 with the usual partial-order se-
mantics and McMillan’s cut-off criterion, we get a prefix with n events;
executions give n! events with McMillan’s cut-off criterion and 2" non-
cut-off events with our improved criterion. This shows that executions
can suffer severely from the ‘loss of concurrency’ compared to the usual
partial-order semantics.

25

We again refer to the system shown in Figure 4, but this time
with two initial tokens put on place sg. The original net consists of
2n transitions, and the usual partial-order semantics leads to a prefix
with 2(2"! —2) events with our improved criterion. Experimentally, we
have extrapolated that the prefix using execution semantics contains
8n — 4 events only.

In Example 2 of Figure 9, the transitions a; produce tokens on s one
after the other, the transitions b; can then take these in any possible
order. With the usual partial-order semantics and McMillan’s cut-off
criterion, this gives a prefix with n! events labelled b,, — while executions
even without our improvement give 2n events altogether. Example 3 of
the same figure shows another effect: the usual partial-order semantics
has to consider all pairs of tokens from s; and so and leads to n? events,
whereas executions (even without our improvement) lead to only one
event.

One could have the feeling that the loss-of-concurrency effect is more
common than the effects of Example 2 and 3; if this is so, a good
application area will be nets with only a few reachable markings with
more than 1 token on a place, where one can hope that the loss-of-
concurrency effect will be more than cancelled out by the effects of our
improved cut-off criterion.

8. Implementation, complexity, and experimental results

Implementation. Algorithm 4.7 requires to store and manipulate Petri
nets and branching processes. For the storage we have developed an
efficient, universal data structure that allows fast access to single nodes
[17]. This data structure is based on the underlying incidence matrix
of the net. Places, transitions and arcs are represented by nodes of
doubly linked lists. We have developed a library of basic operations on
nets supporting in particular fast insertion of single nodes.

Algorithm 4.7 is very simple, and can be easily proved correct, but is
not efficient. In particular, it computes the set PE of possible extensions
each time a new event is added to Fin, which is clearly redundant.
Similarly to McMillan’s original algorithm [11], in the implementation
we use a priority queue to store the set PE of possible extensions. The
queue is implemented in a rather naive way, because experiments with
more sophisticated implementations show no improvements in average
time. The events are sorted according to the size of their local con-
figurations, as in [11], and not according to <p, because this leads to
many unnecessary comparisons. Events are compared with respect to

26

< only when it is needed, i.e., when there are several events at the
head of the queue whose local configurations have the same size.

With this implementation, the new algorithm only computes more
than McMillan’s when two events e and ¢’ satisfy Mark([e]) = Mark([e'])
and |[e]| = |[¢/]|- But this is precisely the case in which the algorithm
behaves better, because it always identifies either e or €’ as a cut-off
event. In other words: when the complete prefix computed by McMil-
lan’s algorithm is minimal, our algorithm computes the same result
with no time overhead.

The computation of new elements for the set PE involves the com-
binatorial problem of finding sets of conditions B such that p(B) = *t
for some transition t. We have implemented several improvements in
this combinatorial determination, which have significant influence on
the performance of the algorithm.

Complezity. The exact running time of the algorithm depends on the
details of the implementation. Here we only give some information. The
dominating factor is the computation of the possible extensions. Let B
be the set of conditions of the finite complete prefix after removing all
cut-off events and their output conditions. In the worst case, for each
transition ¢ the algorithm may have to examine all subsets B’ of B such
that there is a bijection between p(B') and the preset of ¢, since these
are the candidates for a possible extension. (Observe that the ouput
conditions of a cut-off event cannot belong to a possible extension;
that is why we have excluded them from the set B.) If ¢ is the size of

the preset of ¢, the algorithm may have to examine (%)C subsets.
Let ¢ denote the maximum size of the presets or postsets of the

transitions in the original net system . If B >> £, then (%)C <
(‘—?‘)5, and so the algorithm may have to examine a total of O(|T| -

(‘—?‘)5) subsets. In the case of 1-safe Petri nets and a total adequate
order, the number of non-cut-off events is at most the number R of
reachable markings of ¥. Since each non-cut-off event contributes at
most ¢ conditions to the finite complete prefix, we have |B| < R-£+1S|,
and so — under the natural assumption R > |S| — we obtain an upper
bound of O(|T'|- R¢) subsets. However, the question whether there exists
a family of net systems for which the algorithm examines ©(|T| - R¢)
subsets is open.

The space required by the algorithm is linear in the size of the com-
plete prefix. If the cut-off events are not stored (which is not required for
many verification algorithms working on the prefix), then for the case of
1-safe Petri nets and total adequate orders the complete prefix contains
a total number of O(¢- R) conditions and events. For the number of cut-

27

Table I. Results of the distributed mutual exclusion (DME) example

Original net Unfolding t[s]?
n|S| |7 R* | B] |[E| ¢* McMillan New algorithm
2 135 98 > 10° 487 122 4 0.07 0.08
3202 147 >10®° 1210 321 9 0.27 0.25
4 269 196 >10* 2381 652 16 1.23 1.26
5 33 245 >10° 4096 1145 25 3.92 3.88
6 403 294 >10° 6451 1830 36 10.37 10.40
7 470 343 >107 9542 2737 49 28.45 29.08
8 537 392 >10% 13465 3896 64 68.16 69.21
9 604 441 >10° 18316 5337 81 131.88 130.59
10 671 490 > 10 24191 7090 100 240.57 243.11
11 738 539 > 10*' 31186 9185 121 420.12 418.02

off events we only know a trivial upper bound of O(|T| - R¢), although
in the experiments conducted so far we have always observed O(R).

Experimental results. We consider three scalable 1-safe net examples.
We compare McMillan’s algorithm and the new algorithm, both imple-
mented using the universal data structure and the improvements in the
combinatorial determination mentioned above.

The first example is a model of an asynchronous circuit for dis-
tributed mutual exclusion (DME), proposed in [10] and also used in
[11]. McMillan has already shown that the state space grows exponen-
tially in the number of DME-cells while the unfolding increases just
quadratically. In Table I we list the experimental results. In this exam-
ple, the complete prefix computed by McMillan’s algorithm is minimal.
The new algorithm computes the same prefix without time overhead,
as expected.

Our second example, Figure 10, is a model of a slotted ring protocol
taken from [16]. Here, the output of the new algorithm grows signifi-
cantly slower than the output of McMillan’s algorithm. For n = 6 the
output is already one order of magnitude smaller.

2 All the times (t) have been measured on a SPARCstation 20 with 48 MB main
memory.

3 In all Tables, R indicates the number of reachable states and ¢ the number of
cut-off events.

* These times could not be calculated; for n = 7 we interrupted the computation
after more than 12 hours.

28

GiveFreeSlot1 Freel GiveFreeSlot2 Free2

@ o, ©® 1 O 1 ©®
IntAckl IntAck2
[11O —11—Q]

Ackl Ack2
] GoOn1 O—* Used1 [J GoOn2 O— Used?

C
1 PutMsgInSlot1 1 PutMsgInSlot2)
1%
O O
Otherl Other?2
O——O———11 writel []3)— Write2
Ownerl k Owner2 J

Figure 10. Slotted ring protocol for n = 2

Table II. Results of the slotted ring protocol example

Original net McMillan’s algorithm New algorithm
n [T R |E| c t[s] |E| c t [s]
1 10 1.2-10t 12 3 0.00 12 3 0.00
2 20 2.1-102% 68 12 0.00 62 14 0.00
3 30 4.0-10% 288 60 0.13 186 42 0.05
4 40 8.2-10% 1248 296 1.72 528 128 0.38
5 50 1.7-10% 6240 1630 45.31 1280 300 1.58
6 60 3.7-107 31104 8508 1829.48 3216 792 11.08
7 70 8.0-10% —5 7224 1708 79.08
8 80 1.7-101° —5 17216 4256 563.69
9 90 3.8-10M —5 37224 8820 2850.89
10 100 8.1-10'2 —5 86160 21320 15547.67

In Table 3, we give the times for an example taken from [2] that
models Milner’s cyclic scheduler for n tasks. While the size of the
unfolding produced by the McMillan’s algorithm grows exponentially
with the number of tasks, we get linear size using our new one.

Table 3. Results of Milner’s cyclic scheduler

Original net McMillan’s algorithm New algorithm
oo |Sp T R |B] |E| ¢ tls] 1Bl Bl e t]s]
3 23 17 43 94 44 8 0.02 52 23 4 0.00
6 47 35 639 734 361 64 0.48 112 50 7 0.02

9 71 53 7423 5686 2834 512 22.90 172 77 10 0.05
12 95 71 74264 45134 22555 4096 1471.16 232 104 13 0.13

29

For the implementation of the n—safe algorithm 7.1, the underlying data
structure for the prefix has been slightly extended to store the addi-
tional token information. The representation of the original net remains
unchanged; in particular, there is no additional structure combining
presets and postsets of transitions.

The computation of possible extensions once more dominates the
time complexity; now, there are even more place nodes to investigate
for each single event since we have to consider all elements in the preset
and postset of a transition. For the n—safe case, the term ¢ in the
above formula describing the time complexity denotes the maximum
number of input and output arcs of the transitions of the original net,
ie., & = mazer{|*t Ut*|}.

9. Conclusions

We have presented an algorithm for the computation of a complete
finite prefix of an unfolding using a refinement of McMillan’s basic
notion of cut-off event. The prefixes constructed by the algorithm con-
tain at most n non-cut-off events, where n is the number of reachable
markings of the net. Therefore, we can guarantee that the prefix is
never significantly larger than the reachability graph, which did not
hold for the algorithm of [11].

Acknowledgements

We thank Michael Kishinevsky, Alexander Taubin and Alex Yakovlev
for drawing our attention to this problem, Burkhard Graves for detect-
ing some mistakes, and Ken McMillan for sending us his LISP sources
of the DME generator.

References

1. E. Best and C. Ferndndez: Nonsequential Processes — A Petri Net View. EATCS
Monographs on Theoretical Computer Science 13 (1988).

2. J.C. Corbett: Evaluating Deadlock Detection Methods for Concurrent Soft-

ware. Proceedings of the 1994 International Symposium on Software Testing

and Analysis, ISSTA '94. ACM-Press, pp. 204-215 (1994).

V. Diekert: Combinatorics on Traces. LNCS 454 (1990).

4. J. Engelfriet: Branching Processes of Petri nets. Acta Informatica 28, pp. 575—
591 (1991).

@

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Esparza: Model Checking Using Net Unfoldings. Science of Computer
Programming 23, pp. 151-195 (1994).

J. Esparza, S. Romer and W. Vogler: An Improvement of McMillan’s Unfolding
Algorithm. Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems, TACAS ’96, LNCS 1055, pp. 87-106 (1996).

S. Haar: Branching Processes of General S/ T-Systems. Workshop Concurrency,
Specification and Programming. Humboldt—Universitdt Berlin, Informatik—
Bericht 110, pp. 88-97 (1998).

M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky: Concurrent
Hardware: The Theory and Practice of Self-Timed Design, Wiley (1993).

A. Kondratyev and A. Taubin: Verification of Speed-Independent Circuits by
STG Unfoldings. Proceedings of the Symposium on Advanced Research in
Asynchronous Circuits and Systems, Utah (1994).

A.J. Martin: The Design of a self-timed Circuit of Distributed Mutual Exclu-
sion. In Henry Fuchs, editor, 1985 Chapel Hill Confernce on VLSI, pp. 245-260.
Computer Science Press (1985).

K.L. McMillan: Using Unfoldings to Avoid the State Explosion Problem in the
Verification of Asynchronous Circuits. Proceedings of the 4th Workshop on
Computer Aided Verification, Montreal, LNCS 663, pp. 164-174 (1992).

K.L. McMillan: A Technique of State Space Search Based on Unfolding. Formal
Methods in System Design, 6(1), pp. 45—65 (1995).

K.L. McMillan: Trace Theoretic Verification of Asynchronous Circuits Using
Unfoldings. Proceedings of the 7th Workshop on Computer Aided Verification,
Liege, LNCS 939, pp. 180-195 (1995).

T. Miyamoto and S. Kumagai: Calculating Place Capacity for Petri Nets Using
Unfoldings. Proceedings of the 1998 International Conference on Application
of Concurrency to System Design, Japan, IEEE Computer Society PR08350,
pp. 143-151 (1998).

M. Nielsen, G. Plotkin and G. Winskel: Petri Nets, Event Structures and
Domains. Theoretical Computer Science 13(1), pp. 85-108 (1980).

E. Pastor, O. Roig, J. Cortadella and R.M. Badia: Petri Net Analysis Using
Boolean Manipulation. Proceedings of Application and Theory of Petri Nets
'94, LNCS 815, pp. 416-435 (1994).

S. Romer: Entwicklung und Implementierung von Verifikationstechniken auf
der Basis von Netzentfaltungen. Dissertation (in German). Technische Univer-
sitdt Miinchen (2000).

G. Ullrich: Der Entwurf von Steuerstrukturen fiir parallele Ablaufe mit Hilfe
von Petri-Netzen, Universitat Hamburg, Inst. fiir Informatik, IFI-HH-B-36/77
(1976).

W. Vogler: Executions: A New Partial-Order Semantics of Petri Nets. Theo-
retical Computer Science 91, pp. 205-238 (1991).

31

ervneu.tex; 15/06/2000; 15:38; p.2

