Database Management Systems, Aug–Dec 2023

Solution sheet, 29 September 2023

Problem 1 Consider the following functional dependencies over the attributes (A, B, C, D, E).

$$\begin{array}{c} A \rightarrow BC \\ CD \rightarrow E \\ B \rightarrow D \\ E \rightarrow A \end{array}$$

Compute the attribute closure X^+ for each attribute $X \in \{A, B, C, D, E\}$.

Solution

- $A+=\{A\}$ Using $A \to BC$, expand A^+ to $\{A, B, C\}$ Using $B \to D$, expand A^+ to $\{A, B, C, D\}$ Using $CD \to E$, expand A^+ to $\{A, B, C, D, E\}$
- $B^+ = \{B\}$

Using $B \to D$, expand B^+ to $\{B, D\}$

No further dependencies have LHS in B^+ , so stop.

• $C^+ = \{C\}$

No dependency has LHS C, so stop.

• $D^+ = \{D\}$

No dependency has LHS D, so stop.

• $E^+ = \{E\}$

Using $E \to A$, expand E^+ to $\{A, E\}$ (We know $A^+ = \{A, B, C, D, E\}$ so we can directly conclude $E^+ = \{A, B, C, D, E\}$.) Using $A \to BC$, expand E^+ to $\{A, B, C, E\}$ Using $B \to D$, expand E^+ to $\{A, B, C, D, E\}$

Problem 2 Consider the following tables for an online book seller.

```
CREATE TABLE Books (
   isbn CHAR(10),
   title CHAR(80),
   author CHAR(80),
   qty_in_stock INTEGER,
   price REAL,
   year_published INTEGER,
)
CREATE TABLE Customers (
   cid INTEGER,
   cname CHAR(80),
   address CHAR(200)
)
```

```
CREATE TABLE Orders (
ordernum INTEGER,
isbn CHAR(10),
cid INTEGER,
cardnum CHAR(16),
qty INTEGER,
order_date DATE,
ship_date DATE
```

)

We have the following assumptions about these tables.

- isbn is a unique identifier for each book published.
- A book has only one title but may have multiple authors.
- cid is a unique customer id for each customer.
- ordernum is a unique identifier for each order.
 - An order is placed by a single customer cid, paid by a single card cardnum on a single order date order_date.
 - An order may consist of several books (distinct isbn) each with its own order quantity (qty).
 - Each book is shipped (ship_date) as soon as the quantity required is ready.
 - Hence each order is split in several rows, one per isbn orderedn.

Questions:

- 1. Enumerate the functional dependencies that you can infer from this information.
- 2. For each table, determine if it in BCNF or 3NF. If not, suggest a decomposition and check if the decomposition is dependency preserving.

Solution

- 1. Functional dependencies
 - isbn \rightarrow title, qty_in_stock, price, year_published
 - cid \rightarrow cname, caddress
 - ordernum \rightarrow cid, cardnum, order_date
 - ordernum, isbn \rightarrow qty, ship_date
- 2. Normal forms
 - isbn is not a key for Books (we can have multiple authors for a book). Since we have the dependency isbn → title, qty_in_stock, price, year_published, Books is not in BCNF. Books is also not in 3NF, since the only candidate key is (isbn,author).

Split Books as (isbn,author) and (isbn,title,qty_in_stock,price,year_published') to get a decomposition in BCNF.

The only dependency that applies can be checked locally in the second table, so the decomposition is dependency preserving.

- Customer is in BCNF since cid is a key for the dependency cid \rightarrow cname, caddress
- Orders is neither in BCNF nor in 3NF.

Split as (ordernum,cid,cardnum,order_date) and (ordernum,isbn,qty,ship_date).

In the first relation, ordernum is a key, so it is in BCNF with respect to the dependency ordernum \rightarrow cid, cardnum, order_date.

In the second relation (ordernum, isbn) is a key, so it is in BCNF with respect to the dependency ordernum, isbn \rightarrow qty, ship_date

The two dependencies that apply can be checked locally in the two tables, so the decomposition is dependency preserving.

Problem 3 Suppose we have dependencies $\{A \to BC, B \to CA, C \to AB\}$ on attributes (A, B, C).

Questions:

- 1. Show that C is extraneous on the right hand side of the first dependency.
- 2. If we replace the first dependency by $A \to C$, show that both A and B are (separately) extraneous in $C \to AB$.
- 3. If we replace $C \to AB$ by $C \to A$, so that the dependencies are $\{A \to B, B \to AC, C \to A\}$, show that A is extraneous in $B \to AC$.
- 4. If we replace $C \to AB$ by $C \to B$, so that the dependencies are $\{A \to B, B \to AC, C \to B\}$, show that neither A nor C are extraneous in $B \to AC$.

Solution

1. To show that C is extraneous in $A \to BC$, we need to check if $A \to BC$ can be derived from $\{A \to B, B \to CA, C \to AB\}$. Compute A^+ with respect to the new set of dependencies.

$$A^+ = \{A\}$$

Using $A \to B$, expand A^+ to $\{A, B\}$

Using $B \to CA$, expand A^+ to $\{A, B, C\}$

From this, we deduce the dependency $A \to BC$.

- 2. Consider the dependencies $\{A \to B, B \to CA, C \to AB\}$.
 - To show that A is extraneous in $C \to AB$, we need to check that we can derive $C \to AB$ from $\{A \to B, B \to CA, C \to B\}$. Compute C^+ with respect to the new sett of dependencies. $C^+ = \{C\}$

Using $C \to B$, expand C^+ to $\{B, C\}$

Using $B \to CA$, expand C^+ to $\{A, B, C\}$

From this, we deduce the dependency $C \to AB$.

• To show that B is extraneous in $C \to AB$, we need to check that we can derive $C \to AB$ from $\{A \to B, B \to CA, C \to A\}$. Compute C^+ with respect to the new sett of dependencies. $C^+ = \{C\}$

Using $C \to A$, expand C^+ to $\{A, C\}$

Using $A \to B$, expand C^+ to $\{A, B, C\}$

From this, we deduce the dependency $C \to AB$.

3. Consider the dependencies $\{A \to B, B \to AC, C \to A\}$. We wish to show that A is extraneous in $B \to AC$.

Check that we can derive $B \to AC$ from $\{A \to B, B \to C, C \to A\}$. Compute B^+ with respect to the new sett of dependencies.

$$B^+ = \{B\}$$

Using $B \to C$, expand B^+ to $\{B, C\}$

Using $C \to A$, expand B^+ to $\{A, B, C\}$

From this, we deduce the dependency $B \to AC$..

4. Consider the dependencies $\{A \to B, B \to AC, C \to B\}$. We wish to show that neither A not C is extraneous in $B \to AC$.

• To show that A is not extraneous, check if we can derive $B \to AC$ from $\{A \to B, B \to C, C \to B\}$. Compute B^+ with respect to the new sett of dependencies.

 $B^+ = \{B\}$

Using $B \to C$, expand B^+ to $\{B, C\}$

The only other dependency whose LHS is in B^+ is $B \to C$ which adds nothing to B^+ , so we stop with $B^+ = \{B, C\}$

Thus we do not have $B \to A$, and hence $B \to AC$ is not derivable.

• To show that C is not extraneous, check if we can derive $B \to AC$ from $\{A \to B, B \to A, C \to B\}$. Compute B^+ with respect to the new sett of dependencies.

 $B^+ = \{B\}$

Using $B \to A$, expand B^+ to $\{A, B\}$

The only other dependency whose LHS is in B^+ is $A \to B$ which adds nothing to B^+ , so we stop with $B^+ = \{A, B\}$

Thus we do not have $B \to C$, and hence $B \to AC$ is not derivable.