Database Management Systems, Aug-Dec 2023

Solution sheet, 1 September 2023

Problem 1 Consider the following relation schema from the university database discussed in the lectures.
instructor (ID, name, dept_name, salary)
Write relational algebra queries for the following.

1. Find all faculty members from Physics who earn more than at least one faculty member from Comp.Sci.

Solution

- Natural self-join of instructor with renaming
- Check that first instructor is from Physics, second is from Comp.Sci and salary of first instructor is higher than that of second instructor
- Project onto first instructor

$$
\begin{aligned}
& \pi_{\mathrm{t} 1 . \mathrm{ID}}(\sigma \\
& \text { t1.dept_name } \left.={ }^{\prime} \text { Physics' } \wedge\left(\rho_{\mathrm{t} 1}(\text { instructor }) \bowtie \rho_{\mathrm{t} 2}(\text { instructor })\right)\right) \\
& \\
& \text { t2.dept_name }=\text { 'Comp.Sci' } \wedge \\
& \\
& \text { t1.salary }>\text { t2.salary }
\end{aligned}
$$

2. Find all faculty members from Physics who earn more than every faculty member from Comp.Sci.

Solution

- Find all Physics faculty who earn less than equal to some Comp.Sci faculty
- Take set difference between first relation and this relation

$$
\begin{aligned}
& \pi_{\mathrm{t} 1 . \mathrm{ID}}\left(\sigma_{\mathrm{t} 1 . \text { dept_name }}=\text { 'Physics' } \wedge \quad\left(\rho_{\mathrm{t} 1}(\text { instructor }) \bowtie \rho_{\mathrm{t} 2}(\text { instructor })\right)\right) \\
& \text { t2.dept_name }=\text { 'Comp.Sci' } \wedge \\
& \text { t1.salary > t2.salary } \\
& \backslash \\
& \begin{array}{l}
\pi_{\mathrm{t} 1 . \mathrm{ID}}(\sigma \\
\text { t1.dept_name } \left.=\text { 'Physics' } \wedge\left(\rho_{\mathrm{t} 1}(\text { instructor }) \bowtie \rho_{\mathrm{t} 2}(\text { instructor })\right)\right) \\
\\
\text { t2.dept_name }=\text { 'Comp.Sci' } \wedge \\
\\
\text { t1.salary } \leq \mathrm{t} 2 . \text { salary }
\end{array}
\end{aligned}
$$

3. Find the faculty member(s) with the minimum salary.

Solution

- Natural self-join of instructor with renaming
- Check that salary of first instructor is higher than that of second instructor
- Instructor with minimum salary never appears as first ID in the resulting table
- Project onto first instructor
- Take set difference between instructor and this relation

$$
\text { instructor } \backslash \pi_{\mathrm{t} 1 . \mathrm{ID}}\left(\sigma_{\mathrm{t} 1 . \text { salary }>\mathrm{t} 2 . \text { salary }}\left(\rho_{\mathrm{t} 1}(\text { instructor }) \bowtie \rho_{\mathrm{t} 2}(\text { instructor })\right)\right)
$$

Problem 2 Consider the following relation schema describing a family tree.

```
family(ID, name,gender)
relation(ID1,ID2,relationship)
```

Make the following assumptions:

- In family, gender takes values M or F
- In relation
- The Fields ID1 and ID2 refer to entries in ID from family
- relationship takes values parent or spouse
- The interpretation of a tuple (id1,id2,parent) is that id1 is the parent of id2.

Write relational algebra queries for the following.

1. Compute the relation sibling (ID1, ID2) - ID1 is a brother/sister of ID2

Do this for the following intepretations of sibling.

- ID1 and ID2 have at least one parent in common
- ID1 and ID2 have both parents in common

Solution

One parent in common:

- Take natural self join of relation, with renaming
- Check that ID1 is the same in both copies, ID2 is different across the two copies, relationship is parent in both copies.

$$
\begin{aligned}
& \pi_{\mathrm{t} 1 . \mathrm{ID}, \mathrm{t} 2, \mathrm{ID}}\left(\sigma_{\left.\mathrm{t} 1 . \mathrm{ID} 1=\mathrm{t} 2 . \mathrm{ID} 1 \wedge \quad\left(\rho_{\mathrm{t} 1}(\text { relationship }) \bowtie \rho_{\mathrm{t} 2}(\text { relationship })\right)\right) ~}^{\text {rel }}\right. \\
& \mathrm{t} 1 . \text { ID } 2 \neq \mathrm{t} 2 . \text { ID2 } \wedge \\
& \text { t1.relationship }=\text { 'parent' } \wedge \\
& \text { t2.relationship }=\text { 'parent' }
\end{aligned}
$$

Both parents in common:

- Cartesian product of four copies of relation with renaming
- Nested pairwise natural joins
- First pair checks one parent, second pair checks other parent
- $\mathrm{t} 1 . \mathrm{ID} 1=\mathrm{t} 2 . \mathrm{ID} 1, \mathrm{t} 3 . \mathrm{ID} 1=\mathrm{t} 4$. ID1, t 1. ID1 $\neq \mathrm{t} 3$. ID1

- ti.relationship = t2.relationship = t3.relationship = t4.relationship = 'parent'
$\pi_{\mathrm{t} 1 . \mathrm{ID}, \mathrm{t} 2, \mathrm{ID}}\left(\sigma_{\mathrm{t} 1 . \mathrm{ID} 1}=\mathrm{t} 2 . \mathrm{ID} 1 \wedge\right.$
t 3. ID1 $=\mathrm{t} 4$. ID1 \wedge
t 1. ID1 $\neq \mathrm{t} 3$. ID1 \wedge
$\mathrm{t} 1 . \operatorname{ID} 2=\mathrm{t} 3 . \mathrm{ID} 2 \wedge$
$\mathrm{t} 2 . \mathrm{ID} 2=\mathrm{t} 4$. ID2 \wedge
t1.ID2 $=\mathrm{t} 2 . \mathrm{ID} 2 \wedge$
t1.relationship $=$ 'parent' \wedge
t2.relationship $=$ 'parent' \wedge
t3.relationship $=$ 'parent' \wedge
t4.relationship $=$ 'parent'
$\left(\rho_{\mathrm{t} 1}(\right.$ relationship $) \bowtie\left(\rho_{\mathrm{t} 2}(\right.$ relationship $) \bowtie\left(\rho_{\mathrm{t} 3}(\right.$ relationship $) \bowtie \rho_{\mathrm{t} 4}($ relationship $\left.\left.\left.\left.)\right)\right)\right)\right)$

2. Compute the relation sister (ID1,ID2) - ID1 is a sister of ID2 with both intepretations of sister, as above.

Solution

- Same as above but need to check that gender of ID1 is F

```
\(\sigma_{\text {gender }}={ }^{\prime} \mathrm{F}^{\prime} \wedge \quad(\) family \(\times \mathrm{R})\)
    familymember.ID \(=\) R.ID1
```

where R is the relation computed by the earlier queries.
3. Compute grandparent (ID1, ID2) - ID1 is grandparent of ID2

- Take natural join of relation with renaming
- Check that t1.ID1 and t2.ID1 are different
- Check that t1.ID2 = t2. ID1
- Check that t1.relationship $=$ t2.relationship $=$ 'Parent'

```
\mp@subsup{\pi}{\textrm{t}1.ID1,\textrm{t2.ID2}}{}(\mp@subsup{\sigma}{\textrm{t}1.ID1}{}\not=\textrm{t}2.ID1}
    t1.ID2 = t2.ID1^
    t1.relationship = 'parent'^
    t2.relationship = 'parent'
( }\mp@subsup{\rho}{\textrm{t}1}{(\mathrm{ relationship )}\bowtie\mp@subsup{\rho}{\textrm{t}2}{}(\mathrm{ relationship }))))
```

4. Compute greatgrandparent (ID1,ID2) - ID1 is greatgrandparent of ID2

- Take threeway natural join of relation with renaming
- Check that t1.ID1, t2.ID1, and t3.ID1 are all different
- Check that t1.ID2 $=$ t2.ID1, t2.ID2 $=t 3 . I D 1$
- Check that t1.relationship = t2.relationship = t3.relationship = 'Parent'

```
\mp@subsup{\pi}{\textrm{t}1.ID1,\textrm{t3.ID2}}{}(\mp@subsup{\sigma}{\textrm{t}1.ID1}{}\not=\textrm{t}2.ID1^
    t2.ID1 = t3.ID1^
    t1.ID1 = t3.ID1^
    t1.ID2 = t2.ID1^
    t2.ID2 = t3.ID1^
    t1.relationship = 'parent'^
    t2.relationship = 'parent'^
    t3.relationship = 'parent'
(\rho}\mp@subsup{\rho}{\textrm{t}1}{}(\mathrm{ relationship )}>>(\rho\textrm{t2}(\mathrm{ relationship })\bowtie\mp@subsup{\rho}{\textrm{t}3}{}(\mathrm{ relationship })))
```

5. Can you compute ancestor (ID1,ID2) in general?

- As we have seen with grandparent and greatgrandparent, for each additional level of ancestor, we have to do one extra join
- A general ancestor relation has an unbounded number of levels, so will require an unbounded natural join
- Can compute ancestor upto a fixed distance, but not in general

