## Database Management Systems, Aug-Dec 2023

Problem sheet, 29 September 2023

Problem 1 Consider the following functional dependencies over the attributes $(A, B, C, D, E)$.

$$
\begin{gathered}
A \rightarrow B C \\
C D \rightarrow E \\
B \rightarrow D \\
E \rightarrow A
\end{gathered}
$$

Compute the attribute closure $X^{+}$for each attribute $X \in\{A, B, C, D, E\}$.

Problem 2 Consider the following tables for an online book seller.

```
CREATE TABLE Books (
    isbn CHAR(10),
    title CHAR(80),
    author CHAR(80),
    qty_in_stock INTEGER,
    price REAL,
    year_published INTEGER,
)
CREATE TABLE Customers (
    cid INTEGER,
    cname CHAR(80),
    address CHAR(200)
)
CREATE TABLE Orders (
    ordernum INTEGER,
    isbn CHAR(10),
    cid INTEGER,
    cardnum CHAR(16),
    qty INTEGER,
    order_date DATE,
    ship_date DATE
)
```

We have the following assumptions about these tables.

- isbn is a unique identifier for each book published.
- A book has only one title but may have multiple authors.
- cid is a unique customer id for each customer.
- ordernum is a unique identifier for each order.
- An order is placed by a single customer cid, paid by a single card cardnum on a single order date order_date.
- An order may consist of several books (distinct isbn) each with its own order quantity (qty).
- Each book is shipped (ship_date) as soon as the quantity required is ready.
- Hence each order is split in several rows, one per isbn orderedn.

Questions:

1. Enumerate the functional dependencies that you can infer from this information.
2. For each table, determine if it in BCNF or 3NF. If not, suggest a decomposition and check if the decomposition is dependency preserving.

Problem 3 Suppose we have dependencies $\{A \rightarrow B C, B \rightarrow C A, C \rightarrow A B\}$ on attributes $(A, B, C)$.
Questions:

1. Show that $C$ is extraneous on the right hand side of the first dependency.
2. If we replace the first dependency by $A \rightarrow C$, show that both $A$ and $B$ are (separately) extraneous in $C \rightarrow A B$.
3. If we replace $C \rightarrow A B$ by $C \rightarrow A$, so that the dependencies are $\{A \rightarrow B, B \rightarrow A C, C \rightarrow A\}$, show that $A$ is extraneous in $B \rightarrow A C$.
4. If we replace $C \rightarrow A B$ by $C \rightarrow B$, so that the dependencies are $\{A \rightarrow B, B \rightarrow A C, C \rightarrow B\}$, show that neither $A$ nor $C$ are extraneous in $B \rightarrow A C$.
