
Database Management Systems

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Sai University
Lecture 23, 22 November 2023



Concurrency control

Ensure that only serializable schedules are generated

Allow concurrency

Control access to data to avoid conflicts

Mechanisms

Locking

Timestamps

Multiple versions — snapshot isolation

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 2 / 11



Concurrency control using locks

Each data time has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

To write a value, use a exclusive lock — Lock-X(A)

Multiple transactions can simultaneously hold a shared lock

Only one transaction can hold an exclusive lock

Upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests

Be careful about starvation

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 3 / 11



Concurrency control using locks

Each data time has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

To write a value, use a exclusive lock — Lock-X(A)

Multiple transactions can simultaneously hold a shared lock

Only one transaction can hold an exclusive lock

Upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests

Be careful about starvation

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 3 / 11



Concurrency control using locks

Each data time has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

To write a value, use a exclusive lock — Lock-X(A)

Multiple transactions can simultaneously hold a shared lock

Only one transaction can hold an exclusive lock

Upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests

Be careful about starvation
Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 3 / 11



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Recovering a serial schedule

Lock point for Ti — when Ti completes growing phase

Can generate conflict equivalent serial schedule in order of lock points

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 4 / 11



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Recovering a serial schedule

Lock point for Ti — when Ti completes growing phase

Can generate conflict equivalent serial schedule in order of lock points

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 4 / 11



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Recovering a serial schedule

Lock point for Ti — when Ti completes growing phase

Can generate conflict equivalent serial schedule in order of lock points

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 4 / 11



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Recovering a serial schedule

Lock point for Ti — when Ti completes growing phase

Can generate conflict equivalent serial schedule in order of lock points

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 4 / 11



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Recovering a serial schedule

Lock point for Ti — when Ti completes growing phase

Can generate conflict equivalent serial schedule in order of lock points

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 4 / 11



Deadlocks

Transactions hold some locks and block each other

Detecting deadlocks — look for cycles in wait-for graph

Resolve deadlocks — kill and rollback some transaction to break the cycle

Estimate “cost” of rollback for each transaction

Choose the one with minimum cost

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 5 / 11



Deadlocks

Transactions hold some locks and block each other

Detecting deadlocks — look for cycles in wait-for graph

Resolve deadlocks — kill and rollback some transaction to break the cycle

Estimate “cost” of rollback for each transaction

Choose the one with minimum cost

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 5 / 11



Deadlocks

Transactions hold some locks and block each other

Detecting deadlocks — look for cycles in wait-for graph

Resolve deadlocks — kill and rollback some transaction to break the cycle

Estimate “cost” of rollback for each transaction

Choose the one with minimum cost

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 5 / 11



Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj

Wait-die Ti waits if TS(Ti ) < TS(Tj), else Ti rolls back

Wound-wait Ti waits if TS(Ti ) > TS(Tj), else Tj rolls back

Lock timeout

Transaction rolls itself back if request for lock times out

How to fix time out period to prevent unnecessary rollbacks?

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 6 / 11



Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj

Wait-die Ti waits if TS(Ti ) < TS(Tj), else Ti rolls back

Wound-wait Ti waits if TS(Ti ) > TS(Tj), else Tj rolls back

Lock timeout

Transaction rolls itself back if request for lock times out

How to fix time out period to prevent unnecessary rollbacks?

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 6 / 11



Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj

Wait-die Ti waits if TS(Ti ) < TS(Tj), else Ti rolls back

Wound-wait Ti waits if TS(Ti ) > TS(Tj), else Tj rolls back

Lock timeout

Transaction rolls itself back if request for lock times out

How to fix time out period to prevent unnecessary rollbacks?

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 6 / 11



Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj

Wait-die Ti waits if TS(Ti ) < TS(Tj), else Ti rolls back

Wound-wait Ti waits if TS(Ti ) > TS(Tj), else Tj rolls back

Lock timeout

Transaction rolls itself back if request for lock times out

How to fix time out period to prevent unnecessary rollbacks?

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 6 / 11



Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj

Wait-die Ti waits if TS(Ti ) < TS(Tj), else Ti rolls back

Wound-wait Ti waits if TS(Ti ) > TS(Tj), else Tj rolls back

Lock timeout

Transaction rolls itself back if request for lock times out

How to fix time out period to prevent unnecessary rollbacks?

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 6 / 11



Concurrency control using timestamps

Fix a serializability order in advance

Assign a starting timestamp TS(Ti to each Ti that respects this order

Record read and write timestamps for each item

R�timestamp(A) — largest timestamp of transactions to successfully read A

W�timestamp(A) — largest timestamp of transactions to successfully write A

Reading: Ti attempts to read A

TS(Ti < W�timestamp(A) — need an older value, reject and rollback TSi
TS(Ti � W�timestamp(A) — read succeeds, update R�timestamp(A) if needed

Writing: Ti attempts to write A

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, reject and rollback TSi
Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 7 / 11



Concurrency control using timestamps

Fix a serializability order in advance

Assign a starting timestamp TS(Ti to each Ti that respects this order

Record read and write timestamps for each item

R�timestamp(A) — largest timestamp of transactions to successfully read A

W�timestamp(A) — largest timestamp of transactions to successfully write A

Reading: Ti attempts to read A

TS(Ti < W�timestamp(A) — need an older value, reject and rollback TSi
TS(Ti � W�timestamp(A) — read succeeds, update R�timestamp(A) if needed

Writing: Ti attempts to write A

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, reject and rollback TSi
Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 7 / 11



Concurrency control using timestamps

Fix a serializability order in advance

Assign a starting timestamp TS(Ti to each Ti that respects this order

Record read and write timestamps for each item

R�timestamp(A) — largest timestamp of transactions to successfully read A

W�timestamp(A) — largest timestamp of transactions to successfully write A

Reading: Ti attempts to read A

TS(Ti < W�timestamp(A) — need an older value, reject and rollback TSi
TS(Ti � W�timestamp(A) — read succeeds, update R�timestamp(A) if needed

Writing: Ti attempts to write A

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, reject and rollback TSi
Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 7 / 11



Concurrency control using timestamps

Fix a serializability order in advance

Assign a starting timestamp TS(Ti to each Ti that respects this order

Record read and write timestamps for each item

R�timestamp(A) — largest timestamp of transactions to successfully read A

W�timestamp(A) — largest timestamp of transactions to successfully write A

Reading: Ti attempts to read A

TS(Ti < W�timestamp(A) — need an older value, reject and rollback TSi
TS(Ti � W�timestamp(A) — read succeeds, update R�timestamp(A) if needed

Writing: Ti attempts to write A

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, reject and rollback TSi
Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 7 / 11



Concurrency control using timestamps

Writing: Ti attempts to write A

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, reject and rollback TSi
Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Thomas’s Write Rule

Allow harmless obsolete writes

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, ignore this write and proceed

Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 8 / 11



Concurrency control using timestamps

Writing: Ti attempts to write A

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, reject and rollback TSi
Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Thomas’s Write Rule

Allow harmless obsolete writes

TS(Ti < R�timestamp(A) — current value was needed earlier value, reject and
rollback TSi
TS(Ti < W�timestamp(A) — writing an obsolete value, ignore this write and proceed

Otherwise — read succeeds, update W�timestamp(A) to TS(Ti )

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 8 / 11



Validation based protocols

Predict serial order as before — each transaction Ti is assigned a timestamp TS(Ti )

Transactions execute in three phases, maintain three time stamps

Read phase — StartTS(Ti is start of read phase

Validation phase — ValidationTS(Ti is start of validation phase

Write phase — FinishTS(Ti is end of write phase

TSi Write values back to database only if validation phase succeeds
For each transaction Tk with TS(Tk) < TS(Ti ),

FinishTS(Tk) < StartTS(Ti ), or

Data written by Tk disjoint from data read by Ti and
StartTS(Ti ) < FinishTS(Tk) < ValidationTS(Ti )

Optimistic concurrency control

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 9 / 11



Validation based protocols

Predict serial order as before — each transaction Ti is assigned a timestamp TS(Ti )

Transactions execute in three phases, maintain three time stamps

Read phase — StartTS(Ti is start of read phase

Validation phase — ValidationTS(Ti is start of validation phase

Write phase — FinishTS(Ti is end of write phase

TSi Write values back to database only if validation phase succeeds
For each transaction Tk with TS(Tk) < TS(Ti ),

FinishTS(Tk) < StartTS(Ti ), or

Data written by Tk disjoint from data read by Ti and
StartTS(Ti ) < FinishTS(Tk) < ValidationTS(Ti )

Optimistic concurrency control

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 9 / 11



Validation based protocols

Predict serial order as before — each transaction Ti is assigned a timestamp TS(Ti )

Transactions execute in three phases, maintain three time stamps

Read phase — StartTS(Ti is start of read phase

Validation phase — ValidationTS(Ti is start of validation phase

Write phase — FinishTS(Ti is end of write phase

TSi Write values back to database only if validation phase succeeds
For each transaction Tk with TS(Tk) < TS(Ti ),

FinishTS(Tk) < StartTS(Ti ), or

Data written by Tk disjoint from data read by Ti and
StartTS(Ti ) < FinishTS(Tk) < ValidationTS(Ti )

Optimistic concurrency control

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 9 / 11



Multi-version concurrency control

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 10 / 11



Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 11 / 11



Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 11 / 11



Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency

Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 11 / 11



Weak consistency example

Uber webpage Uber Android app
Madhavan Mukund Database Management Systems DBMS, Lecture 23, 22 Nov 2023 1 / 1


