Database Management Systems

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Sai University
Lecture 18, 1 November 2023

Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression
- Challenges
- Many equivalent relational algebra expressions

$$
\sigma_{\text {salary }<75000}\left(\pi_{\text {salary }}(\text { instructor })\right) \text { vs } \pi_{\text {salary }}\left(\sigma_{\text {salary }<75000}(\text { instructor })\right)
$$

■ Many ways to evaluate a given expression

- Query plan
- Annotate the expression with a detailed evaluation strategy key values
- Use index on salary to find instructors with salary <75000

■ Or, scan entire relation, discard rows with salary ≥ 75000

Query processing - Selection

(A1) Linear search
(A2) Clustering index, equality on key - index height h_{i}
(A3) Clustering index, equality on nonkey
(A4) Secondary index (key, non-key)
(A5) Clustering index, comparison - sorted on A
(A6) Clustering index, comparison - not sorted on A
(A7) Conjunctive selection using one index
(A8) Conjunctive selection using composite index
(A9) Conjunctive selection using intersection of pointers
(A10) Disjunctive selection by union of pointers
(Neg) Negation

External merge sort

- N records, b_{r} blocks, M blocks in memory
- Compute sorted runs of size M

■ Merge sorted runs, 1 block per run vs b_{b} blocks per run

Computing joins

- Nested-loop join
- Block nested-loop join
- Indexed nested-loop join
- Merge join ~ after sorted

- Hash join

Materialization vs pipeling
Cost of operatious - recky \& wnity blocks - Ignored cost of firal write

Hash join
Read $R \rightarrow$ couptc Hocks
Read $S \rightarrow$ coupth Llocks $B_{S} \rightarrow \begin{aligned} & 2 \times B_{R} \\ & 2 \times B_{S}\end{aligned}$
Read $B_{R} \& B_{S} 2$ conpute jow

$$
\left|\times B_{R}\right| \times B_{1}
$$

Materialization vs pipeling
\downarrow
Stre ouppet of a
$\sigma_{\theta}(\underset{R}{R N S})$
Is output of inner perchom stored? stage to diok

$$
\begin{aligned}
& R \\
& S
\end{aligned} \xrightarrow{\text { ound }} \mathrm{RNS}^{\sigma_{\theta}} \xrightarrow{\sigma_{\theta}()}
$$

Materialization vs pipeling
Pipelining
Naxt peraton shoold be able to wook incrementally

- Linear celectom
- Joln ?

Materialization vs pipeling
Nested loop pom
f each r in R for each s in s
 check if r matches s

Materialization vs pipeling
Indexed nested loop on each r in R
prole index for comm altulute in $\frac{S}{\text { no }}$ piplere

Sorting
 Sort

1. Crate sorted nus Can be done in batches Pipeline input
2. Merge sainted mans Writs to disk Accounted

Materialization vs pipeling
Hash join - "blocks" the pipeline

Query optimization

- Choose plan with lowest cost

Query optimization

- Choose plan with lowest cost
- Find names and course titles of courses taught by instructors from Music Dept

Query optimization

- Choose plan with lowest cost

SQL \rightarrow RAig \rightarrow Mannpulate $R A$

- Find names and course titles of courses taught by instructors from Music Dept

Transforming expressions
Selection

$$
\begin{aligned}
\sigma_{\theta_{1} \wedge \theta_{2}}(r) & \approx \sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(r)\right) \\
& \approx \sigma_{\theta_{2} \wedge \theta_{1}}(r)
\end{aligned}
$$

Proputins Collapse a seq

Transforming expressions

$$
\begin{aligned}
& R_{1} \bowtie_{\theta} S
\end{aligned}
$$

Transforming expressions
Join

$$
\begin{aligned}
& R_{1} \propto R_{2}=R_{2} \infty R_{1}=\text { "Which is the } \\
& \text { outer relation?" } \\
&\left(R_{1} \propto R_{2}\right) \otimes R_{3}=R_{1} \infty\left(R_{2} \infty R_{3}\right) \quad \text { Assouatwity }
\end{aligned}
$$

Transforming expressions

ins on (teachno course)

Maintaining a database catalogue

- n_{r} - number of tuples in r
- b_{r} - number of blocks used by r
- ℓ_{r} - size of a tuple in r
- f_{r} - blocking factor of r, how many tuples fit in a block
- $V(A, r)$ - number of distinct values of attribute A in r - if numen. - Store distribution of values as histogram rage Mantannty catalogue?

Pervodually recompute (then hat is low)

Estimating output of an operation

- Selection

Estimating output of an operation

- Selection

$$
a \vee b=7(7 a \wedge \neg b)
$$

- Simple, range, conjunction, disjunction

Disjunction

$$
\begin{aligned}
& \sigma_{\theta_{1} \vee \theta_{2}}(r) \\
& \downarrow \\
& \downarrow \\
& \frac{s_{1}}{n_{r}} \\
& \frac{s_{2}}{n_{r}}
\end{aligned} \quad 1-\left(\begin{array}{llll}
\text { not } & \left(\begin{array}{lll}
\text { not } & \theta_{1} & n \\
& & \text { not } \theta_{2}
\end{array}\right) \\
1-\frac{s_{1}}{n_{r}} \times & 1-\frac{s_{2}}{n_{r}}
\end{array}\right)
$$

Estimating output of an operation

- Selection
- Simple, range, conjunction, disjunction
- Join
- Keys and non-keys

$$
r \times s
$$

$$
n_{r} \times n_{s}
$$

Join mA
Each row in r matches $V(A, S)$ rows ms If A is a key in $s, V(A, s)=1 \quad n_{c} \cdot V(A, s)$

$$
n_{s} r(A, r)
$$

Estimating output of an operation

- Selection
- Simple, range, conjunction, disjunction
- Join
- Keys and non-keys
- Projection

All rows, but fewer colum - use scheme

Estimating output of an operation

- Selection
- Simple, range, conjunction, disjunction
- Join
- Keys and non-keys
- Projection
- Aggregation - \# values for aggregate altubro

Estimating output of an operation

- Selection

■ Simple, range, conjunction, disjunction

- Join
- Keys and non-keys
- Projection
- Aggregation
- Set operations

Estimating output of an operation

- Selection
- Simple, range, conjunction, disjunction
- Join
- Keys and non-keys
- Projection
- Aggregation
- Set operations
- Outer joins - Extra cost form non martin sows
- one per mos

Join ordering
Matrix mulliphection
lost in $m \cdot n \cdot p$
Output is $m \times p$
Each output entry require n ops

Join ordering

$$
\begin{aligned}
& M_{1} \times \quad M_{2} \times \quad M_{3} \\
& \pm \times 100 \quad 100 \times 1 \quad 1 \times 100 \\
& \left(\begin{array}{c}
\left(100^{2}=10^{4}\right. \text { steps) } \\
1 \times 100)
\end{array}\right. \\
& \begin{array}{ll}
\binom{100 \text { step }}{1 \times 1} \\
\left(\begin{array}{ll}
100 \text { sty } \\
1 & \times 100
\end{array}\right)
\end{array} \\
& 200 \text { stat }
\end{aligned}
$$

Smilaty joun

$$
\begin{array}{cc}
\left(\begin{array}{cc}
r_{1} \bowtie r_{2}
\end{array}\right) \propto r_{3} \text { vs } & r_{1} \bowtie\binom{r_{2} \infty r_{3}}{c_{12}} \\
c_{23}(2) 3 & c_{1}(23)
\end{array}
$$

Join ordering

$$
R_{1} \propto R_{2} \propto \cdots R_{k} \quad \omega R \quad \begin{array}{ll}
& \\
M_{1} \mid M_{2} / O_{3}
\end{array}
$$

Use dynamic programing

$$
R_{1} \infty \ldots \infty R_{i} \quad R_{L+1} \infty \ldots \infty R_{k}
$$

Heuristics

■ Perform selection early

Heuristics

- Perform selection early
- Perform projection early

Heuristics

- Perform selection early
- Perform projection early
- Perform most restrictive selection/join first

