Database Management Systems

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Sai University
Lecture 16, 20 October 2023

B+ trees

■ Leaf nodes form a dense index - linked list of leaves, each one block
leaf node

Brandt	Califieri	Crick				
			10101	Srinivasan	Comp. Sci.	65000
			12121	Wu	Finance	90000
			15151	Mozart	Music	40000
			22222	Einstein	Physics	95000
			32343	E1 Said	History	80000
			33456	Gold	Physics	87000
			45565	Katz	Comp. Sci.	75000
		\rightarrow	58583	Califieri	History	60000
			76543	Singh	Finance	80000
			76766	Crick	Biology	72000
			83821	Brandt	Comp. Sci.	92000
			98345	Kim	Elec. Eng.	80000

instructor file

B+ trees

- Leaf nodes form a dense index - linked list of leaves

■ Non-Leaf nodes form a sparse index

B+ trees

- Leaf nodes form a dense index - linked list of leaves
- Non-leaf nodes form a sparse index
- Constraints - assume n keys and pointers can fit in a block
- Each leaf has at least $\lceil(n-1) / 2\rceil$ key values
- Each non-leaf has at least $\lceil n / 2\rceil$ pointers
- Height of the tree is proportional to $\log _{n / 2}(\boldsymbol{N}$
n prs
n-1 keys

$$
P_{1} k_{1} \ldots P_{n-1} k_{n-1} P_{n}
$$

B+ trees - insertion

B+ trees - insertion

- Insert Adams

B+ trees - insertion

- Insert Adams

Split root
New not
will have only me ky

■ Insert Lamport

$$
\begin{gathered}
d \\
a\left|K_{\text {at z }}\right|
\end{gathered} k_{k_{10}|L|}
$$

B+ trees - insertion

- Insert Adams

- Insert Lamport

B+ trees - insertion

- Insert Adams

■ Insert Lamport

B+ trees - deletion

- Delete Srinivasan

B+ trees - deletion

- Delete Srinivasan

B+ trees - deletion

- Delete Srinivasan

- Delete Singh and Wu

B+ trees - deletion

- Delete Srinivasan

All ops preserve "half file" condition

Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression

Live a compiles
Query \rightarrow Mach in code
Query \rightarrow Algointhom

Query processing

- Translate the query from SQL into relational algebra

■ Evaluate the relational algebra expression
■ Challenges

Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression
- Challenges
- Many equivalent relational algebra expressions

$$
\sigma_{\text {salary }}<75000\left(\pi_{\text {salary }}(\text { instructor })\right) \text { vs } \pi_{\text {salary }}\left(\sigma_{\text {salary }}<75000(\text { instructor })\right)
$$

Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression
- Challenges
- Many equivalent relational algebra expressions $\sigma_{\text {salary }<75000}\left(\pi_{\text {salary }}(\right.$ instructor $\left.)\right)$ vs $\pi_{\text {salary }}\left(\sigma_{\text {salary }<75000}(\right.$ instructor $\left.)\right)$
- Many ways to evaluate a given expression

SQL Query

Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression
- Challenges
- Many equivalent relational algebra expressions

$$
\sigma_{\text {salary }<75000}\left(\pi_{\text {salary }}(\text { instructor })\right) \text { vs } \pi_{\text {salary }}\left(\sigma_{\text {salary }<75000}(\text { instructor })\right)
$$

■ Many ways to evaluate a given expression

- Query plan
- Annotate the expression with a detailed evaluation strategy

Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression
- Challenges
- Many equivalent relational algebra expressions $\sigma_{\text {salary }<75000}\left(\pi_{\text {salary }}(\right.$ instructor $\left.)\right)$ vs $\pi_{\text {salary }}\left(\sigma_{\text {salary }<75000}(\right.$ instructor $\left.)\right)$
- Many ways to evaluate a given expression

Salay $B+$ tre

- Query plan
- Annotate the expression with a detailed evaluation strategy

■ Use index on salary to find instructors with salary <75000

Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression
- Challenges
- Many equivalent relational algebra expressions

$$
\sigma_{\text {salary }<75000}\left(\pi_{\text {salary }}(\text { instructor })\right) \text { vs } \pi_{\text {salary }}\left(\sigma_{\text {salary }<75000}(\text { instructor })\right)
$$

■ Many ways to evaluate a given expression

- Query plan
- Annotate the expression with a detailed evaluation strategy key values
- Use index on salary to find instructors with salary <75000

■ Or, scan entire relation, discard rows with salary ≥ 75000

Query optimization

- Choose plan with lowest cost

Wee know what the tables look like

Query optimization

- Choose plan with lowest cost

■ Maintain database catalogue - number of tuples in each relationn, size of tuples,

Query optimization

- Choose plan with lowest cost

■ Maintain database catalogue - number of tuples in each relationn, size of tuples,

■ Assess cost in terms of disk access and transfer, CPU time,

SSDs
10^{-6}

Query optimization

- Choose plan with lowest cost
- Maintain database catalogue - number of tuples in each relationn, size of tuples,

■ Assess cost in terms of disk access and transfer, CPU time, ...
■ For simplicity, ignore in-memory costs (CPU time), restrict to disk access

Query optimization

- Choose plan with lowest cost
- Maintain database catalogue - number of tuples in each relationn, size of tuples,

■ Assess cost in terms of disk access and transfer, CPU time, ...
■ For simplicity, ignore in-memory costs (CPU time), restrict to disk access
■ Disk accesses

- Relation r occupies b_{r} blocks
- Disk seeks - time t_{s} per seek
- Block transfers - time t_{T} per transfer

Query optimization

- Choose plan with lowest cost
- Maintain database catalogue - number of tuples in each relations, size of tuples,

■ Assess cost in terms of disk access and transfer, CPU time, ...
■ For simplicity, ignore in-memory costs (CPU time), restrict to disk access
■ Disk accesses
Which blocks to keep in

- Relation r occupies b_{r} blocks
- Disk seeks - time t_{S} per seek

■ Block transfers - time t_{T} per transfer

- Other factors - buffer management etc

Selection
(A1) Linear search
Read br blocks

$$
\sigma_{\theta}(r)
$$

"Secede" one y fast block

$$
b_{r} \cdot t_{T}+1 \cdot t_{s}
$$

(A1) Linear search
(A2) Clustering index, equality on key - index height h_{i}
(A3) Clustering index, equality on monkey

(A1) Linear search
(A2) Clustering index, equality on key - index height h_{i}
(A3) Clustering index, equality on monkey
(A4) Secondary index (key, non-key)
Search hey od en \neq
 table order
$h_{i}\left(t_{s}+t_{T}\right)+1$ block lookup
$\left(h_{l}+1\right)\left(t_{s}+t_{T}\right)$
, as byre
(A1) Linear search
(A2) Clustering index, equality on key - index height h_{i}
(A3) Clustering index, equality on monkey
(A4) Secondary index (key, non-key)
$\rightarrow x$ records mate k this search key hi $\left(t_{s}+t_{T}\right)$ Kaph is ni a different block $h_{i}\left(t_{s}+t_{T}\right)+n\left(t_{s}+t_{T}\right)$ Expenavic
(A1) Linear search
(A2) Clustering index, equality on key - index height h_{i}
(A3) Clustering index, equality on monkey
(A4) Secondary index (key, non-key)
(A5) Clustering index, comparison - sorted on A

$$
\begin{aligned}
& h_{i}\left(t_{s}+t_{T}\right) \\
& +\left(t_{s}+b t_{T}\right)
\end{aligned}
$$

$x<$ Salary $<y$

Selection

(A1) Linear search
(A2) Clustering index, equality on key - index height h_{i}
(A3) Clustering index, equality on nonkey
(A Secondary index (key, non-key)
(A5) Clustering index, comparison - sorted on A
(A6) Clustering index, comparison - not sorted on A

$$
\begin{aligned}
& \ln \left(t_{S}+t_{T}\right) \quad i n d x \\
& n\left(b_{S}+b_{T}\right)
\end{aligned}
$$

Complex selections
Conjunctions, disjunctions and negations
(A7) Conjunctive selection using one index

$$
\begin{array}{cc}
\sigma_{\theta_{1} \wedge \theta_{2} n \ldots n \theta_{k}}(r) & \vee \\
\operatorname{lndx} & \neg \theta \\
\sigma_{\theta_{2}}(r) \rightarrow \text { check } \theta_{1} \cap \theta_{3} n \ldots \wedge \theta_{k}
\end{array}
$$

Complex selections

Conjunctions, disjunctions and negations
(A7) Conjunctive selection using one index
(A8) Conjunctive selection using composite index

Complex selections

Conjunctions, disjunctions and negations
(A7) Conjunctive selection using one index
(A8) Conjunctive selection using composite index
(A9) Conjunctive selection using intersection of pointers

$$
\sigma_{\theta_{2}} \wedge \theta_{2} \wedge \theta_{3}(r)
$$

Complex selections

Conjunctions, disjunctions and negations
(A7) Conjunctive selection using one index
(A8) Conjunctive selection using composite index
(A9) Conjunctive selection using intersection of pointers
(A10) Disjunctive selection by union of pointers
Linear scan

Complex selections

Conjunctions, disjunctions and negations
(A7) Conjunctive selection using one index
(A8) Conjunctive selection using composite index
(A9) Conjunctive selection using intersection of pointers
(A10) Disjunctive selection by union of pointers
(Neg) Negation
Join

$$
\sigma_{0}\left(r_{1} \times r_{2}\right)
$$

Sorting
In mennory soit
vs Exterral (dhck based) soot

