# Database Management Systems 

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Sai University
Lecture 12, 27 September 2023

## Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$
- LHS atributes uniquely fix RHS attributes
- Must hold for every instance - semantic property of attributes
- Need not correspond to superkeys
- dept_name $\rightarrow$ building

■ dept_name $\rightarrow$ budget

| ID | name | salary | dept_name | building | budget |
| :--- | :--- | :--- | :--- | :--- | ---: |
| 22222 | Einstein | 95000 | Physics | Watson | 70000 |
| 12121 | Wu | 90000 | Finance | Painter | 120000 |
| 32343 | El Said | 60000 | History | Painter | 50000 |
| 45565 | Katz | 75000 | Comp. Sci. | Taylor | 100000 |
| 98345 | Kim | 80000 | Elec. Eng. | Taylor | 85000 |
| 76766 | Crick | 72000 | Biology | Watson | 90000 |
| 10101 | Srinivasan | 65000 | Comp. Sci. | Taylor | 100000 |
| 58583 | Califieri | 62000 | History | Painter | 50000 |
| 83821 | Brandt | 92000 | Comp. Sci. | Taylor | 100000 |
| 15151 | Mozart | 40000 | Music | Packard | 80000 |
| 33456 | Gold | 87000 | Physics | Watson | 70000 |
| 76543 | Singh | 80000 | Finance | Painter | 120000 |

■ Use to identify sources of redundancy, guide decomposition

## Boyce-Codd Normal Form (BCNF)

- Relational schema $R$, set of functional dependencies $F$

■ $R$ is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ )
- $\alpha$ is a superkey for $R$
- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for $R$ if neither of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ )
- $\alpha$ is a superkey for $R$
- To fix this, decompose $R$ as
$\begin{aligned} & \alpha \cup \beta \\ & -R \backslash(\beta \backslash \alpha)\end{aligned}>\mathbb{W}$ io the $\quad>e r l a p$


## Dependency preservation

■ Advisor (student_id,faculty_id,dept_name)

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

■ BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)

- Functional dependencies

■ faculty_id $\rightarrow$ dept_name
■ student_id,dept_name $\rightarrow$ faculty_id
■ Need join to check second dependency

Third normal form (3NF)

- $R$ is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds
- $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$ )
stud, fac, $\frac{\text { dept }}{\text { Lien }}$
- BCNF is a stricter condition than 3NF
sind, dept $\rightarrow \mathrm{fac}$
- Priorities
- Lossless decomposition
- BCNF
- Dependency preservation


## Computing the closure of a set of attributes

- Iterative algorithm - $\alpha=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$, check if $B$ is in closure $\alpha^{+}$

Initialize $\alpha^{+}$to $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$
repeat
for each $\beta \rightarrow \gamma$ in $F$

## Semantic condition

 $\alpha \rightarrow B$if $\beta \subseteq \alpha^{+}$, add $\gamma$ to $A^{+}$
end
until no change in $\alpha^{+}$

- Need to establish correctness
- Soundness - if $B$ is included in $\alpha^{+}$, then $A_{1}, A_{2}, \ldots, A_{K} \rightarrow B$ is indeed a functional dependency
- Completeness - if $A_{1}, A_{2}, \ldots, A_{K} \rightarrow B$ is a functional dependency, then $B$ will be added to $\alpha^{+}$

$$
\begin{aligned}
& \alpha \rightarrow \beta \\
& \frac{A_{1} A_{2} \ldots A_{n}}{\alpha} \rightarrow B_{1} \ldots B_{m} \\
& \text { Sach } B_{j} \in \alpha^{+} \\
& \sim_{B_{1}}^{2} \cos _{7}^{\alpha t} \\
& A \rightarrow B_{1} C \text { vs } A \rightarrow B \\
& \text { aEA } \\
& A \rightarrow C \\
& \alpha \rightarrow B_{i} \text { hild } \\
& \text { f } \\
& \text { any } B_{i} \in \alpha^{t} \\
& \alpha \rightarrow A_{i}
\end{aligned}
$$

## Canonical basis

- Given functional dependecies $F$, closure $F^{+}$set of all implied dependencies
- For each subset of attributes $\alpha$, compute attribute closure $\alpha^{+}$
- Can split rules and combine right hand sides $\alpha \rightarrow B, C$ iff $\alpha \rightarrow B, \alpha \rightarrow C$


## Canonical basis

- Given functional dependecies $F$, closure $F^{+}$set of all implied dependencies
- For each subset of attributes $\alpha$, compute attribute closure $\alpha^{+}$
- Can split rules and combine right hand sides $\alpha \rightarrow B, C$ iff $\alpha \rightarrow B, \alpha \rightarrow C$
- Could have an alternative set of dependencies $G$ such that $G^{+}=F^{+}$


## Canonical basis

- Given functional dependecies $F$, closure $F^{+}$set of all implied dependencies
- For each subset of attributes $\alpha$, compute attribute closure $\alpha^{+}$

■ Can split rules and combine right hand sides $\alpha \rightarrow B, C$ iff $\alpha \rightarrow B, \alpha \rightarrow C$

- Could have an alternative set of dependencies $G$ such that $G^{+}=F^{+}$

■ Canonical basis for $F+$ is $G$ such that

- $G^{+}=F^{+}$

■ For any proper subset $H \subset G, H^{+} \neq F^{+}$

## Extraneous attributes

- Computing a canonical basis - eliminate redundant rules


## Extraneous attributes

- Computing a canonical basis - eliminate redundant rules

■ Look for extraneous attributes

- Can $A, B \rightarrow C$ be replaced by $A \rightarrow C$ ?
- Can $A \rightarrow C, D$ be replaced by $A \rightarrow C$ ?


## Extraneous attributes

- Computing a canonical basis - eliminate redundant rules

■ Look for extraneous attributes

- Can $A, B \rightarrow C$ be replaced by $A \rightarrow C$ ?
- Can $A \rightarrow C, D$ be replaced by $A \rightarrow C$ ?
- $A \rightarrow C$ is stronger than $A, B \rightarrow C$
- Check that $A \rightarrow C$ is already in $F^{+}$


## Check of $C \in A^{+}$

Extraneous attributes


## Dependency preservation, formally

■ Given a set of dependencies $F$ and a decomposition of $R$ as $R_{1}, R_{2}, \ldots, R_{k}$

## Dependency preservation, formally

■ Given a set of dependencies $F$ and a decomposition of $R$ as $R_{1}, R_{2}, \ldots, R_{k}$

- Can locally check a depenêncy $\alpha \rightarrow \beta$ in $R_{i}$ if $\alpha \cup \beta \subseteq R_{i}$

Dependency preservation, formally

- Given a set of dependencies $F$ and a decomposition of $R$ as $R_{1}, R_{2}, \ldots, R_{k}$
- Can locally check a depenency $\alpha \rightarrow \beta$ in $R_{i}$ if $\alpha \cup \beta \subseteq R_{i}$

$$
F=\{A \rightarrow B, B \rightarrow C\}
$$

- Let $F_{i}$ be set of dependencies in $F^{+}$locally checkable in $R_{i}$

$$
\begin{aligned}
& a=\{A \rightarrow C \\
&=A \mid C \\
& \\
& \text { is } G^{+}=F^{+} ?
\end{aligned}
$$

## Dependency preservation, formally

■ Given a set of dependencies $F$ and a decomposition of $R$ as $R_{1}, R_{2}, \ldots, R_{k}$

- Can locally check a depenency $\alpha \rightarrow \beta$ in $R_{i}$ if $\alpha \cup \beta \subseteq R_{i}$

■ Let $F_{i}$ be set of dependencies in $F^{+}$locally checkable in $R_{i}$
■ Let $G=F_{1} \cup F_{2} \cup \cdots \cup F_{k}$. Is $G^{+}=F^{+}$

## Dependency preservation, formally

■ Given a set of dependencies $F$ and a decomposition of $R$ as $R_{1}, R_{2}, \ldots, R_{k}$

■ Can locally check a depenency $\alpha \rightarrow \beta$ in $R_{i}$ if $\alpha \cup \beta \subseteq R_{i}$
■ Let $F_{i}$ be set of dependencies in $F^{+}$locally checkable in $R_{i}$
$\begin{aligned} & A \rightarrow B \\ & B \rightarrow C\end{aligned}$
$A \rightarrow C$
■ Let $G=F_{1} \cup F_{2} \cup \cdots \cup F_{k}$. Is $G^{+}=F^{+}$
■ How do we compute $F_{i}$ for each $R_{i}$ ?

- Let $R_{i}$ have attributes $A_{1}, A_{2}, \ldots, A_{m}$
- For each subset $\alpha$ of $A_{1}, A_{2}, \ldots, A_{m}$, compute $\alpha^{+}$with respect

■ For each $B \in \alpha^{+} \cap\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$, add $\alpha \rightarrow B$ to $R_{i}$

## Beyond functional dependencies

■ Suppose we collect emergency contact details for each students - phone and email

- At least two emergency contacts of each type


## Beyond functional dependencies

■ Suppose we collect emergency contact details for each students - phone and email

- At least two emergency contacts of each type
- Consider a table Emergency (student_id, phone, email)
- Two phone numbers and two emails will generate four rows
sid, Pl, el
sid, pl, ez
sid, pl, ez
sid, pr, el


## Beyond functional dependencies

■ Suppose we collect emergency contact details for each students - phone and email

- At least two emergency contacts of each type
- Consider a table Emergency (student_id, phone, email)
- Two phone numbers and two emails will generate four rows
- This redundancy cannot be explained in terms of functional dependencies

Multivalued dependencies


Multivalued dependencies

- Closure under swaps
- Every functional dependency is an MVD
$\alpha$ is a "key"
$\alpha \rightarrow \beta$ is an fo
$\alpha \rightarrow \beta$ in an MV

Multivalued dependencies

- Closure under swaps
- Every functional dependency is an MVD
- Trivial MVD



## 4NF

- Relational schema $R$, set $D$ of functional and multivalued dependencies
- $R$ is in 4 NF if, for every $\alpha>\beta \in D^{+}$, one of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ ) or $\boldsymbol{\alpha} \boldsymbol{U} \boldsymbol{\beta}=\boldsymbol{R}$
- $\alpha$ is a superkey for $R$

4NF

- Relational schema $R$, set $D$ of functional and multivalued dependencies

■ $R$ is in 4 NF if, for every $\alpha \rightarrow \beta \in D^{+}$, one of the following holds

- $\alpha>\beta$ is trivial (ie., $\beta \subseteq \alpha$ )
- $\alpha$ is a superkey for $R$
stand / phone / email
4NF decomposition as usual


Dependencies and SQL
Canal direct describe FDS in SQL
Can we (mamally) check an FD Using SQL
Task

$A_{l} \rightarrow A_{j}$ is an $F D$
fac did
foe $d z$
Count mows in (unique) progecho

