Database Management Systems

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Sai University
Lecture 11, 22 September 2023

Relational database design

- Set of attributes that one needs to keep track of
- Split into multiple tables to avoid duplication
- Redundant storage

■ Maintaining consistency - updates and insertion/deletion

One source 6 "truth"

Decomposition and information

■ Decompose (customer_name,regd_phone,regd_email) as (customer_name, regd_phone) and (customer_name,regd_email)

- Name is not unique - loss of information
- Recombining decomposed relation should not add tuples

■ Lossless decomposition

- Decompose R as R_{1} and R_{2}
- Want $R=R_{1} \bowtie R_{2}$

$R \subseteq R_{1} \infty R_{2}$

$A P 1=A E 1$ $A P_{2} \geq A$ E2

- Decomposition is lossless if at least one of the following functional dependencies hold

$$
\begin{aligned}
& -R_{1} \cap R_{2} \rightarrow R_{1} \\
& R_{1} \cap R_{2} \rightarrow R_{2}
\end{aligned}
$$

Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$
- LHS atributes uniquely fix RHS attributes
- Must hold for every instance - semantic property of attributes
- Need not correspond to superkeys
- dept_name \rightarrow building

■ dept_name \rightarrow budget

$I D$	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	$\underline{70000}$
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	$\underline{100000}$
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp.Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	$\boxed{80000}$
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

■ Use to identify sources of redundancy, guide decomposition

Computing the closure of a set of attributes

$$
\begin{aligned}
& A_{1} A_{2} \ldots A_{k} \rightarrow B_{1} B_{2} \ldots B_{m} \in F \\
& \left(\begin{array}{l}
\left(a_{1}, a_{2}, \ldots a_{n}\right) \sim\left(b_{1}, b_{2} \ldots b_{n}\right) \\
\left(a_{1}, a_{2} \ldots a_{k}\right) \rightarrow\left(b_{1}, b_{2} \ldots b_{m}\right)
\end{array}\right] \text { Would visate }
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
\alpha \rightarrow B_{1} & A_{1} A_{2} \ldots & A_{k} \rightarrow B_{1} \\
\alpha \rightarrow B_{2} & A_{2}, A_{2}-A_{n} \rightarrow B_{2} \\
\vdots \\
\alpha \rightarrow B_{n} & \\
\varlimsup_{\alpha \rightarrow \beta} & A_{1}, A_{2}-A_{n} \rightarrow B_{m} \ldots B_{m}
\end{array}\right] \Longrightarrow A_{1} A_{2}-A_{k} \rightarrow B_{2} \ldots B_{m}
$$

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ R is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ R is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

Boyce-Codd Normal Form (BCNF)

Dependency preservation

- Advisor (student_id faculty_id, dept_name)
- Each faculty member is in only one depart nent
- Students can be across multiple departments
- Each student has at most one advisor in each department

■ BCNF decomposition is (student_ia,faculty_id), (faculty_id,dept_name)

- Functional dependencies
- faculty_id \rightarrow dept_name

■ student_id, dept_name \rightarrow faculty_id

- Need join to check second dependency

Third normal form (3NF)

- R is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

- BCNF is a stricter condition than 3NF
- Priorities
- Lossless decomposition
C BCNF $\begin{aligned} & \text { Dependency preservation }\end{aligned}$
Tradiofg redundarey In local dependency checho

3NF \rightarrow Redundeny

$$
\begin{array}{ll}
S_{1} & F_{1} \\
S_{2} & F_{1}
\end{array} \quad F_{1} D_{1}
$$

Computing the closure of a set of attributes - correctness

$$
\begin{aligned}
& \text { - Iterative algorithm - check if } B \text { is in closure } A^{+} \quad \text { Green } \boldsymbol{F} \\
& \text { Initialize } A^{+} \text {to }\left\{A_{1}, A_{2}, \ldots, A_{k}\right\} \quad \text { Ah attonbutes fixed by } A_{1}-A_{1} \\
& \text { repeat } \\
& \text { for each } \beta \rightarrow \gamma \text { in } F \\
& \text { Cowectives? } \\
& \text { if } \beta \subseteq A^{+} \text {, add } \gamma \text { to } A^{+} \\
& \text {end } \\
& \text { until no change in } A^{+} \\
& \begin{array}{l}
\text { Soundness }{ }^{-} \mathrm{No}_{0} \text { wring attrusute is added } \\
\text { to } \mathrm{A}^{+}
\end{array} \\
& \text {- Do not nuts amy altribste } \\
& \text { Completeness in } \mathrm{A}^{+}
\end{aligned}
$$

Computing the closure of a set of attributes - correctness

$$
\begin{aligned}
& \text { repeat } \\
& \quad \text { for each } \beta \rightarrow \gamma \text { in } F \\
& \text { if } \beta \subseteq A^{+} \text {, add } \gamma \text { to } A^{+} \\
& \text {end }
\end{aligned}
$$

- Iterative algorithm - check if B is in closure A^{+}
until no change in A^{+}
fixed

Soundness
By induction
After 0 iterations
$A^{+}=\left\{M_{1} \ldots A_{2}\right\}$-finally

DBMS, Lecture 11, 22 Sep $2023 \quad 9 / 14$

Computing the closure of a set of attributes - correctness

```
- Iterative algorithm - check if \(B\) is in closure \(A^{+}\)
    Initialize \(A^{+}\)to \(\left\{A_{1}, A_{2}, \ldots, A_{k}\right\} \quad\) Completeness.
    repeat
        for each \(\beta \rightarrow \gamma\) in \(F\)
            Every \(B\) fired by \(A_{1} .-A_{k}\) is in \(A^{t}\)
        if \(\beta \subseteq A^{+}\), add \(\gamma\) to \(A^{+}\)
        end
            If \(B \& A^{+}\)thew it can vary
```

 until no change in \(A^{+}\)
 Is there a relation/table that satisfies all If but does ut have $A_{1}, A_{u} \rightarrow B$ Coustrmet such a table

Computing the closure of a set of attributes - correctness
 until no change in A^{+}

Suppose $\beta \rightarrow \gamma \in F$ is noleted in thus table

$$
\begin{aligned}
& \text { closure } A^{+} A^{+} \\
& A_{1} A_{2} \cdots A_{1} C_{2}-C_{m} \\
& a_{1} a_{2} \ldots c_{1} c_{m} \\
& a_{1} a_{2} \ldots c_{n}-c_{m}
\end{aligned}
$$

\qquad

Demonstration the $A_{1},-A_{k} \not f B$
But docs its meet all $f d$. in F ?
$\Rightarrow \beta \rightarrow D$ in rotated $D \& A^{+} \Rightarrow A^{+}$was not calculated well! $B \in A^{+}$ DG RMS There β is same, D is different in 2 ross

Canonical basis, extraneous attributes
When populating a database, need to check constraints Constraints are functional depalencer F, reed to checle all constraints in $\mathrm{F}^{+}($closure of $F)$

$$
\underset{\substack{F \\
A \rightarrow B \\
B \rightarrow C}}{\substack{P+\\
A \\
\text { check } \\
\text { the }}} \rightarrow \begin{gathered}
\text { ned not } \\
\text { checle }
\end{gathered}
$$

Canonical basis, extraneous attributes
Find a "minimal" set of mes th check st all of FT is covered

Extrancons attintutes

$$
A, B \rightarrow C, D_{q}
$$

Suppose $A \rightarrow C, D$ shrines
B is extraneous m LHS

Cam B be removed?
Caul 1 dense

$$
A \rightarrow C, D
$$

from F ?

Canonical basis, extraneous attributes

Chide y

$$
\begin{aligned}
& F>(A, B \rightarrow C, D) \\
&+A, B \rightarrow C \\
& \Rightarrow A, B \rightarrow C, O ?
\end{aligned}
$$

Preserves F^{+}

Canonical basis, extraneous attributes
Remove extrancons altusutes \rightarrow minimal set of dependenuis that
$F=\left\{\begin{array}{llll}A B \rightarrow C D, & & \{A B \rightarrow D, & \text { howe same closure } \\ A \rightarrow E, & A \rightarrow E, & F^{+} \text {as original } F \\ & E \rightarrow C\} & E \rightarrow C\} . & \end{array}\right.$
$A B \rightarrow C D$, diminule C ?
U) $A B \rightarrow C D$

$$
A B \rightarrow D
$$

$$
A \rightarrow E, A \rightarrow C \Rightarrow A \rightarrow C
$$

Does $(A \beta)+$ include C ?

Dependency preservation, formally
BCNF mang vilate this F^{+}
 check nules

$$
F^{+}=\left[\begin{array}{c}
\text { neme } R_{1} \\
\left.\left(F^{+} \cap R_{1}\right)+\left(R_{2}^{+} \cap R_{2}\right) t u-v\left(F^{+} \cap R_{k}\right)\right]
\end{array}\right]^{+}
$$

Dependency preservation, formally
(sting, fac, dept)
stud, dept \rightarrow fac
(shod, fac) (fac, dept)
$F^{+} \cap R_{i}$? Take each $Y \subseteq\left\{x_{1}, x_{k}\right\}$ Compute Y^{+}wit F^{+}
Retani all rules that stay in R_{i}

Dependency preservation, formally

$x_{3} \rightarrow z_{8} \quad z_{8} \rightarrow x_{4}$ $\begin{array}{ll}x_{1} & x_{1}, \\ x_{2} & x \\ x & \end{array}$

$$
\left(\left\{x_{1}, x_{3}\right\}\right)^{+}
$$

Even $\beta \rightarrow \gamma$ st $\beta \in()^{+}$ ald r to ()$^{+}$
$\left(\left\{x_{1}, x_{3}\right\}\right)^{+}$contr $x_{4}, x_{5}, z_{1} \ldots$

$$
\begin{aligned}
& x_{1} x_{3} \rightarrow x_{4} \\
& x_{1} x_{3} \rightarrow x_{5}
\end{aligned}=F^{+} \cap R_{7}
$$

Dependency preservation, formally

$$
\begin{array}{ll}
R_{1} \ldots & R_{k} \\
F_{1}^{\prime} & F_{k}^{\prime} \\
F_{l}^{\prime}=F^{+} \cap R_{i} & \left(F_{1}^{\prime} \cup F_{2}^{\prime} \cup-F_{k}^{\prime}\right)^{+} \\
=F^{+}
\end{array}
$$

If so, F^{+}is locally chechaste in this derma. Devons preserves dependence

Beyond functional dependencies
Student - Emergency contacts ≥ 2 phone numbers $-\geq 2$ email address

$$
\Rightarrow \begin{array}{|c|c|c|}
\hline \text { Stud ID } & \text { Emeng Phase } & \text { Eve End } \\
\hline I D_{1} & P_{1} & E_{1} \\
I D_{1} & P_{2} & E_{2} \\
I D_{7} & P_{1} & E_{2} \\
I D_{7} & P_{2} & E_{1}
\end{array}
$$

