Database Management Systems

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Sai University
Lecture 10, 20 September 2023

Relational database design

- Set of attributes that one needs to keep track of

Relational database design

- Set of attributes that one needs to keep track of

■ Why not combine into a single table?

Relational database design

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

Relational database design

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

- Combine these into a single table?

Relational database design

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Relational database design

- Redundant storage

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Relational database design

- Redundant storage
- Maintaining consistency
- Updates
- Inserts and deletes

Add a Biotech dept
Let to recant faculty

$I D$	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Add a row nits null value for faculty dater

Decomposition and information

■ (customer_name,regd_phone,regd_email)

Decomposition and information

Decomposition and information

■ (customer_name,regd_phone,regd_email)
■ Decompose as (customer_name,regd_phone) and (customer_name,regd_email)
■ Name is not unique - loss of information

Decomposition and information

■ (customer_name,regd_phone,regd_email)
■ Decompose as (customer_name,regd_phone) and (customer_name,regd_email)
■ Name is not unique - loss of information
■ Recombining decomposed relation should not add tuples

1
 Natural join

Decomposition and information

■ (customer_name,regd_phone,regd_email)
■ Decompose as (customer_name, regd_phone) and (customer_name,regd_email)

- Name is not unique - loss of information

■ Recombining decomposed relation should not add tuples

- Lossless decomposition
- Decompose R as R_{1} and R_{2}
- Want $R=R_{1} \bowtie R_{2}$

Clearly $R \subseteq R_{1} \bowtie R_{2}$ Robles is it $R 10 R_{2}$ has rows not in R

Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$
- LHS atributes uniquely fix RHS attributes
- Must hold for every instance - semantic property of attributes

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$

■ LHS atributes uniquely fix RHS attributes

- Must hold for every instance - semantic property of attributes
- Need not correspond to superkeys
- dept_name \rightarrow building

■ dept_name \rightarrow budget

Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$
- LHS atributes uniquely fix RHS attributes
- Must hold for every instance - semantic property of attributes
- Need not correspond to superkeys
- dept_name \rightarrow building

■ dept_name \rightarrow budget

ID	name	salary	dept_name	oriding	fudget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	E1 Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

■ Use to identify sources of redundancy, guide decomposition

Lossless decomposition and functional dependencies

$$
\begin{aligned}
& \text { - Decompose } R \text { as } R_{1} \text { and } R_{2}
\end{aligned}
$$

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}
- Decomposition is lossless if at least one of the following functional dependencies hold- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$
properly of dak as a where

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}
- Decomposition is lossless if at least one of the following functional dependencies hold
- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$
- Decompose Instructor-Department as Instructor and Department

■ Instructor \cap Department is dept_name
■ dept_name is primary key for Department

ID Name dept Slay $\times R_{1} \mathrm{NR}_{2}$
(rept Buy Budget
$R_{1} \cap R_{2} \rightarrow R_{2}$

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}
- Decomposition is lossless if at least one of the following functional dependencies hold
- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$

■ Decompose Instructor-Department as Instructor and Department
■ Instructor \cap Department is dept_name
■ dept_name is primary key for Department

- In general need to compute all implied dependencies
- From $A \rightarrow B$ and $B \rightarrow C$, conclude that $A \rightarrow C$

■ Closure of a set of dependencies F - denoted F^{+}

Computing the closure of a set of attributes

- Given $A_{1}, A_{2}, \ldots, A_{\boldsymbol{k}}$ and B, does $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B$?

Does $R_{1} \cap R_{2} \rightarrow R_{1}$?

$$
A_{1} \ldots A_{k} \rightarrow B_{1} \ldots B_{m}
$$

self is show

$$
\begin{gathered}
A_{1}-A_{2} \rightarrow B_{1} \\
A_{1} \ldots A_{n} \rightarrow B_{2} \\
\vdots \\
A_{1}-A_{n} \rightarrow B_{m}
\end{gathered}
$$

Computing the closure of a set of attributes

- Given $A_{1}, A_{2}, \ldots, A_{2}$ and B, does $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B$?
- Iterative algorithm

Compute ℓ, the set 1 attribatis "fried" by $A_{1} \ldots A_{k}$ Check if B is an l
$A_{1} \ldots A_{k}$ fix $A_{1}-A_{k}$ stat when $l=\left\{A_{1}, \ldots, A_{n}\right\}$
Check a rule $D_{1} \ldots D_{m} \rightarrow E_{1} \ldots E_{n}$ sit $D_{1} \ldots D_{m} \leqslant e$
\Rightarrow Ald $E_{1} \ldots E_{n}$ to l
Stop when withing new is a

Normal forms

- Criteria to determine if the collection of tables is "good"

Normal forms

■ Criteria to determine if the collection of tables is "good"

- Normalization - decompose tables till they achieve a normal form

Normal forms

■ Criteria to determine if the collection of tables is "good"
■ Normalization - decompose tables till they achieve a normal form

- Guided by functional dependencies

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F
- Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$
- R is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds
- $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$)
- α is a superkey for R

$$
A_{1}, A_{2}, A_{k} \rightarrow A_{i}
$$

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$
■ R is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds
■ $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$

- α is a superkey for R
- InstructorDepartment(ID, name, salary, dept_name, building, budget) ot in BCNF

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$
■ R is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

- $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$
- α is a superkey for R

■ InstructorDepartment(ID, name, salary, dept_name, building, budget not in BCNF

■ Instructor(ID, name, dept name, salary) and Department (dept_name, building, budget) are in BCNF

Achieving BCNF

- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds

■ $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)

- α is a superkey for R

Achieving BCNF

- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds
- $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$)
- α is a superkey for R
- To fix this, decompose R as
- $\alpha \cup \beta$
- $R \backslash(\beta \backslash \alpha)$
bexamaly R R β

Achieving BCNF

- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds
- $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$
- α is a superkey for R
- To fix this, decompose R as
$\boldsymbol{R}_{1}: \alpha \cup \beta \rightarrow$ guarantees $\boldsymbol{R}_{1} \cap \boldsymbol{R}_{2} \rightarrow \boldsymbol{R}_{1}$-lossless
$\mathcal{R}_{2}=R \backslash(\beta \backslash \alpha)$
■ Example: dept_name \rightarrow building, budget ic a RCNF violation for

Achieving BCNF

■ $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$
- α is a superkey for R
- To fix this, decompose R as

■ $\alpha \cup \beta$

- $R \backslash(\beta \backslash \alpha)$

■ Example: dept_name \rightarrow building, budget is a BCNF violation for InstructorDepartment (ID, name, salary, dept_name, building, budget

- Decompose as

■ Department (dept_name, building, budget)
■ Instructor (ID, name, dept_name, salary)
$12-$

Dependency preservation

■ Advisor (student_id,faculty_id,dept_name)

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

Dependency preservation

■ Advisor (student_id,faculty_id,dept_name)

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

Dependency preservation

■ Advisor (student_id,faculty_id,dept_name)

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

■ BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)

- Functional dependencies

■ faculty_id \rightarrow dept_name
■ student id.dept_name \rightarrow faculty_id

Dependency preservation

■ Advisor (student_id,faculty_id,dept_name)

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

■ BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)

- Functional dependencies

■ faculty_id \rightarrow dept_name
■ student_id,dept_name \rightarrow faculty_id
■ Need join to check second dependency

Third normal form (3NF)

- R is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

POOF $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$)

- α is a superkey for R
- Each attribute A in $\beta \backslash \alpha$ is contained in some candidate key for R

Mysterious!

Third normal form (3NF)

- R is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds
$\operatorname{Ren}\left[\begin{array}{l}=\alpha \rightarrow \beta \text { is trivial (i.e., } \beta \subseteq \alpha \\ \alpha \text { is a superkey for } R\end{array}\right.$
- Each attribute A in $\beta \backslash \alpha$ is contained in some candidate key for R
- BCNF is a stricter condition than 3NF

Third normal form (3NF)

- R is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$
- α is a superkey for R
- Each attribute A in $\beta \backslash \alpha$ is contained in some candidate key for R

■ BCNF is a stricter condition than 3NF

- Priorities
- Lossless decomposition Nof negohalle
- BCNF

■ Dependency preservation

