
Database Management Systems

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Sai University
Lecture 9, 13 September 2023

Joins in SQL

Join — cartesian product combined with selection

Three specific types of join

Natural join

Outer join

Inner join

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 2 / 5

- (1, x rz) 4 p

Joins in SQL

Join — cartesian product combined with selection

Three specific types of join

Natural join

Outer join

Inner join

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 2 / 5

- equality on same name attributes

- H

keep only one copy

©Silberschatz, Korth and Sudarshan4.3Database System Concepts - 7th Edition

Joined Relations

 Join operations take two relations and return as a
result another relation.

 A join operation is a Cartesian product which requires
that tuples in the two relations match (under some
condition). It also specifies the attributes that are
present in the result of the join

 The join operations are typically used as subquery
expressions in the from clause

 Three types of joins:
• Natural join
• Inner join
• Outer join

©Silberschatz, Korth and Sudarshan4.4Database System Concepts - 7th Edition

Natural Join in SQL

 Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each
common column.

 List the names of instructors along with the course ID of
the courses that they taught
• select name, course_id

from students, takes
where student.ID = takes.ID;

 Same query in SQL with “natural join” construct
• select name, course_id

from student natural join takes;

E
2 X procit-

&
8

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 7th Edition

Natural Join in SQL (Cont.)

 The from clause in can have multiple relations combined
using natural join:

select A1, A2, … An
from r1 natural join r2 natural join .. natural join rn
where P ;

2+3 + 5

in 53
(2+3) +5-Ilaryeporsatel1/30/ 2+(3+5)
e

W (12) i
r
,
v(r-wrs)

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 7th Edition

Student Relation

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 7th Edition

Takes Relation

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 7th Edition

student natural join takes

onlya
O

D

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

Dangerous in Natural Join

 Beware of unrelated attributes with same name which get
equated incorrectly

 Example -- List the names of students instructors along with
the titles of courses that they have taken
• Correct version

select name, title
from student natural join takes, course
where takes.course_id = course.course_id;

• Incorrect version
select name, title
from student natural join takes natural join course;

 This query omits all (student name, course title) pairs where
the student takes a course in a department other than the
student's own department.

 The correct version (above), correctly outputs such pairs.

v

(Student 1 tabes)Ap course
x Ca

studt/ Fake Up coursel
C I C

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

Outer Join

 An extension of the join operation that avoids loss of
information.

 Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

 Uses null values.
 Three forms of outer join:

• left outer join
• right outer join
• full outer join

Tip (Student i takes)
II ?

His (Students)
Blue Green= Studts not

takey a couse

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

Outer Join Examples

 Relation course

 Relation prereq

 Observe that
course information is missing for CS-437
prereq information is missing for CS-315

-
--

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

Left Outer Join

 course natural left outer join prereq

 In relational algebra: course ⟕ prereq

left
C right

-

-

↓

-

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

Right Outer Join

 course natural right outer join prereq

 In relational algebra: course ⟖ prereq

-

-
preve

#

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 7th Edition

Full Outer Join

 course natural full outer join prereq

 In relational algebra: course ⟗ prereq

left out-
righ outer-

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 7th Edition

Joined Types and Conditions

 Join operations take two relations and return as a result
another relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

te natural join t2-match onl columns

H natural youn
t2 using (1 ,2)

- restricts match to

M(r,xr) -> wit v C
,
c2

O P 2

from E
,
z

El join te On Condition
where condition

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.20Database System Concepts - 7th Edition

Joined Relations – Examples

 course inner join prereq on
course.course_id = prereq.course_id

 What is the difference between the above, and a natural
join?

 course left outer join prereq on
course.course_id = prereq.course_id

Groptimal

0

0 O

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 3 / 5

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 3 / 5

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 3 / 5

©Silberschatz, Korth and Sudarshan4.24Database System Concepts - 7th Edition

View Definition and Use

 A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

 Find all instructors in the Biology department

select name
from faculty
where dept_name = 'Biology'

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

O

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

Views Defined Using Other Views

 One view may be used in the expression defining another
view

 A view relation v1 is said to depend directly on a view
relation v2 if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if
either v1 depends directly to v2 or there is a path of
dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on
itself.

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

Views Defined Using Other Views

 create view physics_fall_2017 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id

and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017';

 create view physics_fall_2017_watson as
select course_id, room_number
from physics_fall_2017
where building= 'Watson';

-

©Silberschatz, Korth and Sudarshan4.27Database System Concepts - 7th Edition

View Expansion

 Expand the view :
create view physics_fall_2017_watson as

select course_id, room_number
from physics_fall_2017
where building= 'Watson'

 To:
create view physics_fall_2017_watson as

select course_id, room_number
from (select course.course_id, building, room_number

from course, section
where course.course_id = section.course_id

and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017')

where building= 'Watson';

-

-
[

I

©Silberschatz, Korth and Sudarshan4.28Database System Concepts - 7th Edition

View Expansion (Cont.)

 A way to define the meaning of views defined in terms of other
views.

 Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.

 View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1
Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will
terminate -

©Silberschatz, Korth and Sudarshan4.29Database System Concepts - 7th Edition

Materialized Views

 Certain database systems allow view relations to be
physically stored.
• Physical copy created when the view is defined.
• Such views are called Materialized view:

 If relations used in the query are updated, the
materialized view result becomes out of date
• Need to maintain the view, by updating the view

whenever the underlying relations are updated.

©Silberschatz, Korth and Sudarshan4.30Database System Concepts - 7th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier
insert into faculty

values ('30765', 'Green', 'Music');
 This insertion must be represented by the insertion into the

instructor relation
• Must have a value for salary.

 Two approaches
• Reject the insert
• Inset the tuple

('30765', 'Green', 'Music', null)
into the instructor relation

©Silberschatz, Korth and Sudarshan4.31Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

 create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

 insert into instructor_info
values ('69987', 'White', 'Taylor');

 Issues
• Which department, if multiple departments in Taylor?
• What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan4.32Database System Concepts - 7th Edition

And Some Not at All

 create view history_instructors as
select *
from instructor
where dept_name= 'History';

 What happens if we insert
('25566', 'Brown', 'Biology', 100000)

into history_instructors?

©Silberschatz, Korth and Sudarshan4.33Database System Concepts - 7th Edition

View Updates in SQL

 Most SQL implementations allow updates only on simple
views
• The from clause has only one database relation.
• The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates,
or distinct specification.

• Any attribute not listed in the select clause can be set to
null

• The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan4.36Database System Concepts - 7th Edition

Constraints on a Single Relation

 not null
 primary key
 unique
 check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan4.37Database System Concepts - 7th Edition

Not Null Constraints

 not null
• Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

©Silberschatz, Korth and Sudarshan4.38Database System Concepts - 7th Edition

Unique Constraints

 unique (A1, A2, …, Am)
• The unique specification states that the attributes

A1, A2, …, Am form a candidate key.
• Candidate keys are permitted to be null (in contrast

to primary keys).

©Silberschatz, Korth and Sudarshan4.39Database System Concepts - 7th Edition

The check clause

 The check (P) clause specifies a predicate P that must be
satisfied by every tuple in a relation.

 Example: ensure that semester is one of fall, winter, spring or
summer

create table section
(course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))

©Silberschatz, Korth and Sudarshan4.40Database System Concepts - 7th Edition

Referential Integrity

 Ensures that a value that appears in one relation for a
given set of attributes also appears for a certain set of
attributes in another relation.
• Example: If “Biology” is a department name

appearing in one of the tuples in the instructor
relation, then there exists a tuple in the
department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two
relations that contain attributes A and where A is the
primary key of S. A is said to be a foreign key of R if
for any values of A appearing in R these values also
appear in S.

©Silberschatz, Korth and Sudarshan4.41Database System Concepts - 7th Edition

Referential Integrity (Cont.)

 Foreign keys can be specified as part of the SQL create
table statement

foreign key (dept_name) references department
 By default, a foreign key references the primary-key

attributes of the referenced table.
 SQL allows a list of attributes of the referenced relation to

be specified explicitly.
foreign key (dept_name) references department

(dept_name)

©Silberschatz, Korth and Sudarshan4.42Database System Concepts - 7th Edition

Cascading Actions in Referential Integrity

 When a referential-integrity constraint is violated, the normal
procedure is to reject the action that caused the violation.

 An alternative, in case of delete or update is to cascade
create table course (

(…
dept_name varchar(20),
foreign key (dept_name) references department

on delete cascade
on update cascade,

. . .)
 Instead of cascade we can use :

• set null,
• set default

Course Dept
↓delete- E

⑧ E

A
del

©Silberschatz, Korth and Sudarshan4.46Database System Concepts - 7th Edition

Built-in Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date
• Example: date '2005-7-27'

 time: Time of day, in hours, minutes and seconds.
• Example: time '09:00:30' time '09:00:30.75'

 timestamp: date plus time of day
• Example: timestamp '2005-7-27 09:00:30.75'

 interval: period of time
• Example: interval '1' day
• Subtracting a date/time/timestamp value from another

gives an interval value
• Interval values can be added to date/time/timestamp

values

Advanced SQL

Many other features

Transactions

Assertions and triggers

. . .

Can call SQL from other programming languages

Almost every language has library functions to invoke SQL

Transfer data between online forms and databases

. . .

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 4 / 5

Advanced SQL

Many other features

Transactions

Assertions and triggers

. . .

Can call SQL from other programming languages

Almost every language has library functions to invoke SQL

Transfer data between online forms and databases

. . .

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 4 / 5

Security — SQL injection attacks

User input can be malicious commands to corrupt database

Always validate data entered in a form before passing on to SQL

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 5 / 5

Security — SQL injection attacks

User input can be malicious commands to corrupt database

Always validate data entered in a form before passing on to SQL

Madhavan Mukund Database Management Systems DBMS, Lecture 9, 13 Sep 2023 5 / 5

