
Sai University

Data Base Management Systems

Mid-Semester Examination (Make-Up) with Solutions,

Semester A, 2023–2024

Date : 25 October, 2023
Duration : 90 minutes

Marks : 20
Weightage : 20%

1. Consider a university database with relations

• student(sid, name) — student ID and name for each student

• course(cid, title) — course ID and title for each course

• passed(sid, cid) — which courses each student has cleared already, in terms of
student and course IDs

• core(cid) — IDs of core courses

Write relational algebra expressions to compute each of the following relations:

(a) IDs of students who have not yet cleared any course (2 marks)

Solution πsid(student) is the set of all student IDs and πsid(passed) is the set of
all student IDs who have passed at least one course. Hence, the required expression
is πsid(student) \ πsid(passed), where X \ Y denotes set difference between sets X
and Y .

(b) IDs of students who have not yet cleared all core courses (2 marks)

Solution

• πsid(student)× core is the set of all possible pairs (sid, cid) for students and
core courses. Let r ← πsid(student)× core.

• passed ▷◁ core is the set of pairs (sid, cid) where student sid has passed core
course cid. Let s← passed ▷◁ core.

• If a student with ID sid has not cleared a core course with ID cid, then
(sid, cid) will appear in r \ s. So the desired query is πsid(r \ s).

(c) IDs of core courses that are still pending for at least one student (2 marks)

Define r and s as above. Any core course cid that is still pending for a student
sid will appear as (sid, cid) in r \ s. So the desired query is πcid(r \ s).

2. For the ongoing cricket World Cup, a database is being maintained that includes the
following two tables:

Players(PlayerID, Name, Country)
Runs(MatchNumber, PlayerID, Runs)

Each country has a list of players registered for the World Cup and PlayerID is a
unique ID assigned to each registered player. The competition consists of 48 matches
and each match is identified by its MatchNumber, from 1 to 48.

1



The Players table lists all the registered players. The Runs table records the runs
scored in all the matches played so far, and is updated after every match. For each
match, the table records runs for those players who actually batted. There is no entry
for a player who did not play in the match or who played but did not get a chance to
bat.

Whenever a player comes to bat, the screens at the stadium show the runs that the
player has scored so far in this World Cup. To compute this quantity, we need “join”
the two tables above to create a table of the form

Aggregate(PlayerID, Name, TotalRunsTillNow)

that records the runs scored by all registered players, including those who have yet to
bat in any match.

(a) Explain why a natural join is not adequate for this purpose. (2 marks)

Solution We have to join the two tables on PlayerID. If a player has not scored
any runs so far — either he has not played any match or he has not batted in the
matches he has played — that player’s ID will not be present in the relation Runs,
and hence will not appear in the joined relation Aggregate. Our requirement is
that such a player should appear in Aggregate with TotalRunsTillNow set to zero,
so a natural join will not suffice.

(b) What kind of join should we use to ensure that every player is included in the
table Aggregate? (2 marks)

Solution We need an outer join — specifically, a natural left outer join — to
ensure that all plaers are reported in the final table Aggregate.

(c) Write an SQL query to compute the table Aggregate. (4 marks)

We need to group and aggregate the runs in Runs by PlayerID and then compute
a natural left outer join with the table Players. Here are two versions of the query.

(i) with CurrentRuns(PlayerID,TotalRunsTillNow) as

(select PlayerID, sum(Runs)

from Runs

group by PlayerID)

select PlayerID, Name, TotalRunsTillNow from

Players natural left outer join CurrentRuns

(ii) select PlayerID, Name, TotalRunsTillNow from

Players natural left outer join

(select PlayerID, sum(Runs)

from Runs

group by PlayerID)

as CurrentRuns(PlayerID,TotalRunsTillNow)

To fully solve the problem, we should create a view Aggregate to store the output
of the query.

2



3. A bank’s database contains a table Accounts(CustomerID, AccountNo, BranchID),
where CustomerID is a unique ID for each customer, AccountNo is the bank account
number and BranchID is a unique ID for each branch of the bank.

Account numbers are unique across the bank and each account number is attached
to one branch of the bank. The bank permits joint accounts, with more than one
customer associated with an account. A customer may have many accounts in the
bank, but is restricted to at most one account in each branch, whether it is single or
joint.

(a) What functional dependencies can you infer from these constraints? (2 marks)

Solution Since account numbers are unique across the bank, from the account
number we can uniquely identify the branch that it belongs to. Since no customer
has more than one account in each branch, from the customer ID and the branch
ID, we can uniquely identify the customer’s account number in that branch. Hence
we have two functional dependencies.

• AccountNo → BranchID

• CustomerID, BranchID → AccountNo

(b) Compute a BCNF decomposition of the table Accounts. (2 marks)

Solution We have a functional dependency AccountNo → BranchID where the
left hand side, AccountNo, is not a superkey for Accounts, since there can be joint
accounts with more than one customer ID mapped to an account number. Hence
this relation is not in BCNF. The BCNF decomposition gives two relations

• R(AccountNo, BranchID)

• S(CustomerID, AccountNo)

(c) Explain whether your BCNF decomposition is dependency preserving. (2 marks)

Solution The functional dependency CustomerID, BranchID→ AccountNo can-
not be checked locally in either relation R or relation S resulting from the BCNF
decomposition. Hence this decomposition is not dependency preserving.

3


