1. The B+-tree below has 3 keys and 4 pointers per node. The values in each node are arranged

20	K	$1 \mid 1$	$K_2 \mid$	K_3		
18	P_1	$ P_2 $	$ P_3 $	$P_3 \mid P_4$		

- (a) Draw the tree after inserting a new key 40.
- (b) Draw the tree after deleting key 7 (in the original tree, without having inserted 40).
- 2. Consider relations $r_1(A, B, C)$ and $r_2(C, D, E)$. We wish to compute $r_1 \bowtie r_2$, the natural join of r_1 and r_2 . Explain the difference in efficiency in computing this join under the following two assumptions:
 - (a) A is a primary key for r_1 , there is no primary key for r_2 .
 - (b) C is a primary key for r_2 , there is no primary key for r_1 .
- 3. Let relations $r_1(A, B, C)$ and $r_2(C, D, E)$ have the following properties: r_1 has 6×10^6 tuples, r_2 has 3×10^6 tuples, 15 tuples of r_1 fit in one block, 30 tuples of r_2 fit in one block and the memory can hold approximately 100 blocks.

Estimate the number of block accesses required using the following strategies for $r_1 \bowtie r_2$. Assume that neither r_1 nor r_2 is already sorted with respect to any of its attributes. Explain your answer, including your choice of outer and inner relations.

- (a) Nested-loop join
- (b) Block nested-loop join

Database Management Systems, Aug–Dec 2023 Assignment 5, 25 November 2023, due 3 December 2023

Consider the following schedules of concurrent read and write operations.										
Schedule A					Schedule B					
T_a	T_b	T_c	T_d	T_e		T_a	T_b	T_c	T_d	T_e
$w(x_1)$	$w(x_2)$		($w(x_1)$	$w(x_2)$		m(m)	
	$r(x_1)$		$w(x_3)$	$r(x_1)$			$r(x_1)$		$r(x_1)$	$r(x_1)$
$r(x_3)$		$r(x_4)$ $r(x_3)$	$T(x_2)$	$w(x_4)$		$r(x_3)$		$r(x_4)$ $r(x_3)$	$T(x_2)$	$w(x_4)$
	$r(x_4)$	(3)	$r(x_4)$				$r(x_4)$	(0)	$r(x_4)$	

4. Consider the following schedules of concurrent read and write operations

- (a) One of these schedules is conflict-serializable and the other is not. Explain which is which.
- (b) For the schedule that is conflict-serializable, list out all possible serial schedules that are consistent with this schedule.
- 5. Describe a concurrent schedule for the following two transactions T_1 and T_2 that is serializable, but not *conflict serializable*. Explain your answer.

T_{\cdot} : read(A):	T_2 : read(A);
A := A - 50:	temp := A * 0.1;
write(A);	A := A - temp;
read(B);	write(A);
B := B + 50;	read(<i>B</i>);
write(B).	B := B + temp; write(B).