Some remarks on the control of distributed automata

Anca Muscholl (joint work with I. Walukiewicz, M. Zeitoun)

LaBRI, Bordeaux

Chennai, January 2009
Asynchronous (Z-)automata, traces and event structures informally

Representing executions

- As a word:
 \[a_1 a_2 a_3 b_1 c a_2 d \] or \[a_2 a_3 a_1 b_1 c a_2 d \]
- As a trace.
- The set of all executions can be represented as a tree,
 or as an event structure (richer: concurrency).
Asynchronous (Z-)automata, traces and event structures informally

Representing executions

- As a word:
 \[a_1 a_2 a_3 b_1 c a_2 d \text{ or } a_2 a_3 a_1 b_1 c a_2 d \]
- As a trace.
- The set of all executions can be represented as a tree,

or as an event structure (richer: concurrency).
The synthesis problem

Centralized synthesis
- We are given a specification K.
- We want a finite automaton C with $L(C) \subseteq K$ + additional requirements (e.g., inputs are unconstrained).

Distributed synthesis
- Comes along with a distributed architecture (e.g., distributed (trace) alphabet).
- In general undecidable (Peterson/Reif ’79, Pnueli/Rosner 90).
- Important: use adequate specifications (e.g. trace closed ones for asynchronous automata).
Asynchronous automaton: example

P₁: \{a₁, b₁, c\}
P₂: \{a₂, c, d\}
P₃: \{a₃, b₃, d\}

Alphabet

- ℙ: finite set of processes.
- Σ: finite set of letters.
- loc : Σ → (2^{ℙ} \setminus \emptyset): distribution of letters over processes.

loc(a₁) = \{P₁\}, loc(c) = \{P₁, P₂\}, ...
Asynchronous automaton: example

Alphabet

- \mathbb{P}: finite set of processes.
- Σ: finite set of letters.
- $loc: \Sigma \rightarrow (2^\mathbb{P} \setminus \emptyset)$: distribution of letters over processes.

$loc(a_1) = \{P_1\}, \quad loc(c) = \{P_1, P_2\}, \ldots$
Asynchronous automata formally

Alphabet

- \mathbb{P}: finite set of processes.
- Σ: finite set of letters.
- $\text{loc} : \Sigma \rightarrow (2^\mathbb{P} \setminus \emptyset)$: distribution of letters over processes.

A (deterministic) asynchronous automaton

$$\mathcal{A} = \langle \{S_p\}_{p \in \mathbb{P}}, s_{in}, \{\delta_a\}_{a \in \Sigma} \rangle$$

- S_p states of process p
- $s_{in} \in \prod_{p \in \mathbb{P}} S_p$ is a (global) initial state,
- $\delta_a : \prod_{p \in \text{loc}(a)} S_p \rightarrow \prod_{p \in \text{loc}(a)} S_p$ is a transition relation.
Language of an asynchronous automaton

The language of the automaton

The (regular) language of the product automaton.

Independence/Dependence

- Function $loc : \Sigma \rightarrow (2^\mathbb{P} \setminus \emptyset)$ implies an independence relation on letters:

 \[(a, b) \in I \iff \text{loc}(a) \cap \text{loc}(b) = \emptyset \]

- So the language is closed under commuting independent letters (trace closed):

 \[vabw \in L(A) \implies vba w \in L(A) \]

- Dependence relation $D = (\Sigma \times \Sigma) \setminus I$. We will express it graphically:

 \[a \rightarrow c \rightarrow b \]
Traces: an example

Dependence relation

```
<table>
<thead>
<tr>
<th></th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A trace

```
<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_1</td>
<td></td>
<td>a_3</td>
</tr>
<tr>
<td></td>
<td>b_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>a_3</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

7/30
Structure on traces

Prefix relation on traces

- The prefix relation on traces \sqsubseteq is defined similarly as for words.
- Differently from words, a trace may have two prefixes that are themselves \sqsubseteq-incomparable.

$$t_1, t_2 \sqsubseteq t \text{ but } t_1 \not\sqsubseteq t_2 \text{ and } t_1 \not\sqsubseteq t_2$$

For example: a and b are both prefixes of abc when $(a, b) \in I$.

- We write $t_1 \not\# t_2$ if the two traces do not have a common extension.
 For example: $ac \not\# aac$ when $(a, c) \notin I$.
Event structures

From words to trees

A prefix-closed language $L \subseteq \Sigma^*$ defines a Σ-labeled tree:
- nodes are elements of L,
- the tree order is given by the prefix relation \sqsubseteq.
- the label of $w \in L$ is the last letter in L.

From traces to event structures

A prefix-closed language $L \subseteq \text{Tr}(\Sigma)$ defines a Σ-labeled event structure:
- nodes are prime traces from L.
- the partial order is given by the prefix relation \sqsubseteq.
- relation $\#$ is called conflict relation.
- the label of t is the label of the maximal element of t.

$ES(\mathcal{A})$

We denote by $ES(\mathcal{A})$ the (trace) event structure of the language $L(\mathcal{A})$.
Event structures: examples

From traces to event structures

A prefix-closed language $L \subseteq \text{Tr}(\Sigma)$ defines a Σ-labeled event structure:

- nodes are prime traces from L.
- the partial order is given by the prefix relation \sqsubseteq.
- relation $\#$ is called conflict relation.
- the label of t is the label of the maximal element of t.

$\Sigma = \{a, b\}$, independent

\[\begin{array}{c}
a \\
\downarrow \\
a \\
\downarrow \\
\downarrow \\
a \\
\end{array} \quad \begin{array}{c}
b \\
\downarrow \\
b \\
\downarrow \\
\downarrow \\
b \\
\end{array}\]

$\Sigma = \{a, b, c\}$, $D : a \rightarrow c \rightarrow b$

\[\begin{array}{c}
c \\
\downarrow \\
a \\
\downarrow \\
\downarrow \\
a \\
\end{array} \quad \begin{array}{c}
b \\
\downarrow \\
b \\
\downarrow \\
b \\
\end{array} \quad \begin{array}{c}
c \quad c \\
\quad \downarrow \\
\end{array} \quad \begin{array}{c}
D : a \rightarrow c \rightarrow c \\
\downarrow \\
\end{array}\]

\[\begin{array}{c}
a \\
\downarrow \\
a \\
\downarrow \\
\downarrow \\
a \\
\end{array} \quad \begin{array}{c}
c \\
\downarrow \\
c \\
\downarrow \\
c \\
\end{array} \quad \begin{array}{c}
c \\
\downarrow \\
\end{array}\]
Specifying event structures

Logics for event structures

First-order logic (FOL) over the signature ≤, #, Pa for a ∈ Σ:

\[x \leq x' \mid x \# x' \mid Pa(x) \mid \neg \varphi \mid \varphi \lor \psi \mid \exists x. \varphi(x). \]

Monadic second-order logic (MSOL):

\[\ldots \exists x \in Z \mid \exists Z. \varphi(Z). \]

Monadic trace logic (MTL): quantification restricted to conflict free sets.

Theorem (Madhusudan)

The problem if a given formula holds in a given trace event structure is decidable for FOL and MTL.

Remark

There are trace event structures with undecidable MSOL theory (grid).
Part 1

Controlling asynchronous automata

- Process and action-based control.
- Reduction from process-based to action-based control.
- Encoding into MSOL theory of event structures.
Controlling an asynchronous automaton: an example

Example specifications

1. $a_i b_j c_k$ with $k = i$.
2. $a_i b_j c_k$ with $k = i \cdot j$.

Two methods of control

- **Process-based** [Madhusudan et al.]: Process decides what actions it can do.
- **Action-based** [Gastin et al.]: Actions decide whether they can execute.
Process-based control

Plant over \mathbb{P}, $loc : \Sigma \to (2^\mathbb{P} \setminus \emptyset)$ and $\Sigma = \Sigma^{sys} \cup \Sigma^{env}$

A deterministic asynchronous automaton.

Views for a process $p \in \mathbb{P}$

- Let $view_p(t)$ be the smallest prefix of t containing all p-actions.
- Let $Plays_p(A) = \{view_p(t) : t \in L(A)\}$.

Strategy

- A strategy is a tuple of functions $f_p : Plays_p(A) \to 2^{\Sigma^{sys}}$ for $p \in \mathbb{P}$.
- Plays respecting $\sigma = \{f_p\}_{p \in \mathbb{P}}$. Assume $u \in Plays(A, \sigma)$.
 - if $a \in \Sigma^{env}$ and $ua \in Plays(A)$ then ua is in $Plays(A, \sigma)$.
 - if $a \in \Sigma^{sys}$ and $ua \in Plays(A)$ then $ua \in Plays(A, \sigma)$ provided that
 $a \in f_p(view_p(u))$ for all $p \in loc(a)$.
Process-based control

Requirements

- We are given asynchronous automaton \mathcal{A} and a regular trace language K.
- A strategy $\sigma = \{f_p\}_{p \in \mathbb{P}}$ gives us a set of traces $\text{Plays}^\omega(\mathcal{A}, \sigma)$.
- A strategy is non-blocking if every trace in $\text{Plays}(\mathcal{A}, \sigma)$ that has an extension in $\text{Plays}(\mathcal{A})$, also has an extension in $\text{Plays}(\mathcal{A}, \sigma)$.

The control problem

Given \mathcal{A} and K, decide if there is a non-blocking strategy σ such that $\text{Plays}^\omega(\mathcal{A}, \sigma) \subseteq K$.
Action-based control

<table>
<thead>
<tr>
<th>Process based</th>
<th>Action based</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{view}_p(t)$</td>
<td>$\text{view}_a(t) = \bigcup { \text{view}_p(t) : p \in \text{loc}(a) }$</td>
</tr>
<tr>
<td>$\text{Plays}_p(A)$</td>
<td>$\text{Plays}_a(A) = { \text{view}_a(t) : t \in L(A) }$</td>
</tr>
<tr>
<td>$f_p : \text{Plays}_p(A) \to 2^{\Sigma^{sys}}$</td>
<td>$g_a : \text{Plays}_a(A) \to {tt, ff}$</td>
</tr>
<tr>
<td>$\sigma = { f_p }_{p \in P}$</td>
<td>$\rho = { g_a }_{a \in \Sigma^{sys}}$</td>
</tr>
</tbody>
</table>

$\text{Plays}^\omega(A, \rho)$

- if $a \in \Sigma^{env}$ and $ua \in \text{Plays}(A)$ then ua is in $\text{Plays}(A, \rho)$.
- if $a \in \Sigma^{sys}$ and $ua \in \text{Plays}(A)$ then $ua \in \text{Plays}(A, \rho)$ provided that $g_a(\text{view}_a(u)) = tt$.
Reduction “process-based” to “action-based”

Observation 1
If there is a process-based controller then there is an action-based controller.

Observation 2
This does not in principle imply that process-based control is easier than action-based control (nor vice-versa).

Fact
For every asynchronous automaton \mathcal{A} and MSOL specification α, one can construct $\overline{\mathcal{A}}$ and $\overline{\alpha}$ such that:

\[
\text{process-based controller for } (\mathcal{A}, \alpha) \text{ exists iff action-based controller for } (\overline{\mathcal{A}}, \overline{\alpha}) \text{ exists.}
\]
Reduction: example

\[P_1 : \{a_1\}\quad P_2 : \{c, d\}\quad P_3 : \{a_3\} \]

\[\Sigma_{sys} = \{a_1, a_3, c, d\} \]

- \(P_1: a_1\) always possible, \(c\) only after \(a_1\)
- \(P_2: c\) always possible, \(d\) after \(c\) or if no \(A_2\) before
- \(P_3: a_3\) always possible, \(d\) only after \(a_3\)
Reduction: example (cont.)

New arena for action-based strategy

- New (local) system actions: $\top, \{a_1\}, \{a_1, c\}, \{c, d\}, \{c\}, \ldots$
- New (local) environment actions: $\bot, (a, P_1), (c, P_1), (d, P_2), \ldots$
- \top winning and \bot losing (for system)
Reduction: example (cont.)

New arena for action-based strategy

- System proposes its set of local actions in form of new actions (process-wise), e.g. \(\{a_1, c\}, \{c\} \). If proposed sets have empty \(\cap \) (although actions are possible) then \(\bot \) is possible.

- Environment chooses one of the proposed actions (process-wise). If it chooses maliciously (e.g. \((a_1, P_1), (c, P_2) \)) then \(\top \) is possible.
Encoding process-based control

MSOL encoding (Madhusudan et al.)

For a MSOL specification α there is a MSOL formula φ_α such that $ES(A) \models \varphi_\alpha$ iff the process-based control problem for (A, α) has a solution.

Remark

The same can be done for action-based control.
Writing the formula φ_α

Encoding strategies

- Take $\sigma = \{ f_p \}_{p \in \mathbb{P}}$ where each $f_p : \text{Plays}_p(A) \rightarrow 2^{\Sigma_{sys}}$.
- Encode σ with the help of variables Z^a_p for $a \in \Sigma_{sys}$ and $p \in \mathbb{P}$.

for every $e \in ES(A)$ \quad $e \in Z^a_p$ \quad iff \quad $a \in f_p(e)$

Encoding action-based control

- Write a formula $\pi(X, Z^a_p, \ldots)$ defining $\text{Plays}(A, \sigma)$.
- Write a formula $\pi^\omega(X, Z^a_p, \ldots)$ defining $\text{Plays}^\omega(A, \sigma)$.
- Say that all paths in $\text{Plays}^\omega(A, \rho)$ satisfy the specification: \quad $\forall X. \pi^\omega(X, Z^a_p, \ldots) \Rightarrow \alpha(X)$.
- The required formula is: $\exists Z^a_p \ldots \forall X. \pi^\omega(X, Z^a_p, \ldots) \Rightarrow \alpha(X)$.
Decidability of MSOL is not necessary

Definition

A trace alphabet is a co-graph if it does not contain the induced subgraph $a - b - c - d$.

Theorem (Gastin, Lerman, Zeitoun)

The action-based control problem is decidable for automata over co-graph trace alphabets.

Remark

Alphabet $\Sigma = \{a, b, c\}$ with $a - c - b$ is a co-graph. There is A over this alphabet whose $ES(A)$ has undecidable MSOL theory.
Part 2

MSOL and Thiagarajan’s conjecture

- Thiagarajan’s conjecture
- Co-graph dependence alphabets
Synchronizing automata

An automaton \(A \) is not synchronizing if there are traces \(x, u, v, y \) such that

- \(u, v \) are nonempty and independent from each other.
- \(xu vy \) is a prime trace.
- \(xu^* v^* y \subseteq L(A) \).

Remark

If \(A \) is not synchronizing then \(ES(A) \) has undecidable MSOL theory.

Conjecture

If \(A \) is synchronizing then the MSOL theory of \(ES(A) \) is decidable.
Strongly synchronizing automata

An asynchronous automaton \mathcal{A} is strongly synchronizing if in every prime trace of $L(\mathcal{A})$, each of its events has at most $|\mathcal{A}|$ many concurrent events.

Theorem (Madhusudan, Thiagarajan, Yang)

If \mathcal{A} is strongly synchronizing then the MSOL theory of $ES(\mathcal{A})$ is decidable.

Corollary

Both process- and action-based control are decidable for strongly synchronizing automata.
Remark

There are automata \mathcal{A} that are not strongly synchronizing but still MSOL theory of $ES(\mathcal{A})$ is decidable.

Example: $\Sigma = \{a, b, c\}$, $D : a - c - b$, $L(\mathcal{A}) = a^*ba^*c + c$

- This event structure is not strongly synchronizing.
- It has decidable MSOL theory.

- Encode prime trace $[a^m bc]$ by the word $a^m bc$, etc.
- Translate MSOL over event structure into MSOL over $\{a, b, c\}$-tree.
- Ex: partial order $[a^n] < [a^n bc]$ translates to $a^n < a^n bc$ (word prefix).
- Rem: encoding $[a^n bc]$ by $ba^n c$ does not work, since a^n and ba^n far apart in the tree.
Strongly synchronizing are too strong

Remark

There are automata A that are not strongly synchronizing but still MSOL theory of $ES(A)$ is decidable.

Example: $\Sigma = \{a, b, c\}$, $D : a \rightarrow c \rightarrow b$, $L(A) = a^*ba^*c + c$

- This event structure is not strongly synchronizing
- It has decidable MSOL theory.

- Encode prime trace $[a^m bc]$ by the word $a^m bc$, etc.
- Translate MSOL over event structure into MSOL over $\{a, b, c\}$-tree.
- Ex: partial order $[a^n] < [a^n bc]$ translates to $a^n < a^n bc$ (word prefix).
- Rem: encoding $[a^n bc]$ by $ba^n c$ does not work, since a^n and ba^n far apart in the tree.
Towards a solution: co-graphs

Trace normal form

We look for trace normal forms $\text{nf}(t)$ that behave well w.r.t. prefix relation:

for all traces $t < t'$ there are words p, s, s' s.t.

$$\text{nf}(t') = ps', \text{nf}(t) = ps \text{ and } s \text{ is small}$$

Co-graphs

- In trace t: $a \parallel b$ and $a \uparrow \cap b \uparrow \neq \emptyset$.
- For co-graphs (and A synchronizing) there is no extension t' of t such that

$$\Delta_{t'}(a, b) > \Delta_t(a, b) \text{ or } \Delta_{t'}(b, a) > \Delta_t(b, a).$$
Normal form

Dynamical lexicographic form

- Enforce more order to the trace partial order:
 \[\text{For } a \parallel b \text{ let } a \prec b \text{ if } |\Delta_t(a, b)| > N, \quad N = |\mathcal{A}|. \]

- Trace partial order \(t \) plus \(\prec \) is acyclic: \(t \prec \).
- The priority normal form is the lexicographic normal form of \(t \prec \).
- If \(\mathcal{A} \) is strongly synchronizing then it coincides with the lexicographic normal form.

Priority normal form and reduction

- Priority normal form has the desired property:
 for all traces \(t \prec t' \) there are words \(p, s, s' \) s.t.
 \[nf(t') = ps', \quad nf(t) = ps \text{ and } s \text{ is small} \]

- Reduction of MSOL over \(ES(\mathcal{A}) \) to MSOL over \(\Sigma \)-tree works by identifying \(t \) with word \(p \) in the tree and checking that small \(s \) fits correctly into \(s' \).
Normal form

Dynamical lexicographic form

- Enforce more order to the trace partial order:

 $$\text{For } a \parallel b \text{ let } a \prec b \text{ if } |\Delta_t(a, b)| > N, N = |\mathcal{A}|.$$

- Trace partial order $$t$$ plus $$\prec$$ is acyclic: $$t \prec$$.

- The priority normal form is the lexicographic normal form of $$t \prec$$.

- If $$\mathcal{A}$$ is strongly synchronizing then it coincides with the lexicographic normal form.

Priority normal form and reduction

- Priority normal form has the desired property:

 for all traces $$t < t'$$ there are words $$p, s, s'$$ s.t.

 $$nf(t') = ps', \ nf(t) = ps \text{ and } s \text{ is small}$$

- Reduction of MSOL over $$ES(\mathcal{A})$$ to MSOL over $$\Sigma$$-tree works by identifying $$t$$ with word $$p$$ in the tree and checking that small $$s$$ fits correctly into $$s'$$.
Conclusions

• While traces are relatively well understood, event structures are much less.
• From the synthesis point of view, event structures are more fundamental than traces.
• Thiagarajan’s conjecture is an important milestone in understanding the decidability frontier.
• Thiagarajan’s conjecture is true for co-graphs. The general case remains open.
• It may well be the case that action based control is decidable for all asynchronous automata.