
Better Generalization with Adaptive Adversarial Training

Sandesh Kamath 1 Amit Deshpande 2 K V Subrahmanyam 1

Abstract
An effective method to obtain an adversarial ro-
bust network is to train the network with adversar-
ially perturbed samples. Training with adversari-
ally perturbed samples increases the robustness of
the network significantly, but affects the general-
ization of the network to unperturbed points. We
propose an adaptive training method which aims
to perturb only a small fraction of the training
samples which aids not only adversarial robust-
ness but also better generalization as compared to
perturbing all the training samples. This method
is also faster than perturbing the entire training
set.

1. Introduction
Neural networks are currently the de-facto method for many
classification, object detection and other machine learning
tasks. But they have a severe vulnerability as pointed to
by Szegedy et al. (2013), Biggio et al. (2017) by which a
small, pixel-wise perturbation that is almost imperceptible
to the human eye when added to the test data will be grossly
misclassified by the network. These small perturbations can
be obtained either using box-constrained L-BFGS as pro-
posed by Szegedy et al. (2013) or a quicker method using
gradients by Goodfellow et al. (2015), the Fast Gradient
Sign Method (FGSM) where the adversarial perturbation
is given by x′ = x + ε sign (∇xJ(θ, x, y)), where x is
the input, y represents the targets, θ represents the model
parameters, and J(θ, x, y) is the cost used to train the net-
work. Subsequent work has introduced multi-step variants
of FGSM, notably, an iterative method by Kurakin et al.
(2017) and Projected Gradient Descent (PGD) by Madry
et al. (2018). Largely, these adversarial perturbations are
studied by searching around the `∞-ball around the input x
with a fixed ε, which roughly quantifies the allowed pixel

1Chennai Mathematical Institute, Chennai 2Microsoft
Research, India. Correspondence to: Sandesh Ka-
math <ksandeshk@cmi.ac.in>, Amit Deshpande <amit-
desh@microsoft.com>.

ICML 2019 Workshop on Understanding and Improving General-
ization in Deep Learning, Long Beach, California, 2019. Copy-
right 2019 by the author(s).

wise perturbation budget for x.

An obvious solution to this problem in obtaining a network
which is robust towards such perturbations is to train the
network with perturbed samples. This is referred to as
adversarial training, where the input samples are perturbed
either with FGSM/PGD before using it to train the network.
Apart from such simple methods there are many elaborate
defense mechanisms proposed for example Papernot et al.
(2015), Xie et al. (2017), and others, but such schemes have
immediately been shown not to be strong enough by Athalye
et al. (2018).

Many have tried to address the adversarial robustness is-
sue from different aspects of the network. Sabour et al.
(2017) have tried to address in the architecture level without
adversarial training and show the network gains a certain
degree of FGSM robustness. The work by Schmidt et al.
(2018) claim that to achieve adversarial robustness a much
larger input sample set is needed. While Galloway et al.
(2018) observe that weight decay itself can give a robust
network which generalized better than robustness achieved
by adversarial training. While some like Yao et al. (2018),
Moosavi-Dezfooli et al. (2018) propose training methods
which exploit the curvature information associated with
adversarial training to be the fix for better robustness.

More recent work by Tsipras et al. (2018) give a theoretical
model to understand the tension between adversarial robust-
ness and generalization and give examples where adversarial
robustness can be obtained only by significant reduction in
generalization. They show how a classification task on their
example could achieve 99% test accuracy but adversarial
accuracy could be as low as 10%. They also point out that
adversarial training could be an important step towards ob-
taining a robust network model. But not all classification
tasks need 99% accuracy, hence, leading to the question that
can we have a effective training method which could obtain
good robustness and generalization.

Motivation for the Algorithm
One common issue with all the robustness methods is that
the training method is expensive and also has poor general-
ization. Another known property of training samples is that
not all samples lie near the decision boundary. Motivated by
this we wanted to exploit such properties and incorporate it
as part of the training, there by obtaining a robust network

Better Generalization with Adaptive Adversarial Training

with better generalization. Since gradient information is
readily available to attacks like FGSM/PGD we too make
use of them to obtain a sampling method for the training
which would make the network more robust without af-
fecting the generalization and also improve training speed
depending on the sampling size.

Our Results We observe that our algorithm achieves better
generalization compared to training with all samples adver-
sarially perturbed. The algorithm also achieves robustness
comparable to training with all samples perturbed. Cur-
rently we get these results with upto 10K samples of the
total training samples perturbed without any fine tuning of
the algorithm.

2. Adaptive Adversarial Training Algorithm
It is known that adversarially training with all inputs per-
turbed in each epoch despite giving a more robust network is
very expensive and leads to poorer generalization. With the
main aim to improve the training for better generalization
along with robustness we propose the following algorithm
which only perturbs a small sample of the input for each
epoch of training. Our algorithm is mainly based on a sam-
pling technique obtained from gradients of the loss function
with respect to the data points. Just like the attack methods
like FGSM/PGD which exploit the gradients of the loss
function with respect to the data to create attacks, we use
the gradients at the beginning of each epoch to get a sam-
pling method to obtain the list of candidate points which are
to be adversarially perturbed either with FGSM/PGD (we
currently report results with FGSM perturbed points only)
before training the network.

In Algorithm 1 we take the gradients with respect to the
loss function eg. cross entropy for all training samples and
obtain their norms e.g. g

′

i = ||gi||2, where gi is the gradient
of the ith sample. Using these norms we obtain a probability
distribution on the samples as pi = g

′

i/
∑T

i=1 g
′

i, where pi
is the probability associated with each sample. Using these
probabilities pi we draw n samples from the training set
and perturb them with FGSM with ε = 0.3 for MNIST
and Fashion MNIST and ε = 0.02 for CIFAR10. This
step is repeated during each epoch of training the network.
Similarly, we also run a version of the algorithm with the
probability distribution on the samples obtained by taking
the squared norm of the gradients e.g. g

′

i = ||gi||22, where
gi is the gradient of the ith sample.

2.1. Robustness achieved by Algorithm 1

In Figures 1 to 3 we plot the test accuracy with PGD at-
tack with changing ε budget. Plots in blue, red and green
correspond to the robustness obtained with training using
Algorithm 1 with 100, 1000, 10000 samples of the training

Algorithm 1: Adaptive Adversarial Training Algorithm
Data: Network N , any input-dependent adversarial

attack A, ε for A and sample size n to be used
for adversarial training, T - Training data size.
epochs - E

Result: Network N adversarially trained using n
samples perturbed using A attack with ε
budget.

1 repeat
2 Obtain gradients for unperturbed training data

g1, ..., gT for the T training samples s1, ..., sT .
3 Obtain probability distribution on the training

samples using g
′

i = ||gi||2, for i = 1 to T ,
pi = g

′

i/
∑T

i=1 g
′

i.
4 OR
5 Obtain probability distribution P on the training

samples using g
′

i = ||gi||22, for i = 1 to T ,
pi = g

′

i/
∑T

i=1 g
′

i.
6 Obtain n samples from probability distribution P ,

K is set of indices associated with n. Perturb n
samples using A with budget ε to get s

′

i where
i ∈ K.

7 Train network with new training data
s1, ..., s

′

i, ..., s
′

j , ..., sT , where si are original
samples and s

′

i are perturbed samples.
8 until E epochs;

data perturbed, respectively per epoch. Plots in black were
trained without adversarial inputs while plots in brown were
obtained by training with all the input samples perturbed
by FGSM with ε = 0.3 for MNIST and Fashion MNIST
and ε = 0.02 for CIFAR10. We observe that even in the
current scheme where we only perturb the samples with
FGSM we get better robustness to PGD attacks. This could
point towards a possibility that with more fine tuning we
could perform adversarial training with a simpler perturba-
tion method like FGSM and achieve stronger robustness to
attacks like PGD.

2.2. Generalization with Algorithm 1

We observe that we get better generalization with our train-
ing method compared to full adversarial training. For plots
in Figure 4 the x-axis represents the number of training
samples adversarially perturbed while training. Therefore,
the left most point in the plots represents a network trained
with unperturbed data while the rightmost point represents
a network trained with all its training samples adversarially
perturbed. In between points in the plots were obtained by
using Algorithm 1 for training the networks. We observe in
Figure 4 that we get better generalization by training with
Algorithm 1 as the change in test accuracy compared to un-

Better Generalization with Adaptive Adversarial Training

Figure 1: On StdCNN, Test Accuracy for MNIST trained with varying samples perturbed with FGSM (ε = 0.3) and attacked
with PGD with varying ε budget. Sampling method in Algorithm 1 based on (left) Norm, (right) Squared Norm of gradients.

Figure 2: On StdCNN, Test Accuracy for Fashion MNIST trained with varying samples perturbed with FGSM (ε = 0.3) and
attacked with PGD with varying ε budget. Sampling method in Algorithm 1 based on (left) Norm, (right) Squared Norm of
gradients.

Figure 3: On ResNet18, Test Accuracy for CIFAR10 trained with varying samples perturbed with FGSM (ε = 0.02) and
attacked with PGD with varying ε budget. Sampling method in Algorithm 1 based on (left) Norm, (right) Squared Norm of
gradients.

Better Generalization with Adaptive Adversarial Training

perturbed training is within 0.5% for all the datasets. While
a network trained with all samples adversarial perturbed
has smaller change (within 0.5%) for MNIST while the is
drop upto 2− 4% for Fashion MNIST and CIFAR10. These
results are similar to that obtained by Tsipras et al. (2018).
They too observe smaller drop in generalization for MNIST
with adversarial training while for CIFAR10 there is a larger
reduction.

Figure 4: Test Accuracy for Datasets on unperturbed test
data, trained with varying samples perturbed with FGSM
(ε = 0.3 for MNIST/Fashion MNIST, ε = 0.02 for CI-
FAR10). Sampling method in Algorithm 1 based on (top)
Norm, (bottom) Squared Norm of gradients.

3. Details of Datasets, Model Parameters and
Training Methods

All experiments performed on neural network-based models
were done using MNIST, Fashion MNIST and CIFAR10
datasets.

Data sets MNIST dataset consists of 70, 000 images of
28× 28 size, divided into 10 classes. 55, 000 used for train-
ing, 5, 000 for validation and 10, 000 for testing. Fashion
MNIST dataset consists of 70, 000 images of 28× 28 size,
divided into 10 classes. 55, 000 used for training, 5, 000 for

validation and 10, 000 for testing. CIFAR10 dataset consists
of 60, 000 images of 32× 32 size, divided into 10 classes.
40, 000 used for training, 10, 000 for validation and 10, 000
for testing.

Model Architectures For the MNIST and Fashion MNIST
based experiments we use the architecture as given in the
Table 1 referred to as StdCNN.

For the CIFAR10 based experiments we used ResNet18
architecture as mentioned in He et al. (2016). Input training
data was augmented with random cropping and random
horizontal flips by default.

Table 1: Architectures used for experiments

Standard CNN

Conv(10,3,3) + Relu
Conv(10,3,3) + Relu
Max Pooling(2,2)
Conv(20,3,3) + Relu
Conv(20,3,3) + Relu
Max Pooling(2,2)
FC(50) + Relu
Dropout(0.5)
FC(10) + Softmax

Adversarial Training Settings All the networks with or
without adversarial inputs were trained for 100 epochs.
Perturbations applied to the training data were obtained
by FGSM method with ε = 0.3 for MNIST and Fashion
MNIST and ε = 0.02 for CIFAR10. Test time adversar-
ial robustness was checked using PGD for all the datasets
irrespective of the training method.

4. Conclusion
Adaptive adversarial training as given by Algorithm 1
achieves better generalization and obtains comparable ad-
versarial robustness even to a strong attack like PGD in
comparison to training with all input samples adversarially
perturbed.

References
Athalye, A., Carlini, N., and Wagner, D. A. Obfus-

cated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples. CoRR,
abs/1802.00420, 2018. URL http://arxiv.org/
abs/1802.00420.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndic,
N., Laskov, P., Giacinto, G., and Roli, F. Evasion
attacks against machine learning at test time. CoRR,

http://arxiv.org/abs/1802.00420
http://arxiv.org/abs/1802.00420

Better Generalization with Adaptive Adversarial Training

abs/1708.06131, 2017. URL http://arxiv.org/
abs/1708.06131.

Galloway, A., Tanay, T., and Taylor, G. W. Adversarial train-
ing versus weight decay. CoRR, abs/1804.03308, 2018.
URL http://arxiv.org/abs/1804.03308.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversar-
ial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2017.

Madry, A., Makelov, A. A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to ad-
versarial attacks. In International Conference on Learn-
ing Representations, 2018.

Moosavi-Dezfooli, S., Fawzi, A., Uesato, J., and Frossard, P.
Robustness via curvature regularization, and vice versa.
CoRR, abs/1811.09716, 2018. URL http://arxiv.
org/abs/1811.09716.

Papernot, N., McDaniel, P. D., Wu, X., Jha, S., and
Swami, A. Distillation as a defense to adversarial
perturbations against deep neural networks. CoRR,
abs/1511.04508, 2015. URL http://arxiv.org/
abs/1511.04508.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing
between capsules. CoRR, abs/1710.09829, 2017.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. CoRR, abs/1804.11285, 2018. URL http:
//arxiv.org/abs/1804.11285.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy.
CoRR, abs/1805.12152, 2018. URL http://arxiv.
org/abs/1805.12152.

Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. L. Mit-
igating adversarial effects through randomization. CoRR,
abs/1711.01991, 2017. URL http://arxiv.org/
abs/1711.01991.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W.
Large batch size training of neural networks with ad-
versarial training and second-order information. CoRR,
abs/1810.01021, 2018. URL http://arxiv.org/
abs/1810.01021.

A. Complete Adversarial Training with PGD
We include results where in the complete training was done
using PGD on all samples with ε = 0.3 for MNIST and
Fashion MNIST and ε = 0.02 for CIFAR10.

Figure 5: PGD Test Accuracy for Datasets with training
using PGD perturbed data with ε = 0.3 for MNIST/Fashion
MNIST, ε = 0.02 for CIFAR10. (top) MNIST, (middle)
Fashion MNIST (bottom) CIFAR10.

http://arxiv.org/abs/1708.06131
http://arxiv.org/abs/1708.06131
http://arxiv.org/abs/1804.03308
http://arxiv.org/abs/1811.09716
http://arxiv.org/abs/1811.09716
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1804.11285
http://arxiv.org/abs/1804.11285
http://arxiv.org/abs/1805.12152
http://arxiv.org/abs/1805.12152
http://arxiv.org/abs/1711.01991
http://arxiv.org/abs/1711.01991
http://arxiv.org/abs/1810.01021
http://arxiv.org/abs/1810.01021

