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Abstract
Large-batch training is known to incur poor gen-
eralization by Jastrzebski et al. (2017) as well as
poor adversarial robustness by Yao et al. (2018b).
Hessian-based analysis of large-batch training
by Yao et al. (2018b) concludes that adversarial
training as well as small-batch training leads to
lower Hessian spectrum. They combine adversar-
ial training and second order information to come
up with a new large-batch training algorithm to
obtain robust models with good generalization.
In this paper, we empirically observe that net-
works trained with constant learning rate to batch
size ratio as proposed by Jastrzebski et al. (2017)
not only have better generalization but also have
roughly constant adversarial robustness across all
batch sizes.

1. Introduction
Stochastic Gradient Descent (SGD) and its variant are the
current workhorse for training neural network models. Hy-
perparameters like learning rate, batch size and momen-
tum play an important role in SGD for obtaining a good
minimum which generalizes well. Smith et al. (2017) and
Hoffer et al. (2017) have tried to study and suggest clear
rules and relation between the hyperparameters. Goyal et al.
(2017) show that Imagenet can be trained quickly with a
nice relation only between learning rate and batch size in a
distributed setting.

But there seems to be a trade-off in generalization when
the network is trained with larger batches of training sam-
ples e.g. 512/1024 and above. Keskar et al. (2016) show
that large batch training lead to sharp minima which is bad
for generalization. They also propose a solution to handle
the sharp minima issue along with better generalization.
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While Dinh et al. (2017) show that sharp minima on deeper
networks do also generalize well. In recent work by Jas-
trzebski et al. (2017) have modelled SGD along with its
associated hyperparameters like learning rate and batch size.
They show that maintaining contant ratio between learn-
ing rate and batch size leads the gradient descent algorithm
to converge to a flatter minima and this results in better
generalization.

Neural networks recently have been able to give state-of-
the-art results for many classification tasks but the work of
Szegedy et al. (2013), Biggio et al. (2017) have exposed a
serious vulnerability in neural network-based models which
achieve state of the art results in various tasks like object
recognition, speech synthesis, etc. These models are known
to be vulnerable to small, pixel-wise changes that are almost
imperceptible to the human eye, but the networks grossly
misclassify the perturbed data. They obtain the small per-
turbation using box-constrained L-BFGS by maximizing
the prediction error of the given model. Goodfellow et al.
(2015) propose a quicker method based on gradients, the
Fast Gradient Sign Method (FGSM) to find such an adver-
sarial perturbation given by x′ = x+ ε sign (∇xJ(θ, x, y)),
where x is the input, y represents the targets, θ represents
the model parameters, and J(θ, x, y) is the cost used to train
the network. Subsequent work has introduced multi-step
variants of FGSM, notably, an iterative method by Kurakin
et al. (2017) and Projected Gradient Descent (PGD) by
Madry et al. (2018). On visual tasks, the adversarial pertur-
bation must come from a set of images that are perceptually
similar to a given image. Goodfellow et al. (2015) and
Madry et al. (2018) study adversarial perturbations from
the `∞-ball around the input x, namely, each pixel value is
perturbed by a quantity within [−ε,+ε].

A natural thing to do in term of obtaining an adversarial
robust network would be to include the perturbed samples
into the training process. This is referred to as Adversarial
training. Which is an expensive step and hence, normally
a mixed approach is taken where the network is trained to
a good accuracy with unperturbed samples and then for a
few epochs trained with perturbed samples. e.g. in Yao et al.
(2018b), they first train the networks for 100 epochs with
unperturbed samples and then 5-10 epochs with perturbed
samples.
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Obtaining a naturally robust system without adversarial
training is a desirable property. This is also something which
recent work by Sabour et al. (2017) have tried to address in
the architecture level without adversarial training. A recent
work by Schmidt et al. (2018) try to understand the notion
of adversarial generalization in terms of sample complexity
and claim that a much larger sample size would be needed
to achieve adversarial robustness. While Galloway et al.
(2018) observe that weight decay itself can give a robust
network which generalized better than robustness achieved
by adversarial training.

A given network can be made robust either by explicit regu-
larization like adversarial training, weight conditioning or
by implicit regularization through hyper-parameter tuning.
Our work could be viewed as understanding the influence of
hyper-parameters like learning rate, batch size, momentum
on the adversarial robustness of networks.

The recent work by Yao et al. (2018b) have shown that large
batch training leads to networks which are less adversarially
robust. They explain this by using the Hessian spectrum of
the parameter space of the network and show that large batch
training lead to convergence to points with high curvature.
Curvature is characterized by dominant eigenvalue of the
Hessian. They empirically notice a correlation between
adversarial robustness of networks to curvature. This they
observe with networks trained by a certain setting of hyper-
parameters.

Our paper tries to understand the natural robustness of net-
works obtained by SGD hyper-parameter setting. We moti-
vated by the works of Jastrzebski et al. (2017) and Yao et al.
(2018b) seek to understand the relation between the network
weights obtained by the setting of various hyper-parameters
in SGD and its associated FGSM/PGD adversarial robust-
ness. For this study we use MNIST, Fashion MNIST and
CIFAR10 datasets. To do comparison with existing work we
use M1 and C1 models from Yao et al. (2018b). We also use
the network given in Table 1 which we refer to as Standard
Convolutional Neural Network (StdCNN) and ResNet18 as
given in He et al. (2016) as part of the study.

Our Results

We make the following important observations.

• Training the models with a constant learning rate to
batch size ratio not only results in convergence to a flat-
ter minima but also ensures that adversarial robustness
does not degrade with increasing batch size.

• We show that the Hessian based analysis does not al-
ways explain the adversarial robustness in small vs
large batch training.

• We show that the there are models which when trained
with large batch size have higher Hessian spectrum

and also better adversarial accuracy compared to small
batch training.

• Adding momentum helps converge to a flatter minima
by lowering the Hessian spectrum. Larger momentum
values in most cases lead to a better robust model than
with smaller momentum values.

2. Comparison to Hessian Based Benchmark
of Yao et al. (2018b)

We first verify whether we get the same values as Yao et al.
(2018b). In Figure 1 for MNIST and Figure 6 for CIFAR10
we plot the generalization which is the test accuracy and
adversarial accuracy using FGSM attack on the test with
ε = 0.3 for MNIST and ε = 0.02 for CIFAR10. In Figure 2
for MNIST and Figure 7 for CIFAR10 we plot the general-
ization which is the test accuracy and adversarial accuracy
using PGD attack on the test with ε = 0.3 for MNIST and
ε = 0.02 for CIFAR10. Figure 3 for MNIST and Figure
8 for CIFAR10 plot the topmost eigenvalue of the Hessian
wrt to model parameters. The red lines in the figures were
obtained by the exact training setting as suggested by Yao
et al. (2018a) which we refer to as Benchmark in the plots.
Refer to section 5 for details of their hyper-parameter setting.
Apart from this we have also trained the networks with fixed
learning rate(LR) and constant learning rate to batch size
ratio(LR/BS) without momentum. We plot these along with
the Benchmark. The detailed analysis of these plots will be
done in Section 3. For the Benchmark experiments we do
observe similar values on the generalization and Hessian
spectrum values as shown by Yao et al. (2018b). But for the
adversarial robustness using FGSM we observe the same
trend - that the accuracy drops with larger batch size. Our
accuracy values are however different.

We have performed the same experiments done for MNIST
on Fashion MNIST. Figures 4, 9 plot the generalization,
FGSM/PGD accuracy for Fashion MNIST with ε = 0.3 and
Figures 5, 10 for the top Hessian eigen value.

Figures 1 and 6 show that as the batch size increases the test
accuracy does decrease and similarly the associated FGSM
test accuracy also drops. Refer to Figures 2 and 7 for PGD
results. Figures 3 and 8 do confirm that with increase in
batch size the curvature increases.

However, we find that their observation that increased cur-
vature results in decrease in adversarial robustnes need not
hold.
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Figure 1: Test Accuracy of models (top) M1 (bottom) Std-
CNN trained with MNIST and using FGSM attack with
ε = 0.3. For LR, learning rate = 0.01. For LR/BS, ratio =
0.00015625. m=momentum.

Figure 2: Test Accuracy of models (top) M1, (bottom)
StdCNN trained with MNIST and using PGD attack with
ε = 0.3. For LR, learning rate = 0.01. For LR/BS, ratio =
0.00015625. m=momentum.

Figure 3: On MNIST, λθ1 : Top Eigen value of Hessian of
models (top) M1 (bottom) StdCNN. For LR, learning rate =
0.01. For LR/BS, ratio = 0.00015625. m=momentum.

Figure 4: Test Accuracy of M1 trained with Fashion MNIST
and using (top) FGSM (bottom) PGD attack with ε = 0.3.
For LR, learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.
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Figure 5: λθ1 : Top Eigen value of Hessian wrt to model
parameters of M1 trained with Fashion MNIST. For LR,
learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 6: Test Accuracy of models (top) C1 (bottom)
ResNet18 trained with CIFAR10 and using FGSM attack
with ε = 0.02. For LR,learning rate = 0.01. For LR/BS,
ratio = 0.00015625. m=momentum.

Figure 7: Test Accuracy of models (top) C1, (bottom)
ResNet18 trained with CIFAR10 and using PGD attack
with ε = 0.02. For LR, learning rate = 0.01. For LR/BS,
ratio = 0.00015625. m=momentum.

Figure 8: On CIFAR10, λθ1 : Top Eigen value of Hessian of
models, (top) C1 (bottom) ResNet18. For LR, learning rate
= 0.01. For LR/BS, ratio = 0.00015625. m=momentum.
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2.1. Counter Example to the Hessian based analysis of
Yao et al. (2018b)

We now give example of a model which when trained with
large batch has higher Hessian spectrum and also higher
adversarial robustness compared to small batch training.
For this experiment we use the network given in Table1
trained on Fashion MNIST. We train the network with a
fixed learning rate. We specifically observe that in Figure
9(top) the FGSM accuracy increases with batch size (the
light blue line in the plots), similarly in Figure 9(bottom) the
PGD accuracy also increases. So this clearly indicates that
increasing Hessian spectrum alone does not totally explain
the change in adversarial robustness of the network.

Figure 9: Test Accuracy of StdCNN trained with Fashion
MNIST and using (top) FGSM (bottom) PGD attack with
ε = 0.3. For LR, learning rate = 0.01. For LR/BS, ratio =
0.00015625. m=momentum.

3. Role of Learning Rate and Batch Size ratio
Yao et al. (2018b) show that adversarial training of networks
as a method to lower Hessian spectrum. Jastrzebski et al.
(2017) have shown that by training a network with constant
learning rate to batch size ratio the network converges to a
flatter minima. We use their theory as motivation to investi-
gate the impact of learning rate and batch size on adversarial
robustness of networks.

We go about the investigation by considering various com-
binations of learning rate and batch size and analyse their

Figure 10: λθ1 : Top Eigen value of Hessian wrt to model
parameters of StdCNN trained with Fashion MNIST. For
LR,learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

generalization, adversarial robustness and Hessian spec-
trum. We use the following hyperparameter settings for
this purpose. They are fixed learning rate(light blue), con-
stant learning rate to batch size ratio(purple) and Benchmark
(red).

We use the above hyperparameter combinations to train mod-
els M1, StdCNN on MNIST and Fashion MNIST. Models
C1, ResNet18 were trained with the similar hyperparame-
ter combinations using CIFAR10 dataset. Figures 1 to 22
contain all the plots for all the models trained with various
hyperparameter setting. One major point to be noted here is
that the purple line whether its generalization, FGSM/PGD
accuracy or curvature of parameter space (top Hessian
eigenvalue) there is very little variation across all models
and datasets.

4. Effect of Momentum
We now analyse the role of momentum in the two setting we
used to compare with Benchmark. 1) Impact of momentum
with learning rate fixed and batch size changed (LR) and 2)
Impact of momentum with constant learning rate and batch
size ratio(LR/BS). Its clear from all the Hessian eigenvalue
plots in Figures 13, 19 for MNIST and Figures 16, 22 for
CIFAR10 that momentum irrespective of whether its used
with fixed learning rate or constant learning rate to batch
size ratio will in most cases converge to a lower Hessian
spectrum.

4.1. Effect of Momentum with LR

In the finer analysis of impact of momentum with fixed
learning rate we plot training schedules with momentum
values set to 0, 0.2, 0.5 and 0.9 for the models M1 and
StdCNN for MNIST and models C1 and ResNet18 for CI-
FAR10. Figures 11 and 14 show the generalization trend
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and as expected with larger momentum there is better gen-
eralization. This in turn leads to better FGSM adversarial
robustness as seen in Figure 11 for MNIST and Figure 14
for CIFAR10. For PGD robustness plots refer to Figure
12 for MNIST and Figure 15 for CIFAR10. Similarly in
Figures 13 and 16 its seen that the curvature reduces with
larger momentum.

Figure 11: Test Accuracy of models (top) M1 (bottom)
StdCNN trained with MNIST and using FGSM attack with
ε = 0.3. For LR, learning rate = 0.01. m=momentum.

4.2. Effect of Momentum with LR/BS

In the finer analysis of impact of momentum with constant
learning rate and batch size ratio we plot training schedules
with momentum values set to 0 and 0.9 for the models M1
and StdCNN for MNIST and models C1 and ResNet18 for
CIFAR10. In Figures 19 and 22 its seen that in most cases
the curvature reduces with larger momentum, but as com-
pared to fixed learning rate training there is no significant
role of momentum with constant learning rate and batch size
ratio. As the mild change in curvature or generalization does
not always convert into better generalization or adversarial
robustness as seen in Figures 17 and 20 for FGSM attack or
Figures 18 and 21 for PGD attack.

Figure 12: Test Accuracy of models (top) M1, (bottom)
StdCNN trained with MNIST and using PGD attack with
ε = 0.3. For LR, learning rate = 0.01. m=momentum.

Figure 13: On MNIST, λθ1 : Top Eigen value of Hessian of
models trained with varying momentum, (top) M1 (bottom)
StdCNN. For LR, learning rate = 0.01. m=momentum.
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Figure 14: Test Accuracy of models (top) C1 (bottom)
ResNet18 trained with CIFAR10 and using FGSM attack
with ε = 0.02. For LR,learning rate = 0.01. m=momentum.

Figure 15: Test Accuracy of models (top) C1, (bottom)
ResNet18 trained with CIFAR10 and using PGD attack with
ε = 0.02. For LR, learning rate = 0.01. m=momentum.

Figure 16: On CIFAR10, λθ1 : Top Eigen value of Hessian of
models trained with varying momentum, (top) C1 (bottom)
ResNet18. For LR, learning rate = 0.01. m=momentum.

Figure 17: Test Accuracy of models (top) M1, (bottom)
StdCNN trained with MNIST and using FGSM attack with
ε = 0.3. For LR/BS, ratio = 0.00015625. m=momentum.
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Figure 18: Test Accuracy of models (top) M1, (bottom)
StdCNN trained with MNIST and using PGD attack with
ε = 0.3. For LR/BS, ratio = 0.00015625. m=momentum.

Figure 19: On MNIST, λθ1 : Top Eigen value of Hessian
of models trained with varying momentum, (top) M1, (bot-
tom) StdCNN. For LR/BS, learning ratio = 0.00015625.
m=momentum.

Figure 20: Test Accuracy of models (top) C1 (bottom)
ResNet18 trained with CIFAR10 and using FGSM at-
tack with ε = 0.02. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 21: Test Accuracy of models (top) C1, (bottom)
ResNet18 trained with CIFAR10 and using PGD attack with
ε = 0.02. For LR/BS, ratio = 0.00015625. m=momentum.
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Figure 22: On CIFAR10, λθ1 : Top Eigen value of Hessian
of models trained with varying momentum, (top) C1, (bot-
tom) ResNet18. For LR/BS, learning ratio = 0.00015625.
m=momentum.

5. Details of Datasets and Model Parameters
All experiments performed on neural network-based models
were done using MNIST, Fashion MNIST and CIFAR10
datasets with appropriate augmentations applied to the
train/validation/test set.

The following settings were used for training the networks.
1) LR (Smith et al. (2017)) - where learning rate is fixed
to 0.01 and batch size is varied and training is done with
this fixed setting for 100 epochs, 2) LR/BS(Jastrzebski et al.
(2017)) - learning rate to batch size ratio is kept constant, we
set the ratio to 0.00015625 and train with this fixed setting
for 100 epochs, 3) setting as given by Yao et al. (2018b)
where the learning rate is set to 0.01 and momentum to 0.9,
and learning rate is decayed by half after every 5 epochs,
for a total of 100 epochs. In 1) and 2) we do not use weight
decay nor decay of learning rate. Hence, in 1) and 2) the
hyperparameters - learning rate, batch size and momentum
are fixed in the beginning of training with SGD and no
adaptive tuning is made to the setting during the training
of the networks. Any kind of weight decay or learning rate
tuning was done exactly as mentioned by Yao et al. (2018b)
for comparison purpose and the concerned plots are referred
to as Benchmark (red line).

Data sets MNIST dataset consists of 70, 000 images of

28× 28 size, divided into 10 classes. 55, 000 used for train-
ing, 5, 000 for validation and 10, 000 for testing. Fashion
MNIST dataset consists of 70, 000 images of 28× 28 size,
divided into 10 classes. 55, 000 used for training, 5, 000 for
validation and 10, 000 for testing. CIFAR10 dataset consists
of 60, 000 images of 32× 32 size, divided into 10 classes.
40, 000 used for training, 10, 000 for validation and 10, 000
for testing.

Model Architectures For the MNIST and Fashion MNIST
based experiments we use the architectures M1 and StdCNN
as given in the Table 1.

For the CIFAR10 based experiments we use the models C1
as given in Table 1 and ResNet18 architecture as mentioned
in He et al. (2016). Input training data was augmented with
random cropping and random horizontal flips by default.

Architectures M1 used for MNIST and Fashion MNIST ex-
periments and C1 for CIFAR10 experiments are as given in
Yao et al. (2018b) which form the benchmark for compari-
son.

6. Conclusion
We show how the modelling of SGD by Jastrzebski et al.
(2017) and the Hessian spectrum can help understand the
weight space and its adversarial properties. We also see
how momentum plays a role in reducing the spectrum of
the parameters irrespective of the ratio maintained between
learning rate and batch size. We believe the paper in its
current form tries to understand the role of hyper-parameters
and the resultant networks robustness without any perturbed
input which would be necessary to gauge the impact of
adversarial training on top of it. This could aid in adapting
the hyper-parameters for adversarial training.

Table 1: Architectures used for experiments

Name Structure
StdCNN Conv(3,3,10) - Conv(3,3,10) - MP(2,2) -

Conv(3,3,20) - Conv(3,3,20) - MP(2,2) -
FC(50) - Dropout(0.5) - FC(10) - SM(10)

M1 Conv(5,5,20) - Conv(5,5,20) - FC(500) - SM(10)
C1 Conv(5,5,64) - MP(3,3) - BN - Conv(5,5,64) -

MP(3,3) - BN - FC(384) - FC(192) - SM(10)
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