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Abstract

We study the GIT quotient of the minimal Schubert variety in the Grassmannian
Gr,n admitting semistable points for the action of maximal torus T , with respect to
the T -linearized line bundle L(nωr), and show that this is smooth when gcd(r, n) = 1.
When n = 7 and r = 3 we study the GIT quotients of all Richardson varieties in the
minimal Schubert variety. This builds on previous work by Kumar [21], Kannan and
Sardar [18], Kannan and Pattanayak [17], and recent work of Kannan et al. [16]. It
is known that the GIT quotient of G2,n is projectively normal. We give a different
combinatorial proof.
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1 Introduction

Let G be a simply connected semi-simple algebraic group over C. Let T be a maximal torus
of G. Let B be a Borel subgroup of G containing T . We denote by B− the Borel subgroup of
G opposite to B determined by T . Let Q be a parabolic subgroup of G containing B. Then
G/Q is a projective variety (see [12]). Let L be a T -linearized ample line bundle on G/Q.
A point p ∈ G/Q is said to be semistable with respect to the T -linearized line bundle L if
there is a T -invariant section of a positive power of L which does not vanish at p. We denote
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by (G/Q)ssT (L) the set of all semistable points with respect to L. A point in (G/Q)ssT (L) is
said to be stable if its T -orbit is closed in (G/Qss)T (L) and its stabilizer in T is finite. Let
(G/Q)sT (L) denote the set of all stable points with respect to L. This paper is motivated
by the question of understanding the GIT quotient of G/Q with respect to the T -linearized
bundle L.

When G is of Dynkin type A this problem has been well studied. There is a reasonable
body of work when G is of type other than A. Although the results in this paper pertain
only to the case when G is of type A we will nevertheless assume that G is of general type in
this introduction to give a comprehensive survey of the results known. For that we will need
to introduce some notation. We follow the notation from Lakshmibai and Raghavan [22].

Let X(T ) denote the group of characters of T . In the root system R of (G, T ) let R+

denote the set of positive roots with respect to B. Let S = {α1, . . . , αl} ⊆ R+ be the set of
simple roots and let {ω1, . . . , ωl} be the fundamental weights. Let U (respectively, U−) be
the unipotent radical of B (respectively, B−). For each α ∈ R+, let Uα (respectively, U−−α)
be the additive one-dimensional subgroup of U (respectively, U−) corresponding to the root
α (respectively, −α) normalized by T .

Let NG(T ) denote the normalizer of T in G. The Weyl group W of G is defined to be
the quotient NG(T )/T , and for every α ∈ R there is a corresponding reflection sα ∈ W . W
is generated by sα, α running over simple roots in S. This also defines a length function l
and the Bruhat order on W .

For a subset I ⊆ S let W I = {w ∈ W |w(α) > 0, α ∈ I} and WI be the subgroup of W
generated by sα, α ∈ I. Then every w ∈ W can be uniquely expressed as w = wIwI , with
wI ∈ W I and wI ∈ WI . For w ∈ W , let nw ∈ NG(T ) be a representative of w. We denote
by PI the parabolic subgroup of G generated by B and nw, w ∈ WI . Then WI is the Weyl
group of the parabolic subgroup PI . Sometimes we use the notation WPI instead of WI .
When I = S \ {αr}, we denote the corresponding maximal parabolic subgroup of G by Pα̂r .

The quotient space G/P is a homogenous space for the left action of G. The T -fixed
points in G/P are ew = wP/P with w ∈ W P . The B-orbit Cw of ew is called a Bruhat cell,
and it is an affine space of dimension l(w). The closure of Cw in G/P is the Schubert variety
X(w). The opposite Bruhat cell Cw is the B− orbit of ew, and its closure, denoted by Xw,
is the opposite Schubert variety. For a T -linearized line bundle L on a Schubert variety in
G/P we define the notion of semistable and stable points as before. We use the notation
X(w)ssT (L) (respectively, X(w)sT (L)) to denote the semistable (respectively, stable) points
for the T -linearized line bundle L.

Every character λ of P defines a G-linearized line bundle on G/P . We denote the line
bundle by L(λ). Furthermore, L(λ) is generated by global sections if and only if λ is a
dominant weight (see [12, Part II, Proposition 2.6]).

WhenG = SL(n,C) and P = Pα̂r , G/P is the Grassmannian parametrizing r-dimensional
subspaces of Cn. We denote it by Gr,n. The Grassmannian Gr,n comes with the Plücker em-
bedding Gr,n ↪→ P(

∧r Cn) sending each r-dimensional subspace to its r-th exterior wedge
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product (see [5]). The pull back of O(1) from the projective space to Gr,n is an ample genera-
tor of the Picard group ofGr,n and corresponds to the T -linearized line bundle L(ωr). Gelfand
and MacPherson [7] considered the GIT quotient of the Grassmannian and showed that the
GIT quotient of n-points in Pr−1 (spanning Pr−1) by the diagonal action of PGL(r,C) is
isomorphic to the GIT quotient of Gr,n with respect to the T -linearized line bundle L(nωr).
They showed that the torus action gives rise to a moment map from Gr,n to Rn, with the
property that the image of each orbit is a convex polyhedron. This was extended by Gelfand
et al. in [6]. In their paper the authors proposed three natural ways to stratify the Grassman-
nian - the first stratification is motivated by the equivalence of the torus quotient with the
configuration of points in Pk−1, the second is motivated by the moment map above, and the
third is motivated by the geometry of intersections of Schubert cells in the Grassmannian.
The authors show that no matter which definition is used to stratify the Grassmannian, the
strata are the same.

Hausmann and Knutson [8] used the stratification from [6] to study the GIT quotient of
G2,n and related the resulting GIT quotient to the moduli space of polygons in R3.

Using the Hilbert-Mumford criterion, Skorobogatov [26] gave combinatorial conditions
determining when a point in Gr,n is semistable with respect to the T -linearized bundle
L(ωr). As a corollary he showed that when r and n are coprime semistability is the same as
stability.

Independently, for a general G, Kannan (see [14] and [15]) gave a description of parabolic
subgroups Q of G for which there exists an ample line bundle L on G/Q such that (G/Q)ssT (L)
is the same as (G/Q)sT (L). In particular, in the case when G = SL(n,C) and Q = Pα̂r ,
Kannan showed that (Gr,n)sT (L(ωr)) is the same as (Gr,n)ssT (L(ωr) if and only if r and n are
coprime.

In the type A case when G = SL(n,C) and Q is a parabolic subgroup, Howard [10]
considered the problem of determining which line bundles on G/Q descend to ample line
bundles of the GIT quotient of G/Q by T . For a line bundle which descends to an ample
line bundle on the quotient, by the Gelfand-MacPherson correspondence, the smallest power
of the descent bundle that is very ample would give an upper bound on the degree in which
the ring of invariants of n-points spanning projective space Pr−1 is generated. Howard showed
that when L(λ) is a very ample line bundle on G/Q (so the character of T extends to Q
and to no larger subgroup of G) and H0(G/Q,L(λ))T is non-zero, the line bundle descends
to the quotient (see [10, Proposition 2.3, Theorem 2.3]). He extended these results to the
case when the T -linearization of L(λ) is twisted by µ, a character of T . He proved that the
line bundle L(λ) twisted by µ descends to the GIT quotient provided the µ-weight space
of H0(G/Q,L(λ)) is non-zero, and this is so when λ − µ is in the root lattice and µ is in
the convex hull of the Weyl orbit of λ. This was extended to other algebraic groups by
Kumar [21, Theorem 3.10].

Kannan and Sardar [18] studied torus quotients of Schubert varieties in Gr,n. They
showed that Gr,n has a unique minimal Schubert variety, X(wr,n), admitting semistable
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points with respect to the T -linearized bundle L(ωr), and they gave a combinatorial charac-
terization of wr,n.

Kannan and Pattanayak [17] extended the results of [18] to the cases when G is of Dynkin
type B,C,D and when P is a maximal parabolic subgroup of G. Then G/Pα̂r has an ample
line bundle L(ωr). Kannan and Pattanayak gave a combinatorial description of all minimal
Schubert varieties in G/B admitting semistable points with respect to L(λ) for any dominant
character λ of B.

Kannan et al. [16] extended the results in [18] to Richardson varieties in the Grassmannian
Gr,n. Recall that a Richardson variety in Gr,n is the intersection of the Schubert variety X(w)
in Gr,n with the opposite Schubert variety Xv in Gr,n. In [16] the authors gave a criterion
for Richardson varieties in Gr,n to admit semistable points with respect to the T -linearized
line bundle L(ωr).

1.1 Our results and Organization of the paper

For all the results in this paper we assume G is of Dynkin type A. In Section 3 we begin a
study of the GIT quotient of Gr,n when r is bigger than 2 and gcd(r, n) = 1. We study the
GIT quotient of the minimal Schubert variety X(wr,n) having semistable points with respect
to the T -linearized line bundle L(nωr). We show that T\\X(wr,n)ssT (L(nωr)) is smooth. We
show that wr,n = cvr,n, where c is a Coxeter element (i.e each simple reflection occurs exactly
once in a reduced expression for c) and l(wr,n) = n− 1 + l(vr,n) with vr,n being the (unique)
maximal element vr,n ∈ W S\αr such that vr,n(nωr) ≥ 0. We show that the GIT quotient
T\\(Xvr,n

wr,n)ssT ( L(nωr)) is a point. We prove that the GIT quotient T\\(Xu
wr,n)ssT ( L(nωr)) is

P1 precisely when one can write vr,n = sαu, with l(vr,n) = l(u) + 1 and α is a simple root.
We determine all such simple roots and give a description of the descent line bundle to P1,
in terms of the combinatorics of r, n.

In Section 4 we show that the polarized variety (T\\X(w3,7)
ss
T (L(7ω3)), L̃(7ω3)) is pro-

jectively normal. In Section 5.2 we explicitly calculate the GIT quotients of the Richard-
son strata in X(w3,7) with respect to the T -linearized line bundle L(7ω3). We show that
(T\\X(w3,7)

ss
T (L(7ω3)), L̃(7ω3)) is a rational normal scroll. Finally, in Section 6 we prove

that when n is odd, the polarized variety (T\\(G2,n)ssT (L(nω2)), L̃(nω2)) is projectively nor-
mal, a result that is well known (see [10,11]). However we believe that the combinatorics we
develop to prove this result may be useful to extend this result to Grassmannians of higher
ranks.1

Acknowledgements: S. Bakshi was supported by a research fellowship from the Na-
tional Board of Higher Mathematics. All three authors were partially supported by a grant
from the Infosys foundation. The third author was supported by a grant under the MATRICS
scheme of the Department of Science and Technology. We would like to thank the anony-

1In personal communication Pattanayak informs us that he and Arpita Nayek have a proof of projective
normality of the GIT quotient of G2,n and they have a counter example for Grassmannians of higher ranks.
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2 Notations and Preliminaries

For the rest of this paper we will assume that G = SL(n,C) and P is a maximal subgroup
of G. Keeping this in mind, we revisit the notation developed in the previous section for G
of arbitrary type - we derive formulas for the various terms introduced and explicitly write
down elements of the Weyl group and the action of the torus.

We take T to be the group of diagonal matrices in G, B the subgroup of upper triangular
matrices in G and B− the subgroup of lower triangular matrices in G. The unipotent
subgroup U is the subgroup of B with diagonal entries 1, and U− is the unipotent subgroup of
B− with diagonal entries 1. S = {α1, . . . , αn−1} is the set of simple roots where αi = εi−εi+1

(see [22, Chapter 3]). For each simple root αi we have a morphism φi : SL(2,C)→ G, with
φi sending M ∈ SL(2,C) to the n×n matrix having M in rows and columns i, i+1, with the
other diagonal entries being 1 and the remaining entries zero. We use the following notation:

xi(m) = φi

(
1 m
0 1

)
, yi(p) = φi

(
1 0
p 1

)
, α∨i (t) = φi

(
t 0
0 t−1

)
, ṡαi = φi

(
0 −1
1 0

)
. (1)

Here m, p ∈ C and t ∈ C∗. It is easily checked that ṡαi is in NG(T ). We use the notation sαi
for the coset ṡαiT in NG(T )/T . The Weyl group W of G is generated by the sαi . There is
an isomorphism between W and the group of permutations of Sn, with sαi mapping to the
permutation swapping i with i + 1. So W is identified with the permutation group Sn and
for simplicity we also use the notation si for sαi . We sometimes use the one line permutation
notation (w(1), w(2), . . . , w(n)) to denote w ∈ W .

Let {e1, . . . , en} be the standard basis of Cn. Note that for r ∈ {2, . . . , n}, Pα̂r =[
∗ ∗

0n−r,r ∗

]
is the stabilizer of < e1, e2, . . . , er > in G. G/Pα̂r is the Grassmannian Gr,n, of r-

dimensional subspaces of Cn and this carries a transitive action of G making it a homogenous
G-variety. WPα̂r

is the subgroup of W generated by simple reflections sα, α ∈ S\{αr}. Now
WPα̂r

= Sr × Sn−r, so the minimal length coset representatives of W/WPα̂r
can be identified

with {w ∈ W |w(1) < w(2) < . . . < w(r), w(r + 1) < w(r + 2) < . . . < w(n)}.
Let I(r, n) = {(i1, i2, ..ir)|1 ≤ i1 < i2 · · · < ir ≤ n}. Then there is a natural identification

of W S\{αr} with I(r, n) sending w ∈ W S\{αr} to (w(1), w(2), . . . , w(r)). For w in I(r, n), let
ew = [ew(1) ∧ ew(2) · · · ew(r)] ∈ P(

∧r Cn). Then ew is a T -fixed point of Gr,n and it is known
that the ew, w ∈ I(r, n) are precisely the T -fixed points of Gr,n. The B-orbit through ew is
the Schubert cell and its Zariski closure in G/P is the Schubert variety X(w). Clearly the
B-orbit of ew is isomorphic to the U -orbit of ew. The Bruhat order is the order on r-tuples
in I(r, n) given by containment of Schubert varieties - in this order v ≤ w if and only if
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v(i) ≤ w(i) for 1 ≤ i ≤ r. As mentioned in the previous section Gr,n comes with a natural
line bundle L(ωr) and a Plücker embedding p : Gr,n ↪→ P(

∧r Cn)2. The coordinate function
corresponding to τ ∈ I(r, n) in this embedding is denoted by pτ . The collection of pτ ’s are
called the Plücker coordinates of the embedding. Each pτ is a weight vector for T .

Let C[X(w)] be the homogeneous coordinate ring of X(w) for this projective embedding.
From the main theorem of standard monomial theory for SLn (see [22, Chapter 4]) we get
H0(X(w),L(dωr)) = C[X(w)]d, and this has a basis consisting of T -eigenvectors pτ1pτ2 · · · pτd ,
with τ1 ≤ τ2 ≤ . . . ≤ τd ≤ w. Here the order ≤ is the Bruhat order. The weight of pτ1 · · · pτd
is −

∑
i τi(ωr).

We associate with each standard monomial pτ = pτ1 · · · pτd a semistandard Young tableau
Tτ of shape (d, d, .., d)︸ ︷︷ ︸

r times

whose i-th column is filled with τi = [τi(1), τi(2), . . . , τi(r)] (see [25,

Chapter 1]). It is clear that the rows of the semistandard Young tableau are weakly increasing
and the columns are strictly increasing. Let a(i) denote the number of times integer i

appears in the tableau. Then we have diag(t1, ..tn).pτ1pτ2 · · · pτd =
∏

i t
a(i)
i pτ1 · · · pτd . Since

t1 · · · tn = 1, a standard monomial is a zero weight vector if and only if all a(i)’s appear the
same number of times in the Young tableau.

First recall that given (b1, . . . , br) ∈ I(r, n), one reduced expression for the Weyl group
element in W S\{αr} corresponding to this is (sb1−1 · · · s1) . . . (sbr−1 · · · sr) where a bracket is
assumed to be empty is if bi − 1 is less than i.

We recall some lemmas and propositions which have appeared earlier. We state them
nevertheless since they are required in the rest of the paper. Some of these are folklore.

The following lemma appears in [21], [14].

Lemma 2.1. Let r and n be coprime. Let v 6= 0 be a zero weight vector in H0(X(w),L(ωr)
⊗d).

Then n divides d.

Proof. Since 0 is a weight, dωr is in the root lattice. So n divides d.

Recall from [18], that there is a unique minimal Schubert Variety X(wr,n) in Gr,n admit-
ting semistable points with respect to the line bundle L(nωr). For completeness we explicitly
calculate wr,n.

Proposition 2.2. Let r and n be coprime. Then wr,n = (a1, a2, ..ar) where ai is the smallest
integer such that air ≥ in.

Proof. Clearly wr,n > id since X(id) is a point. Let α be a simple root with sαwr,n ≤ wr,n.
Note, sαwr,n ∈ W S\{αr}. We have a surjectionH0(X(wr,n),L(nωr))→ H0(X(sαwr,n),L(nωr)).
Let K denote its kernel. So we have a short exact sequence

0→ K → H0(X(wr,n),L(nωr))→ H0(X(sαwr,n),L(nωr))→ 0.

2This notation, valid for type A, is consistent with the notation set up in the introduction for all types.
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From the minimality of wr,n we get KT → H0(X(wr,n),L(nωr))
T an isomorphism. Now

if we choose a standard monomial pτ = pτ1 · · · pτr in H0(X(wr,n),L(nωr))
T then we have

τr = wr,n, since the elements in the kernel are precisely those with a term pwr,n .

To construct such a standard monomial, we need a filling of the associated tableau Tτ
with rn boxes such that each i, 1 ≤ i ≤ n appears exactly r-times and the last column is
as small as possible in the Bruhat order. Clearly, the filling which results in the smallest
element in the Bruhat order appearing as the last column is the one in which the tableau
is filled from left to right and top to bottom with numbers 1, 2, . . . , n, in order, with each
appearing exactly r times - so the first entry of the last column is the least integer a1 such
that a1r ≥ n and, in general, the i-th entry in the last column is the smallest integer ai such
that air ≥ in, completing the proof.

The tableau constructed in the proof of Proposition 2.2 will be used repeatedly in the
paper. We denote it by Γr,n. The figure below gives Γ3,8.

Γ3,8 =
1 1 1 2 2 2 3 3
3 4 4 4 5 5 5 6
6 6 7 7 7 8 8 8

3 GIT quotients of Richardson varieties in X(wr,n)

The results in this section pertain to GIT quotients of Richardson varieties in G/Pα̂r with
respect to the T -linearized line bundle L(nωr).

3.1 GIT quotients of Richardson varieties

Theorem 3.1. Let r and n be coprime. Then the GIT quotient T\\X(wr,n)ssT (L(nωr)) is
smooth.

Proof. X(wr,n) is the minimal Schubert variety admitting semistable points with respect to
L(nωr). So X(wr,n)ssT (L(nωr)) ∩ BwPα̂r/Pα̂r = φ for all w < wr,n. From the Bruhat de-
composition it follows that X(wr,n)ssT (L(nωr)) ⊆ Bwr,nPα̂r/Pα̂r . Thus, X(wr,n)ssT (L(nωr)) is
a smooth open subset of X(wr,n). Since r and n are coprime we have X(wr,n)ssT (L(nωr)) =
X(wr,n)sT (L(nωr)) (see [13]). Let Gad = G/Z(G) be the adjoint group of G. Let π :
G → Gad be the natural homomorphism and Tad = π(T ). Note that L(nωr) is also Tad-
linearized. Therefore, X(wr,n)ssTad(L(nωr)) = X(wr,n)ssT (L(nωr)) = X(wr,n)sT (L(nωr)) =
X(wr,n)sTad(L(nωr)). Hence for any point x ∈ X(wr,n)ssT (L(nωr)) the orbit Tad.x is closed
in X(wr,n)ssT (L(nωr)) and the stabiliser of x is finite. By [13, Lemma 3.2] and the proof
of example 3.3 in that paper, the stabiliser of every point of X(wr,n)ssT (L(nωr)) in Tad is
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trivial. Therefore the GIT quotient T\\X(wr,n)ssT (L(nωr)) is a geometric quotient. Since
X(wr,n)ssT (L(nωr)) is smooth, T\\X(wr,n)ssT (L(nωr)) is also smooth.

Recall that a Richardson variety Xv
w in Gr,n is the intersection of the Schubert variety

X(w) in Gr,n with the opposite Schubert variety Xv in Gr,n.

In [16, Proposition 3.1] the authors give a characterisation of the smallest Richardson
variety in Gr,n admitting semistable points. From the proof of Proposition 2.2 we obtain an
explicit characterization.

Proposition 3.2. Let r and n be coprime. Let vr,n be such that X
vr,n
wr,n is the smallest

Richardson variety in X(wr,n) admitting semistable points. Then vr,n = [1, a1, . . . , ar−1] with
the ai defined as the smallest integer satisfying air ≥ in (as in Proposition 2.2).

Proof. Let vr,n = [b1, . . . , br]. Since X
vr,n
wr,n has a semistable point, H0(X

vr,n
wr,n ,L(nωr))

T is
non-zero. Now H0(X

vr,n
wr,n ,L(nωr)) has a standard monomial basis pτ1 . . . pτn with τ1 ≤

τ2 · · · ≤ τn (see [2]). We identify this basis with semistandard Young tableau having columns
τ1, τ2, . . . , τn as before. It follows from this identification that there is a semistandard Young
tableau with r rows and n-columns in which each integer 1 ≤ k ≤ n appears exactly r
times. From Proposition 2.2 and [2, Proposition 6] we have τn = wr,n and vr,n ≤ τ1. Since
every semistandard Young tableau has each integer in {1, . . . , n} appearing r times and the
first entry of τ1 is always 1, b1 must be 1. Since r, n are coprime, from the definition of
a1 it is immediate that all a1’s cannot be in the first row. For the same reason the ai’s
cannot all appear in the first i rows. So ai must appears in a row j where j > i. Hence
bi ≤ ai−1. Note that the first column of the Young tableau Γr,n from Proposition 2.2 is
v = [1, a1, . . . , ar−1]. From [2, Proposition 6], the T -invariant Γr,n is non-zero on Xv

wr,n .
Hence vr,n = v = [1, a1, . . . , ar−1].

Consider the Weyl group element cr,n = wr,nv
−1
r,n .

Claim 3.3. cr,n is a Coxeter element.

Proof. We have a reduced expression wr,n = (sa1−1 · · · s1)(sa2−1 · · · s2) · · · (sar−1 · · · sr) and
vr,n = (sa1−1 · · · s2)(sa2−1 · · · s3) · · · (sar−1−1 · · · sr) . Then

wr,nv
−1
r,n = (sa1−1 · · · s1)(sa2−1 · · · sa1)(sa3−1 · · · sa2) · · · (sar−1 · · · sar−1).

This is a Coxeter element.

We now consider the GIT quotients of Richardson varieties in Xwr,n .

Theorem 3.4. T\\(Xvr,n
wr,n)ssT ( L(nωr)) is a point.
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Proof. Since dimX
vr,n
wr,n = l(wr,n)− l(vr,n) = l(cr,n) = n− 1 = dimT and (X

vr,n
wr,n)ssT (L(nωr)) =

(X
vr,n
wr,n)sT (L(nωr)), so the dimension of the GIT quotient is 0. Since T\\(Xvr,n

wr,n)ssT ( L(nωr))
is irreducible, T\\(Xvr,n

wr,n)ssT ( L(nωr)) is a point. Alternatively, there is a unique standard
monomial pτ1pτ2 . . . pτn of weight zero with τ1 = [1, a1, a2, . . . , ar−1] and τn = [a1, a2, . . . , ar]
(the corresponding Young tableau being Γr,n).

Theorem 3.5. Let v ∈ W S\{αr} be such that v < vr,n. Then T\\(Xv
wr,n)ssT ( L(nωr)) is

isomorphic to P1 if and only if v = sαvr,n where sα = (ai− 1, ai) for some i = 1, 2, . . . , r− 1.
The descent of L(nωr) to T\\(Xv

wr,n)ssT ( L(nωr)) is OP1(ni) where ni is the number of times
ai − 1 appears in the i-th row of the tableau Γr,n.

Proof. We start with the only if part. Since Xv
wr,n is normal, (Xv

wr,n)ssT (L(nωr)) is nor-
mal and hence T\\(Xv

wr,n)ssT ( L(nωr)) is normal. Since dim(T\\(Xv
wr,n)ssT ( L(nωr))) = 1,

the GIT quotient T\\(Xv
wr,n)ssT ( L(nωr)) is a smooth, rational projective curve. Hence

T\\(Xv
wr,n)ssT ( L(nωr)) is isomorphic to P1.

If T\\(Xv
wr,n)ssT ( L(nωr)) is isomorphic to P1 we get l(v) = l(vr,n) − 1. Also v < vr,n

and v ∈ W S\{αr}. So v = (sbi · · · si) · · · (sbr · · · sr) for some i, 1 ≤ i ≤ r, and for some
1 ≤ bi < bi+1 · · · < br ≤ n − 1 (see the discussion preceding Lemma 2.1). Since vr,n =
(sa1−1 · · · s2)(sa2−1 · · · s3) · · · (sar−1−1 · · · sr), v = sαvr,n only when sα = (ai − 1, ai), 1 ≤ i ≤
r − 1.

We start with a zero weight standard monomial basis for H0(Xv
wr,n ,L(nωr)). Let v =

sαvr,n with sα = (ai − 1, ai) for some fixed i. We have vr,n = (1, a1, . . . , ai, . . . , ar−1) and
v = (1, a1, . . . , ai− 1, . . . , ar−1). The i+ 1-st entry of vr,n is ai and that of v is ai− 1 and the
rest of the entries are equal. We need to count the number of semistandard tableau of shape
n, n, . . . , n (r rows) with first column v. Because the tableau is semistandard, the positions
of all integers other than ai − 1 and ai are fixed. So the number of such tableaux depends
only on the number of ai − 1 in the i-th row. ai − 1 appears ni times in the i-th row of
Γr,n. It is easy to see that for every j in {0, · · · , ni} there is a semistandard tableau with
ai − 1 appearing j times and ai appearing ni − j times in row i. So we have ni + 1 linearly
independent sections of the descent line bundle on the GIT quotient. This completes the
proof.

4 Projective normality of the GIT quotient of X(w3,7)

.

In this section we will work with G = SL(7,C). We use the same notation as before.
We study the GIT quotient of the Schubert variety X(w3,7) with respect to T -linearized line
bundle L(7ω3). From [21, Theorem 3.10] we know that this line bundle descends to the line
bundle L̃(7ω3) on the GIT quotient T\\X(w3,7)

ss
T (L(7ω3)).
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Theorem 4.1. The polarized variety (T\\X(w3,7)
ss
T (L(7ω3)), L̃(7ω3)) is projectively normal.

Remark 4.2. Let S(m) = H0(X(w3,7),L(7ω3)
⊗m) be the global sections of the line bundle

L(7ω3) on X(w3,7) and let R(m) = H0(X(w3,7),L(7ω3)
⊗m)T denote the invariant subspace

with respect to action of T . The GIT quotient is precisely Proj(⊕mR(m)) (see [4, Propo-
sition 8.1]). Since the polarized variety (X(w3,7),L(7ω3)) is projectively normal, we have a
surjective map S(1)⊗m −→ S(m) (see [22]) and an induced map φ : R(1)⊗m → R(m). Now
the GIT quotient is smooth and it is normal. Therefore to show projective normality of the
GIT quotient all we need to show is that φ is surjective.

From Lemma 2.2 we get w3,7 = [3, 5, 7]. As before we identify the standard monomial
basis of H0(X(w3,7),L(7mω3))

T with semistandard Young tableaux. These tableaux have
3 rows and 7m columns with each integer from {1, . . . , 7} appearing exactly 3m times -
furthermore the last column is [3, 5, 7].

To aid in the proof of projective normality we list the semistandard Young tableau basis
of R(1) and we also write down a semistandard tableau of shape [14, 14, 14] from R(2) which
will play a role in the proof. Henceforth, we will use the notation yi for both the tableau yi
it defines and also the standard monomial associated it to. Set

y1 =
1 1 1 2 2 2 3
3 3 4 4 4 5 5
5 6 6 6 7 7 7

, y2 =
1 1 1 2 2 2 3
3 3 4 4 5 5 5
4 6 6 6 7 7 7

, y3 =
1 1 1 2 2 3 3
2 3 4 4 4 5 5
5 6 6 6 7 7 7

,

y4 =
1 1 1 2 2 3 3
2 3 4 4 5 5 5
4 6 6 6 7 7 7

, y5 =
1 1 1 2 3 3 3
2 2 4 4 4 5 5
5 6 6 6 7 7 7

, y6 =
1 1 1 2 3 3 3
2 2 4 4 5 5 5
4 6 6 6 7 7 7

,

y7 =
1 1 1 2 2 3 3
2 4 4 4 5 5 5
3 6 6 6 7 7 7

, z =
1 1 1 1 1 1 2 2 2 3 3 3 3 3
2 2 2 4 4 4 4 4 4 5 5 5 5 5
3 5 6 6 6 6 6 6 7 7 7 7 7 7

.

We first make some simple observations.

Observation 4.3. Every semistandard tableau basis element of H0(X(w3,7),L(7mω3))
T be-

gins with one of the following columns - [1, 2, 3], [1, 2, 4][1, 2, 5], [1, 3, 4], [1, 3, 5], and ends with
the column [3, 5, 7].

Proof. We already noted above that the last column of every semistandard tableau basis
element of H0(X(w3,7),L(7mω3))

T is [3, 5, 7].

Clearly, semistandardness forces that in the first row the leftmost 3m entries are filled
with 1, and that in the last row the rightmost 6m entries are filled with 3m 6′s followed by
3m 7’s. So clearly the last entry of the first column cannot be 6 or 7 otherwise we will have
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more 6’s or 7’s than permitted. The second entry of the first column cannot be 5, otherwise
the entire second row will have only 5’s, a contradiction to the number of 5’s present. The
second entry of the first column cannot be 4 for a similar reason - in that case the second
row will only have 4’s and 5’s forcing at least one of them to occur more than 3m times, a
contradiction. This completes the proof.

Observation 4.4. No semistandard tableau basis element of H0(X(w3,7),L(7mω3))
T has the

following columns: [1, 2, 7], [1, 3, 7], [1, 4, 7],[1, 5, 6],[1, 5, 7], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 3, 7],
[2, 4, 5],[2, 5, 6],[3, 4, 6], [3, 5, 6]. The only columns containing a 6 are columns [1, 2, 6], [1, 3, 6],
[1, 4, 6] and [2, 4, 6]. There are exactly m columns with [2, 4, 6] and at least m columns with
[1, 4, 6]. The only columns containing a 7 are [2, 4, 7], [2, 5, 7], [3, 4, 7] and [3, 5, 7] and there
are at least 2m occurrences of columns [2, 5, 7] and [3, 5, 7].

Proof. If there is a column with [1, x, 7], x among 2, 3, 4, 5, 6, standardness forces that the
entries in the first row to the left of this column are all 1’s and the entries in the third row
to its right are all 7. Then no matter where this column appears either the number of 1’s or
the number of 7’s is incorrect.

It follows from the previous paragraph that all the 6’s must be in the bottom row. If
there is a column with [1, 5, 6], then standardness forces the subsequent columns to all have
a 5 in the second row and the columns preceding it to have a 1 in the topmost row. Then no
matter where this column appears either the number of 1’s or the number of 5’s is not 3m.

If [2, 3, 4] occurs it is necessarily in column 3m + 1 appearing immediately after the
occurrence of all the columns containing 1 because it is lexicographically least among columns
beginning with 2. But the entry in the bottom row position in column 3m + 1 cannot be a
4 since that position is occupied by 6.

The same argument shows that [2, 3, 5], [2, 4, 5] cannot occur. If [2, 3, 6] or [2, 3, 7] is
present, the first row to the right of this column and the second row to the left of this
column contain only 2,3’s yielding a total of 7m entries with 2 and 3, a contradiction.

If [2, 5, 6] is present all columns to the right of this column will have a 5 in the second
row by standardness. But then all the 3m columns containing 7 will be of the type [x, 5, 7],
for some x. But then the number of 5’s is at least 3m+ 1, a contradiction.

If the column [3, 4, 6] is present then the top row to its right is filled with 3’s. So every
column containing 7 in the bottom has 3 as its topmost element. So the number of 3’s is at
least 3m+ 1, a contradiction.

Now suppose the column [3, 5, 6] is present. If it is in the left half of the tableau, stan-
dardness will forces the number of 5’s to be more than what is allowed. If it is in the right
half of the tableau then all entries in the second row to the right of this column are filled
with 5’s. So all the columns containing 7 in fact contain both 5 and 7. Again, the number
of 5’s is more than 3m+ 1, a contradiction.

The above argument shows that the column appearing immediately after all the columns
containing a 1 is column [2, 4, 6]. It appears before the 3m columns containing a 7. Since
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the tableau has no lexicographically larger column containing a 6, this column repeats till
the appearance of a 7. So it occurs exactly m times.

Now the remaining 2m columns containing a 6 in the last row occur to the left of column
number 3m+ 1 which has a [2, 4, 6]. Suppose there are less than m columns with [1, 4, 6] in
the tableau. Since [1, 4, 6] appears to left of the column numbered 3m + 1, all the entries
in the second row to the left of first column labeled [1, 4, 6] must have 2 or 3. So there are
at least 2m + 1 2’s and 3’s in the second row. Now there are at least 4m locations in the
first row to the right of last 1 which have only 2 or 3. So the total number of 2’s and 3s is
at least 6m + 1, a contradiction. So we conclude that at least m rows to the left of column
numbered 3m+ 1 contain [1, 4, 6].

We cannot have a 5 in the first row. Since we can have a 5 in the third row only in
positions {1, 2, . . . ,m}, and the only columns having a 5 in the second row are [2, 5, 7] and
[3, 5, 7] it follows that we need at least 3m−m columns with [2, 5, 7] and [3, 5, 7].

Lemma 4.5. Let m ≥ 2. Every semistandard basis element of R(m) is a product of a yi
and an element of R(m− 1), or is a product of z and an element of R(m− 2).

Proof. Let f be a semistandard basis element of R(m). The proof follows a case by case
analysis.

a The first column of f is [1, 2, 3]. By Observation 4.4 above we have at least m columns
with [1, 4, 6] and exactly m columns labeled [2, 4, 6]. Furthermore we can have at most
m − 1 5’s in the last row of f . So we have at least 2m + 1 columns in f with [2, 5, 7]
and [3, 5, 7], since these are the only columns containing 5 in the second row. The
last column of f is a [3, 5, 7]. If the remaining 2m, columns were all [2, 5, 7], using
Observation 4.4, the total number of 2’s is at least m+ 1 + 2m, a contradiction. (the
m 2’s from columns with [2, 4, 6], and one from the first column having [1, 2, 3]. It
follows that there are at least two columns with [3, 5, 7].

1. Suppose f has at least one column with [2, 5, 7]. Then we have one [1, 2, 3], at
least two [1, 4, 6]’s and one [2, 4, 6], one [2, 5, 7] and two [3, 5, 7]’s. So the tableau y7
appears as a subtableau. The complement of this subtableau in f is an element of
R(m− 1). So f is a product of y7 and an element from R(m− 1) as required.

2. f has no [2, 5, 7]. So we have at least 2m + 1 columns in f having [3, 5, 7]’s. Now
the remaining 7’s can be made up from [3, 5, 7]’s or [2, 4, 7]’s or [3, 4, 7]’s. These
cannot all come from [3, 5, 7] and [3, 4, 7] since the number of 3’s in that case would
be more than 3m + 1. So there is at least one [2, 4, 7]. Note that there are also at
most m − 1 [2, 4, 7]’s, [3, 4, 7]’s, and additional [3, 5, 7]’s in from column numbers
4m + 1 to 5m − 1. Now the number of 2’s in row 1 is at most m + m − 1 (from
the columns with [2, 4, 6], and at most m− 1 columns with [2, 4, 7]). So we need at
least m+ 1 2’s in the second row. In this case then the second row of columns 1 to
column m+ 1 contains only 2. In particular [1, 2, 6] is present in f . Since there are
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at most 3m− 1 5’s in the second row of f (since we know there is a [2, 4, 7]), there
is at least one 5 in the bottom row of f in position {1, 2, . . . ,m}, forcing a [1, 2, 5]
in f .

Now the total number of 4’s and 5’s is 6m. The total number of 4’s and 5’s in the
last row is at most m− 1. We have m 4’s from the [2, 4, 6]. The total number of 4’s
and 5’s from the columns containing [2, 4, 7], [3, 4, 7] and [3, 5, 7] is at most 3m . All
of these can account for a total of 5m − 1 4’s and 5’s coming from these columns.
Since we can have no more 5’s in the second row, the deficit m+ 1 needed must be
made from 4’s in the second row, in fact occurring in columns numbered m + 2 to
3m. So we have at least 3 columns in f with [1, 4, 6]’s.

Taking stock, in f we have one [1, 2, 3], a [1, 2, 5], a [1, 2, 6], 3 columns with [1, 4, 6],
2 columns with [2, 4, 6], one [2, 4, 7] and at least 5 [3, 5, 7]’s. So we see that the
tableau indexing the basis vector z is a subtableau of f , and the complement of this
subtableau in f is an element of R(m− 2). f is a product of z and an element from
R(m− 2).

b The first column of f is [1, 2, 4]. In this case there are at most m − 1 5’s in the last
row of f and so there should be at least 2m+ 1 columns in f with [2, 5, 7] and [3, 5, 7].

Notice that the 3m 6’s cannot all come from columns with [1, 4, 6] and [2, 4, 6] alone.
If that were the case we will have 3m 4’s from these columns, and an additional 4 from
the first column, a contradiction. So at least one of the columns in f with a 6 has to
be [1, 2, 6] or [1, 3, 6].

1. Suppose a [1, 2, 6] is present in f . Then it has to be in column m+ 1 of f . Then we
have 2’s in the second row of f in columns 1 to columns m+1 by semistandardness.
From Observation 4.4 we have m 2’s from the columns with [2, 4, 6], so we can have
at most m−1 columns with [2, 5, 7]. This means there are at least 2m+1−(m−1) =
m + 2 columns with [3, 5, 7], so we have at least 4 columns with [3, 5, 7]. But this
means we have a [1, 2, 4], a [1, 2, 6], a [1, 4, 6], a [2, 4, 6], and three [3, 5, 7], i.e. the
tableau indexing the basis element y6 is a subtableau in this case.

2. Now suppose we do not have a [1, 2, 6] in f but have a [1, 3, 6]. We claim a [2, 5, 7]
must appear. Notice that we can have at most m−1 [2, 4, 7]’s since we already have
2m + 1 7’s. Now there are at most m 2’s in the second row of f . But this means
we have at most m+m− 1 +m < 3m 2’s in f , a contradiction. So we may assume
we have at least one [2, 5, 7] in f . We claim that we have at least 2 [3, 5, 7]’s in f ,
for otherwise we have 2m [2, 5, 7]’s. But we have more 2’s than allowed since we
have m 2’s from the [2, 4, 6] and a 2 also from the [1, 2, 4]. So we conclude we have
a [1, 2, 4], [1, 3, 6], [1, 4, 6], [2, 4, 6], [2, 5, 7], [3, 5, 7], [3, 5, 7]. So y4 is a subtableau and
we are done in this case.

c If the first column in f is [1, 2, 5]. If there are no [1, 2, 6] or [1, 3, 6] in f then column
m + 1 must be [1, 4, 6] and the first m elements in the third row must be all 5’s. But
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then the second and third row together have more than 6m 4’s and 5’s, a contradiction.
So either [1, 2, 6] or [1, 3, 6], or both, are present in f .

1. Suppose first that f has a [1, 2, 6]. Then the second row of f has at least m + 1
2’s, and since we already have m 2’s from the [2, 4, 6]’s we can have at most m− 1
[2, 5, 7]’s. This forces at least m+ 1 columns of f to be [3, 5, 7]’s.

If f has a column with [3, 4, 7] we see the tableau indexing y5 is present as a sub-
tableau of f . If f has no [3, 4, 7] - we count the number of 4’s - we have m from
columns [2, 4, 6]. We can have at most 2m−1 columns with[1, 4, 6] since 2’s occupies
positions 1 up to m+ 1 in the second row. To make up the requisite 4’s we need to
have at least one [2, 4, 7]. But then the number of 3’s in the first row of the tableau
from [3, 5, 7] is at most 3m − 1, so to make up the requisite 3’s, there must be a
[1, 3, 6]. In which case we see that the tableau indexing y3 is present as a subtableau
of f .

2. Suppose we only have a [1, 3, 6] in f and no [1, 2, 6]. Now the total number of columns
in f with [1, 2, 5] and [1, 3, 5] is m. We have exactly 2m [2, 5, 7]’s and [3, 5, 7]’s put
together. If f has no [2, 4, 7], the remaining m 7’s come from [3, 4, 7]. But then the
tableau cannot have a [2, 5, 7] otherwise semistandardness will be violated. So we
only have 2m columns of f with [3, 5, 7]. However this means we have 3m+ 1 3’s, a
contradiction. So we may assume that we have a [2, 4, 7]. We show then that there
are at least two [3, 5, 7]’s, so the tableau indexing y3 is a subtableau. If we have
only one [3, 5, 7] we would have 2m− 1 [2, 5, 7]’s. But we already have one [2, 4, 7],
one [1, 2, 5] and m [2,4,6]’s, a contradiction to the number of allowed 2’s.

d If the first column of f is [1, 3, 5]. Then all the 2’s occur in the first row of f and in
columns 3m+1 to 6m and there are m 3’s in the last m columns of the first row. Since
there are no 3’s in the last row, the remaining 2m 3’s must occur in the second row.
Since 6 occurs in the last row in positions m+ 1 to 4m, and a 1 occurs in the first row
in columns 1 to 3m, it follows that [1, 3, 6] is a column in f . Now all the 4’s occur in
the second row, starting at position 2m+ 1 and ending at position 5m, after which we
only have 5’s in the second row. Since the 2’s in the first row of f occur in positions
3m+ 1 to 6m and the 7’s occur in the bottom row in position 4m+ 1 to 7m it follows
that there is a column containing [2, 4, 7] and a column containing [2, 5, 7]. So y1 is a
subtableau of f .

e In case the first column is [1, 3, 4], all the 2’s occur in the first row, and so we have m
3’s in the first row appearing in the columns [3, 4, 7] and [3, 5, 7]. So f has at least m
columns with [2, 5, 7]. Now there are 2m 3’s in the second row and these must occur
in positions 1 to 2m. Since the last row has 6 in columns m + 1 to 4m and the first
row has a 1 in columns 1 to 3m, it follows that there is a column with filling [1, 3, 6]
in the given tableau. It follows that the tableau indexing y2 is a subtableau of f . We
are done by induction.
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Remark 4.6. Let τ1 = [2, 5, 7], τ2 = [3, 4, 7], τ3 = [2, 4, 7], τ4 = [3, 5, 7], τ5 = [2, 3, 7],
τ6 = [4, 5, 7]. Consider the product of the Plücker coordinates pτ1pτ2. The straightening law
gives us pτ1pτ2 = pτ3pτ4 − pτ5pτ6. On the Schubert variety X(w3,7), pτ6 = 0. So, on X(w3,7),
pτ1pτ2 = pτ3pτ4. As a result y5y7 = z.

Theorem 4.7. The ring R = ⊕m≥0H0(X(w3,7),L(7mω3))
T is generated in degree 1.

Proof. We continue to use the notation y1, . . . , y1, z for the semistandard tableau basis ele-
ments and the monomials they index.

The proof is by induction on m, the base case m = 1 being obvious. Now assume m ≥ 2.
Given any semistandard basis element of H0(X(w3,7),L(7mω3))

T , Lemma 4.5 shows that it
can be written as a product of one of the yi’s and a semistandard basis element of R(m− 1),
or as a product of z in R(2), and a semistandard basis element of R(m − 2). Because of
Remark 4.6 we have z = y5y7. So we can replace z by y5y7. It follows by induction that
every basis element of R(m) is in the algebra generated by the yi’s.

It follows that there is a surjective ring homomorphism Φ : C[Y1, Y2, . . . , Y7]→ R, sending
Yi to yi.

Now let I be the two sided ideal generated by the following relations in C[Y1, Y2, . . . , Y7].

Y1Y4 = Y2Y3 − Y2Y7 + Y1Y7, (2a)

Y1Y5 = Y 2
3 − Y3Y7, (2b)

Y1Y6 = Y3Y4 − Y4Y7, (2c)

Y2Y5 = Y3Y4 − Y3Y7, (2d)

Y2Y6 = Y 2
4 − Y4Y7, (2e)

Y3Y6 = Y4Y5. (2f)

Theorem 4.8. The map Φ induces an isomorphism Φ̃ : C[Y1, Y2, . . . , Y7]/I ' R.

Proof. By explicit calculations one can check that the above relations hold with Yi replaced
by yi; they are in the kernel of Φ̃. We omit these calculations. To complete the proof we
show we can use the above relations as a reduction system. The process consists of replacing
a monomial M in the Yi’s which is divisible by a term Li on the left hand side of one of the
reduction rules Li = Ri, by (M/Li)Ri. Here Ri is the right hand side of Li = Ri.

We show that the diamond lemma of ring theory holds for this reduction system (see [1]).
What this implies is that any monomial in the Yi’s reduces, after applying these reductions
(in any order, when multiple reduction rules apply) to a unique expression in the Yi’s, in
which no term is divisible by a term appearing on the left hand side of the above reduction
system.
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We prove that the diamond lemma holds for this reduction system by looking at the
reduction of the minimal overlapping ambiguities Y1Y2Y5, Y1Y2Y6, Y1Y3Y6 and Y2Y3Y6. We
show in each case that the final expression is unambiguous. It follows that any relation
among Yi’s is in the two sided ideal I generated by the above relations. This proves that
the map Φ̃ constructed above is injective.

To complete the proof we look at the reductions of overlapping ambiguities.

Y1Y2Y5 - using rule (2b) above we get Y2(Y
2
3 − Y3Y7) = Y2Y

2
3 − Y2Y3Y7, which cannot be

reduced further. On the other hand using rule (2d) above we get Y1(Y3Y4− Y3Y7). Now this
can be further reduced using rule (2a) and we get Y3Y1Y7 + Y3Y2Y3 − Y3Y2Y7 − Y1Y3Y7, and
this is equal to Y2Y

2
3 − Y2Y3Y7. The reduction is unique in this case.

Likewise, one can show that Y1Y2Y6 reduces to the unique expression Y2Y3Y4 − Y2Y4Y7,
Y2Y5Y6 reduces to Y 2

4 Y5 − Y4Y5Y7 and Y2Y3Y6 reduces to Y3Y
2
4 − Y 2

3 Y4Y7, completing the
proof.

5 Deodhar decomposition to compute quotients of Richard-

son varieties

This section is again motivated by the question of understanding GIT quotients of Richard-
son varieties in the Grassmannian. In Section 3 we proved some results on quotients of
Richardson varieties. A natural strategy to understand the GIT quotient is to take a strat-
ification of a Richardson variety, understand what the GIT quotient of each strata is, and
also understand how the GIT quotients of these strata patch up. Such a stratification of
the open cell of a Richardson variety was given by Deodhar [3]. This was to be our starting
point. Working with small examples we believed that the restriction of a T -invariant section
to the open cell would be a homogenous polynomial and that this would lead us to discover
the equations defining the GIT quotient of a Richardson variety. However we soon realized
that sections may not restrict to homogenous polynomials on the open cell, and that the
issue is more subtle. We have necessary conditions which guarantee when sections restrict
to homogenous polynomials on the open cell. This is Lemma 5.13. To state the Lemma and
also the proof we need to introduce the Deodhar decomposition and some more notation
and theorems about Deodhar decomposition of Richardson varieties on the Grassmannian.
We do that in the next Subsection 5.1. We use the Deodhar decomposition to study the
GIT quotients of Richardson varieties in X(w3,7) in Section 5.2. Although all these results
follow from the results in Section 3 we prove them again since this can be done by explicit
calculations. Finally we show that the GIT quotient of X(w3,7) is a rational normal scroll.
We were unable to complete this proof using only information about the GIT quotients
of Richardson varieties in X(w3,7). Instead we show that the equations defining the GIT
quotient is a determinantal variety.
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5.1 Deodhar decomposition

In [3] Deodhar considered the intersection in G/B of the open cell in a Schubert variety with
the open cell of an opposite Schubert variety. For v, w ∈ W , define the Richardson strata3

Rv
w = (BwB/B) ∩ (B−vB/B).

Note that this is not the same as the definition of a Richardson variety (see [2]). Recall
that for v, w ∈ W , a Richardson variety in G/B was defined to be the intersection of
X(w) ∩Xv. Since both X(w) and Xv contain the intersection of (BwB/B) ∩ (B−vB/B) it
is clear that Rv

w ⊆ Xv
w. And so the Richardson strata is empty if v 6≤ w and the closure of

Rv
w is Xv

w.

In [3] Deodhar gave a refined decomposition of a Richardson strata in G/B into disjoint,
locally closed subvarieties of a Schubert variety. We follow the notation from Marsh and Ri-
etsch [23], and Kodama and Williams [20]. The definitions and examples are taken verbatim
from [20] since it is their notation and set up that we use in our proofs.

Fix a reduced decomposition w = si1si2 · · · sim . We define a subexpression v of w to
be a word obtained from the reduced expression w by replacing some of the factors with
1. For example, consider a reduced expression in S4, say s3s2s1s3s2s3. Then s3s21s3s21 is a
subexpression of s3s2s1s3s2s3 . Given a subexpression v, we set v(k) to be the product of the
leftmost k factors of v if k ≥ 1, and set v(0) = 1. The following definition was given in [23]
and was inspired from Deodhar’s paper [3].

Definition 5.1. Given a subexpression v of a reduced expression w = si1si2 · · · sim , we
define

J◦v := {k ∈ {1, ...,m}|v(k−1) < v(k)},
J�
v := {k ∈ {1, ...,m}|v(k−1) = v(k)},
J•v := {k ∈ {1, ...,m}|v(k−1) > v(k)}.

The expression v is called non-decreasing if v(j−1) ≤ v(j) for all j = 1, . . . ,m, and in this
case J•v = ∅.

The following is from [3, Definition 2.3].

Definition 5.2. (Distinguished subexpressions). A subexpression v of w is called distin-
guished if we have

v(j) ≤ v(j−1)sij , ∀ j ∈ {1, . . . ,m}.

In other words, if right multiplication by sij decreases the length of v(j−1), then in a
distinguished subexpression we must have v(j) = v(j−1)sij .

We write v ≺ w if v is a distinguished subexpression of w.

3This terminology is not standard. What we have called strata is sometimes called a Richardson variety
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Definition 5.3. (Positive distinguished subexpressions). We call a subexpression v of w
a positive distinguished subexpression (or a PDS for short) if v(j−1) < v(j−1)sij , for all
j ∈ {1, ...,m}.

Reitsch and Marsh [23] proved the following lemma.

Lemma 5.4. Given v ≤ w and a reduced expression w = si1 · · · simfor w, there is a unique
PDS v+ for v in w.

We now describe the Deodhar decomposition of the Richardson strata. Marsh and Rietsch
[23] gave explicit parameterizations for each Deodhar component, identifying each one with
a subset in the group. Much of this appears implicitly in Deodhar’s paper, but we refer
to [23] for our exposition because these statements are made explicit there and the authors
make references to Deodhar’s paper wherever needed.

Definition 5.5. [23, Definition 5.1] Let w = si1 · · · sim be a reduced expression for w, and
let v be a distinguished subexpression. Define a subset Gv

w in G by

Gv
w :=

{
g = g1g2 · · · gm

∣∣

gl = xil(ml)sil if l ∈ J•v,
gl = yil(pl) if l ∈ J�

v ,

gl = sil if l ∈ J◦v

}

In the above definition the matrices xil(ml), yil(pl), sil are as defined in Equation 1, Sec-

tion 2. From [23, Theorem 4,2] there is an isomorphism from C∗|J�
v | × C|J•v| to Gv

w.

Definition 5.6. (Deodhar Component) The Deodhar component Rv
w is the image of Gv

w

under the map Gv
w ⊆ U−vB ∩BwB → G/B, sending g to gB.

Then from [3, Theorem 1.1] one has [3, Corollary 1.2], also from Deodhar.

Theorem 5.7. Rv
w =

⊔
v≺wRv

w the union taken over all distinguished subexpressions v such

that v(m) = v. The component Rv+

w is open in Rv
w.

The Deodhar decomposition of a Richardson strata in G/Pα̂r is obtained by taking the
projection of the Richardson strata in G/B to G/Pα̂r . In [20, Proposition 4.16] the authors
show that the Deodhar components of a Richardson strata inG/Pα̂r are independent of w and
only depends upon w. This follows from the observation that any two reduced decompositions
w and w′ of w are related by a sequence of commuting transpositions sisj = sjsi.

5.2 Quotients of Deodhar components in X(w3,7)

Let us fix a reduced decomposition w3,7 = s2s1s4s3s6s5s2s4s3 for the Weyl group element
w3,7 with X(w3,7) being the minimal Schubert variety in G3,7 admitting semistable points. In
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this section we describe the GIT quotients of Richardson varieties in X(w3,7) by computing
the various Deodhar strata in this Schubert variety and analyzing their quotients. It will be
useful to recall Definition 5.5 and the notation developed in Subsection 5.1.

We begin with a corollary to Theorem 4.1.

Corollary 5.8. The GIT quotient of Richardson varieties in X(w3,7) is projectively normal
with respect to the descent of the T -linearized line bundle L(7ω3).

Proof. Let Xv
w3,7

be a Richardson variety in X(w3,7). From the proof of [2, Proposition 1 ] it

follows that H0(X(w3,7),L(ω3)
⊗m)→H0(Xv

w3,7
,L(ω3)

⊗m) is surjective. Since T is linearly re-

ductive it follows that the mapH0(X(w3,7),L(ω3)
⊗m)T →H0(Xv

w3,7
,L(ω3)

⊗m)T is also surjec-

tive. From Theorem 4.1 we know that the polarized variety (T\\X(w3,7)
ss
T (L(7ω3)), L̃(7ω3))

is projectively normal. Since T\\(Xv
w3,7

)ssT ( L(7ω3)) is normal it follows that the GIT quotient
of Xv

w3,7
is projectively normal with respect to the descent line bundle.

Lemma 5.9. Let v = s2s4s3. Then T\\(Xv
w3,7

)ssT ( L(7ω3)) is a point.

Proof. The only torus-invariant section of H0(X(w3,7),L(7ω3)) which is non-zero on Xv
w3,7

is
the section y1. Consider the Deodhar component of Xv

w3,7
corresponding to the subexpression

v = 111111s2s4s3. From Definition 5.5, every matrix in Gv
w3,7

is a product of matrices
y2(p1)y1(p2)y4(p3)y3(p4)y6(p5)y5(p6)s2s4s3. We use Equation 1, Section 2 to obtain each
term of the product. Multiplying these terms we get

1 0 0 0 0 0 0
p2 0 0 1 0 0 0
p1p2 1 0 p1 0 0 0

0 p4 0 0 1 0 0
0 p3p4 1 0 p3 0 0
0 0 p6 0 0 1 0
0 0 p5p6 0 0 p5 1


The corresponding point in G3,7 is the three dimensional subspace spanned by the first three
columns of the above matrix. Denote this submatrix by M . The Plücker coordinates of
the embedding of M in projective space are the determinants of the the 3 × 3 submatrices
of M . The section y1 evaluated on such a matrix M in Gv

w3,7
is the product of the 3 × 3

determinants of M whose rows are indexed by the columns in y1. For the above matrix this
evaluates to p1p

4
2p

2
3p

5
4p

3
5p

6
6. Using the reduced expression for w3,7, note that the weight of

this monomial is α2 + 4α1 + 2α4 + 5α3 + 3α6 + 6α5.

Lemma 5.10. Let v = s2s3. Then T\\(Xv
w3,7

)ssT ( L(7ω3)) is isomorphic to P1 and the descent
of L(7ω3) is O(1).

Proof. On the open Deodhar component corresponding to the reduced subexpression v =
11111s21s3 the only non-zero T -invariant standard monomials of shape 7ω3 are y1, y2. Using
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a calculation as in the proof of Lemma 5.9 we see that these are algebraically independent.
The lemma follows now from Corollary 5.8.

Lemma 5.11. Let v = s4s3. Then T\\(Xv
w3,7

)ssT ( L(7ω3)) is isomorphic to P1 and the descent
of L(7ω3) to the GIT quotient is O(2).

Proof. The three non-zero sections on the open Deodhar cell Gv
w3,7

corresponding to the

subexpression v = 1111111s4s3 are y1, y3, y5. Let p = p1p
4
2p

2
3p

5
4p

3
5p

6
6p

5
7. Let X = (p1+p7), Y =

p1. Calculating as in the proof of Lemma 5.9, one checks that on the open Deodhar cell Gv
w3,7

,

y1 evaluates to pX2, y3 to pXY and y5 to pY 2. So p is nowhere vanishing on the Deodhar
cell. The lemma follows from Corollary 5.8.

Lemma 5.12. Let v = s3. Then T\\(Xv
w3,7

)ssT ( L(7ω3)) is isomorphic to P1 × P1 and the
descent of the line bundle to the GIT quotient is O(2) �O(1).

Proof. We use the distinguished subexpression v = 11111111s3. Let A = p3, B = p3 + p8.
Let X = (p1 + p7), Y = p1. Note that p3 and p8 are algebraically independent and so A,B
are algebraically independent. Since p1 and p7 are algebraically independent so are X, Y .

Let p = p1p
4
2p

2
3p

5
4p

3
5p

6
6p

5
7p

6
8. Calculating as in the proof of Lemma 5.9, we see that y1

evaluates to pBX2 on Gv
w3,7

. The section y5 evaluates to pBY 2, y3 evaluates to pXY B, y2
evaluates to pAX2, y6 evaluates to pAY 2 and y4 evaluates to pXY A.

So upto a multiple of p, the sections y2, y4, y6, y1, y3, y5 can be respectively written as
(X2A,XY A, Y 2A,X2B,XY B, Y 2B). Using Corollary 5.8 it follows that the GIT quotient
is isomorphic to P1 × P1 embedded as O(2) �O(1).

In the next lemma we give conditions guaranteeing when a section of the line bundle
L(nωr) on Xv

w restricts to a homogenous polynomial on the Richardson strata in Xv
w.

Lemma 5.13. Let u ∈ W, v ∈ W S\{αr} be such that w = uv ∈ W S\{αr} and l(uv) = l(u) +
l(v). Fix a reduced expression u = si1 · · · sik and a reduced expression v = sik+1

· · · sim such
that w = si1 · · · sik .sik+1

· · · sim is a reduced expression for w. Consider v = 1 · · · 1sik+1
· · · sim,

a distinguished subexpression of w. Rv
w is the unique open Deodhar component of Rv

w.
The restriction of any section s ∈ H0(Xv

w,L(nωr)) to Rv
w is a homogeneous polynomial

in p1, p2, · · · , pk having degree equal to the height of v(nωr).

Proof. Note that v is the unique positive distinguished subexpression for v in w and so Rv
w

is the unique open Deodhar component of Rv
w.

Matrices in Gv
w are of the form yi1(p1)yi2(p2) . . . yik(pk)sik+1

· · · sim . From this identifica-
tion we see that the section s restricted to this Deodhar component is s|Rvw =

∑
m amp

m1
1 . . . pmkk

where m = (m1, ..mt). If am 6= 0 then wt(s) = wt(pm1
1 . . . pmtk ) = v(nωr). In particular,

deg(pm1
1 . . . xmkk ) is equal to the height of v(nωr)) .

Finally we prove the main theorem of this section.
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Theorem 5.14. The polarized variety (T\\(X id
w3,7

)ssT ( L(7ω3)), L̃(7ω3)) is a rational normal
scroll.

Proof. The relations (2a)-(2f) given before Theorem 4.8 describe the homogenous ideal defin-
ing the polarized variety. These defining relations can be written succinctly in a matrix form

rank

(
Y1 Y3 Y4 Y2

Y3 − Y7 Y5 Y6 Y4 − Y7

)
≤ 1.

For example the minor corresponding to the first two columns above gives us Y1Y5 = Y 2
3 −

Y3Y7, which is (2b), and the minor corresponding to columns 1 and 3 gives relation (2c)
shown there. The polarized variety is defined by the vanishing of 2 × 2 determinants of a
generic 4 × 2 matrix. Such a variety is called a determinantal variety and it is known that
it is a rational normal scroll (see [24]).

6 Projective normality of the GIT quotient of G2,n

In this section we study the GIT quotient of G2,n with respect to the T -linearized line bundle
L(nω2) for n odd. As mentioned earlier, this line bundle descends to the quotient, and it is
well known that the polarized variety ((T\\(G2,n))ssT (L(nω2)), L̃(nω2)) is projectively normal
(see [9], [19]). It is not clear to us whether this result extends to GIT quotients of higher rank
Grassmannians. To the best of our knowledge this question is open. We give an alternate
combinatorial proof in the G2,n case. We believe that it is this kind of combinatorics which
will be required to settle the general question.

We follow the strategy outlined in Remark 4.2. Defining R(m) to be H0(G2,n,L(nω2)
⊗m)T

we show that R(1)⊗m → R(m) is surjective.

Let pτ = pτ1pτ2 . . . pτmn be a standard monomial in R(m) and let Tτ be the tableau
associated to this monomial.

Denote the columns of Tτ by C1, C2, · · · , Cmn with Ci = [ai, bi]. Our idea is to extract from
the tableau Tτ a semistandard Young subtableau Tµ, with each integer 1, 2, . . . , n appearing
exactly 2 times. Then the monomial pµ corresponding to this subtableau would be a zero
weight vector in R(1), and the monomial corresponding to the remaining columns in Tτ
would be a monomial pν ∈ R(m− 1). If we were to succeed in doing this, we could write pτ
as a product of pµ and pν , and we would be done by induction on m. Since we were unable
to do this directly we use straightening laws on tableaux to show that pτ can be written as
a sum of products of elements in R(1).

Let pµ := pτ1pτm+1 . . . pτmn−m+1 and pν = p̂τ1pτ2pτ3 · · · pτm p̂τm+1 · · · pτmn . Here p̂ indicates
that the corresponding term is omitted. Clearly pτ = pµpν .

Let Tµ and Tν denote the corresponding tableaux.
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Definition 6.1. An integer i is defected if i appears an odd number of times in Tµ. Denote
the set of defected integers by D.

Lemma 6.2. All integers in {1, 2, . . . , n} occur in Tµ.

Proof. Every integer j has to appear at least m times in one of the rows of Tτ . Since Tτ
is semistandard j appears consecutively in that row, so there is a column Ci with i ≡ 1
(mod m) containing j.

Lemma 6.3. There are even number of defected integers.

Proof. Tµ has 2n boxes and all the integers appear in Tµ. Each integer which is not defected
appears twice. The number of times a defected integer appears is odd, so there are an even
number of defected integers.

Before we prove the next lemma we set up some notation and make some observations.

Let fi (respectively, li) be such that Cfi(respectively, Cli) is the column in which i appears
for the first (respectively, last) time in the bottom row of Tτ . Similarly define f i and li with
respect to occurrences of i in the top row.

Observation 6.4. fi ≡ x+1 (mod m) if and only if f i ≡ m−x+1 (mod m). In particular
fi ≡ 1 (mod m) if and only if f i ≡ 1 (mod m), and in this case i appears at least 2 times
in Tµ.

Proof. Each integer less than i appears 2m times and occurs in the top row in columns
before column f i and in the bottom row in columns before column fi. The total number of
positions for numbers from 1 to i− 1 is therefore a multiple of m. If fi is am+ 1 + x, then
the number of boxes to the left of this column in the bottom row is am + x. So f i must
bm+m−x+1 for some b so that the number of positions for integers 1 to i−1 is bm+m−x
as needed.

The last statement follows since Tµ is constructed by taking only columns numbered 1
(mod m) in Tτ

We know that the number of defected integers is an even number, say 2l, for 1 ≤ l ≤ bn
2
c.

Let D = {i1, i2, · · · , i2l} denote this set with i1 < i2 · · · < i2l.

Lemma 6.5. Let 1 ≤ j ≤ 2l. In Tµ, ij appears 3 times if j is odd and ij appears once if j
is even.

Proof. We show that two consecutive defected integers cannot appear in Tµ 3 times and they
cannot appear once. Then we show that the first integer which is defected appears 3 times.

Let us assume that some integer ij which is defected appears 3 times. Without loss of
generality we may assume that it appears 2 times in the top row and appears once in the
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bottom row. Assume that the next defected integer ij+1 also appears 3 times. We prove it
in the case when ij+1 appears 2 times in the top row and once in the bottom row. The proof
in the other case is similar.

Assume that the positions of ij (respectively, ij+1) in Tτ which contribute to its two
occurrences in the top row of Tµ are (a−1)m+ 1, am+ 1 (respectively, bm+ 1, (b+ 1)m+ 1).
Likewise, assume that the positions of ij, (respectively, ij+1) in Tτ contributing to the bottom
row in Tµ are cm + 1 (respectively, dm + 1). Clearly c < a − 1 and d < b. Let x be the
number of ij to the right of position am+ 1 in the top row of Tτ and z be the number of ij
to the right of cm+ 1 in the bottom row of Tτ . Similarly let y denote the number of ij+1 to
the left of position bm+ 1 in the top row and w be the number of ij+1 to the left of position
dm+ 1 in the bottom row of Tτ . Clearly x+ z ≤ m− 2 and y + w ≤ m− 2.

Now ij+1 = ij + 1 is not possible. Because the number of ij+1 in the top row is then at
least 2m− x and the number of ij+1 in the bottom row is at least m− z, a contradiction to
the number of ij+1 in Tτ since x+ z ≤ m− 2.

So let us assume that ij+1 > ij + 1. Now there are ij+1− ij−1 integers in between ij and
ij+1 which are not defected. Hence in Tτ each of these integers occurs in exactly two positions
which are in positions 1 (mod m). Hence the number of positions which are 1 (mod m)
between the positions am+ 1, bm+ 1 and between cm+ 1, dm+ 1 is exactly 2(ij+1− ij − 1).
But this count is also equal to (b−a−1)+(d−c−1). Hence b+d−a−c−2 = 2(ij+1−ij−1).
Or b + d − a − c = 2(ij+1 − ij). The total number of positions available for integers in the
range ij + 1 to ij+1 is exactly bm − am − x − y − 1 + dm − cm − z − w − 1 which is
m(b + d − a − c − 2) − (x + y + z + w). Since each integer in this range appears exactly
2m times, and since b + d − a − c = 2((ij+1 − ij) it follows that x + y + z + w is 0 modulo
2m. Since x + z ≤ m − 2 and y + w ≤ m − 2 this is only possible if x, y, z, w are all zero.
Then the positions am + 1 + 1 to bm and cm + 1 + 1 to dm are available for the integers
ij +1, . . . , ij+1−1. This is (b+d−a− c)m−2 positions in all, which is also 2(ij+1− ij)m−2
positions. But this is more positions than are required, since we have ij+1 − ij − 1 numbers
each occurring 2m times - we require only 2m(ij+1 − ij − 1) positions. We conclude that if
ij appears 3 times ij+1 cannot appear 3 times.

Now we show that if ij appears with defect one then ij+1 appears with defect three.
Without loss of generality assume that ij appears in the top row in a column numbered 1
(mod m). So we know that ij appears less than m times in the bottom row.

Assume that f ij is am+ x+ 1 for some 1 ≤ x ≤ m− 1. Then fij is bm+m− x+ 1 for
some b. Now since ij does not occur in a column numbered 1 (mod m) in the bottom row,
it follows that the number of ij in the bottom is at most x, so the number of ij in the top
row is at least 2m− x. But since there is only one occurrence of ij in a column numbered 1
(mod m), there are at most 2m− x occurrences of ij in the top row. It follows that the top
row has exactly 2m − x occurrences of ij and the bottom row has exactly x occurrences of
ij. So lij = lij = 0 (mod m). Hence each integers between ij and ij+1 which is not defected
starts at a position which is 1 (mod m) on the top and ends at a 0 (mod m) position in
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the top and bottom rows (if it occurs in them). So fij+1
is forced to be 1 (mod m) and this

implies that f ij+1 is also 1 (mod m) by Observation 6.4. Since it is defected it occurs once
more in a column numbered 1 (mod m).

To complete the proof we show that the first defected integer occurs 3 times. Suppose
that i1 occurs only once in Tµ. Then it occurs strictly more than m times in the top or
bottom row of Tτ . Without loss of generality it occurs strictly more then m times in the top
row of Tτ , and say it occurs in column am+1. Suppose i1 makes its first appearance in Tτ in
column (a− 1)m+ 1 + j for 0 < j ≤ m− 1. Since it occurs only once in a column numbered
1 (mod m), the total number of occurrences of i1 in the top row of Tτ is at most 2m− j. So
it occurs in the bottom row of Tτ as well. Now suppose its first occurrence in the bottom
row of Tτ is in column bm + 1 + k, for 0 < k ≤ m − 1. Since all integers less than i1 occur
2m times in Tτ it follows that j + k = 0 (mod m). But j + k < 2m and so j + k = m. Now
each integer less than i1 is not defected and so appears twice in Tτ in columns numbered 1
(mod m). The number of such columns available is a− 1 + b and since this has to be even,
a + b must be odd. But then the total number of positions available for integers less than
i1 in Tτ is (a − 1 + b)m + j + k which is (a + b)m, an odd multiple of m. But each integer
less than i1 appears 2m times in Tτ so, together, they occupy an even number of positions,
a contradiction.

Lemma 6.6. If j is odd, ij appears in the top row and in the bottom row of Tµ.

Proof. From Lemma 6.5 ij appears three times in Tµ. If all of them appear consecutively in
Tµ then the number of ij in Tτ would be greater than 2m, a contradiction.

Notation 6.7. Let T kτ be the subtableau of Tτ having m columns starting with C(k−1)m+1 and

ending with Ckm. We denote the first column of T kτ by T kτ [1] and the last column as T kτ [m].

For j odd, define l(j) to be that k for which (k − 1)m + 1 ≤ lij ≤ km. So T
l(j)
τ is the

subtableau containing the last occurrence of ij in the bottom i.e containing Clij as one of its

m columns. For j even let f(j) be that k for which (k − 1)m + 1 ≤ fij ≤ km. So T
f(j)
τ is

the subtableau containing the first occurrence of ij in the bottom row i.e containing Cfij as
one of its m columns.

For j odd, let Sτ ,j denote the subtableau with columns T
l(j)
τ [1], T

l(j)
τ [m], T

l(j)+1
τ [1], T

l(j)+1
τ [m],

. . . , T
f(j+1)
τ [1]Cfij+1

. Note that this tableau contains an even number of columns since

T
f(j+1)
τ [1] is different from Cfij+1

- by definition ij+1 appears only once in Tµ and so its

first occurrence cannot be in a column numbered 1 (mod m) in Tτ by Observation 6.4.

We denote by Sτ ,j[k] the 2× 2 subtableau of Sτ ,j containing columns 2k − 1 and 2k. To
simplify notation we mostly omit the τ and just denote this by Sj[k] when τ is clear from the

context. Let Sτ ,j[k] =
p q
r s

.

We set Sτ ,j[k](1) = p, Sτ ,j[k](2) = q, Sτ ,j[k](3) = r and Sτ ,j[k](4) = s.
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Example 6.8. We illustrate the above notation using the monomial in H0(G2,13,L(13ω2)
⊗2)T

given by the following semistandard tableau Tτ .

1 1 1 1 2 2 2 2 3 3 3 3 4 7 7 8 8 9 9 9 10 10 10 11 11 12
4 4 4 5 5 5 5 6 6 6 6 7 7 8 8 9 10 11 11 12 12 12 13 13 13 13

For this tableau we have,

Tµ =
1 1 2 2 3 3 4 7 8 9 10 10 11
4 4 5 5 6 6 7 8 10 11 12 13 13

,

Tν =
1 1 2 2 3 3 7 8 9 9 10 11 12
4 5 5 6 6 7 8 9 11 12 12 13 13

.

D = {4, 9, 10, 12} and l4 = 3, f9 = 16, l10 = 17, f12 = 20. We have l(1) = 2, f(2) = 8, l(3) =
9, f(4) = 10. Furthermore,

Sτ,1 =
1 1 2 2 2 2 3 3 3 3 4 7 7 8
4 5 5 5 5 6 6 6 6 7 7 8 8 9

, Sτ,2 =
8 9 9 9
10 11 11 12

.

For the above example

Sτ,1[1] =
1 1
4 5

, Sτ,1[2] =
2 2
5 5

, Sτ,1[3] =
2 2
5 6

, Sτ,1[4] =
3 3
6 6

,

Sτ,1[5] =
3 3
6 7

, Sτ,1[6] =
4 7
7 8

, Sτ,1[7] =
7 8
8 9

,

Sτ,2[1] =
8 9
10 11

, Sτ,2[2] =
9 9
11 12

.

We will use the degree lexicographic order on rectangular 2 ×m Young tableau. Recall
that as per this order a monomial p = pτ1 . . . pτm corresponding to a 2×m tableau is bigger
than a monomial q = qµ1 . . . qµm′ corresponding to another 2 ×m′ tableau if m > m′ or, if
m = m′, then for the smallest i such that τi 6= µi it is the case that τi > µi in the usual
lexicographic order on words of length 2.

Now we fix a j which is odd and look at the subtableau Sj defined above for this j.
Suppose Sj has 2t columns.

Lemma 6.9. For 1 ≤ k < t we have Sj[k](4) = Sj[k + 1](3). If there exists a k such that
ij ≤ Sj[k](1) < ij+1 then Sj[k](2) = Sj[k + 1](1).

Proof. We prove the first statement by contradiction. Suppose Sj[k](4) 6= Sj[k + 1](3) for
some k. Then fSj [k+1](3) ≡ 1 (mod m). So we have fSj [k+1](3) ≡ 1 (mod m) from Observation
6.4. If the number of times Sj[k+ 1](3) appears in row 1 or row 2 is not m then Sj[k+ 1](3)
would occur 3 times in Tµ, a contradiction to the fact that Sj[k + 1](3) is not defected. So
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Sj[k + 1](3) appears m times in row 1 and m times in row 2. As we iterate over k, this is
true of all the Sj[k+1](3)’s - they appear m times in the bottom row starting with a column
numbered 1 (mod m) and also m times in the top row starting with a column numbered
1 (mod m). When k = f(j + 1) − 1 this means fij+1

≡ 1 (mod m) and, as argued above,
f ij+1 ≡ 1 (mod m). Since ij+1 is defected it has to occur 3 times which is a contradiction to
lemma 6.5, since j is odd.

The proof of the second statement is similar and is omitted.

Lemma 6.10. Let j be odd and suppose that Sj has 2tj columns for some tj. Then for
1 ≤ k ≤ tj we have Sj[k](3) > Sj[k](2).

Proof. We prove the lemma for j = 1. We first show this for k = 1. Assume S1[1](3) <
S1[1](2). Consider the tableau Tµ. The column [S1[1](1), S1[1](3)] is a column numbered 1
(mod m) in Tτ and so this column appears in Tµ. If S1[1](3) < S1[1](2), then all occurrences
of S1[1](3) in Tµ appear in this column and to the left. The total number of positions in
the boxes to the left of this column (including this column) in Tµ is an even number. But
S1[1](3) appears 3 times in these boxes since i1 has defect 3, and each other integer appears
an even number of times since they are not defected. This is a contradiction.

Now we show this for k > 1. Note that the column [S1[k](1), S1[k](3)] occurs in Tµ since
it is a column numbered 1 (mod m) in Tτ . If S1[k](3) > S1[k](2) then all occurrences of
S1[k](3) in Tµ are in this column and to its left. This is true for S1[k](1) too. Since S1[k](1)
and S1[k](3) are not defected, they appear twice. The total number of positions to the left
of (and including this ) column [S1[k](1), S1[k](3)] in Tµ is even. This is a contradiction since
i1 appears 3 times and all the other numbers appear twice.

For j odd and bigger than 1, the proof is similar. Recall that the first column of Sτ ,j is

column T
l(j)
τ [1] and this appears in Tµ. The only point to note is that in Tµ, the columns

strictly to left of the column T
l(j)
τ [1] contain all occurrences of the previous ik, k < j and the

sum of the occurrences of these ik, k < j is even. So too is the sum of occurrences of the
remaining integers since they are not defected. The argument then proceeds as in the j = 1
case.

Proposition 6.11. The map R(1)⊗m → R(m) is surjective.

Proof. The proof is by induction. For pτ in R(m), we show that there exists pµ ∈ R(1) and
pν ∈ R(m− 1) and pτ j ∈ R(m) such that pτ = pνpγ +

∑
j pτ j with pτ j < pτ in lexicographic

order. An induction based on degree lexicographic order on monomials completes the proof.

The base case - the lexicographically smallest monomial pτ in R(m), is the one corre-
sponding to the semistandard Young tableau filled with [1, 2] in the first 2m columns and
then [3, 4] and so on. Fix 0 ≤ j ≤ m− 1. Consider the monomial pτ j associated to the sub-
tableau of this tableau consisting of columns 1+ j,m+1+ j, 2m+1+ j, . . . , (n−1)m+1+ j.
This is a zero weight vector in R(1). The product of pτ j is the lexicographically smallest
monomial pτ in R(m).
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In general starting with pτ we construct pµ and pν as given before Definition 6.1, by
taking for Tµ the subtableau with columns 1,m+ 1, . . . , (n− 1)m+ 1. If pµ is a zero weight
vector (i.e in the corresponding tableau no integer is defected) we are done. The monomial
pτ is the product of a zero weight vector in R(1) and an element in R(m − 1) and we are
done by induction on degree.

Otherwise, proceeding as above we have defected integers {i1, i2, . . . , i2l}. Corresponding
to the integer ij in {i1, i3, . . . , i2l−1}, we have subtableaux Sj and Lemma 6.10 holds. For j
odd let the number of columns in Sj be 2tj.

Case 1 : Suppose for all j and 1 ≤ k ≤ tj it is the case that Sj[k](3) > Sj[k](2).

In this case we do the following operation : We swap Sj[k](3) and Sj[k](4) and keep
Sj[k](1), Sj[k](2) fixed for all j odd and for all 1 ≤ k ≤ tj. We get a new Young tableau, call
it S ′j. We modify the original tableau corresponding to pτ by replacing the columns which
were previously used to get Sj by the corresponding columns of S ′j. We do this for every j.

Denote the new monomial computed by this tableau by pτ ′ and denote by pµ′ the mono-
mial obtained from this tableau by selecting columns numbered 1,m + 1, 2m + 1, . . . , (n −
1)m + 1. It is clear that Tµ′ is semistandard. Furthermore for every j odd, one of the ij’s
which appeared in a column numbered 1 (mod m) in Tµ appears now in a column numbered
0 (mod m), and so it’s count in Tµ′ is one less than in Tµ. So ij is not defected in Tµ′ . For
this same j the last exchange is done between Sj[tj](3) and Sj[tj](4) and this is ij+1. So this
ij+1 now occurs in a column numbered 1 (mod m) in Tτ ′ , and so the count of ij+1 in Tµ′ is
one more than in Tµ. So ij+1 is not defected in Tµ′ . From Lemma 6.9, Sj[k](4) = Sj[k+1](3)
for all k, so the counts of the remaining integers in Tµ′ are the same as their count in Tµ, so
these continue to be not defected. This is true for every j. So no integer is defected in Tµ′
and the corresponding monomial is a zero weight vector in R(1). So pτ ′ is a product of a
zero weight monomial in R(1) and an element of R(m− 1).

To finish the proof in this case we compare pτ with pτ ′ . Let us denote the set of columns
of Tτ not in any Sj by Q and the monomial computed by them as y. If Sj has 2tj columns
the monomial computed by it is a product of the tj monomials computed by the 2 × 2
subtableaux Sj[k], pSj [k] := p(Sj [k](1),Sj [k](3))p(Sj [k](2),Sj [k](4)). We have

pτ = yΠj=l
j=1Π

k=tj
k=1 pSj [k], (3)

pτ ′ = yΠj=l
j=1Π

k=tj
k=1 pS′j [k]. (4)

From the straightening laws the following relation holds between the tableaux Sj[k] and
S ′j[k].

p q
r s

=
p q
s r

± p r
q s

(5)

Recall that in the equation above Sj[k] is the tableau on the left hand side of the equation
and S ′j[k] is the first tableau on the right hand side.
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Plugging this into Equation 3 above we see that pτ is the sum of pτ ′ and sums of products
of monomials obtained from pτ by replacing at least one of the terms pSj [k] in its expression
by p′j[k], the monomial computed by the second tableau on the right hand side of Equation
5. However from the hypothesis of this case r > q. So the second tableau on the right is
lexicographically smaller than the tableau Sj[k]. So the 2×mn tableau corresponding to each
additional term obtained by plugging Equation 5 into Equation 3 is lexicographically smaller
than Tτ . It is possible that this tableau is not semistandard and needs to be straightened
into a sum of semistandard tableaux. But each such tableau Tτ ′′ , will be lexicographically
smaller than the (non semistandard) tableau we started with. We proved above that pτ ′ is
the product of pµ′ ∈ R(1) and a monomial pν′ ∈ R(m− 1). We have

pτ = pµ′pν′ +
∑
s

pτ ′′s ,

with the sum being over tableaux which are smaller than τ in lexicographic order. By
induction on lexicographic order each of these is in the image of R(1)⊗m. By induction on
degree pν′ is in the image of R(1)⊗(m−1). So we are done.

Case 2 : For j in which the conditions of Case 1 hold we do exactly as in that case.
Let j be such that Sj[k](3) = Sj[k](2) for some 1 ≤ k < tj. For each such j we do the
following. First note that for such a j, ij appears in Sj as Sj[k](1) for some 1 < k < tj,
since it has defect 3. Let z be the set of all elements ij ≤ z < ij+1 with z = Sj[k](3) in
some subtableau Sj[k] with Sj[k](3) = Sj[k](2). Order this set as {z1, z2, · · · , ze} such that
ij ≤ z1 < z2 < z3 · · · < ze < ij+1, and let ki denote the index for which zi = Sj[ki](3) =
Sj[ki](2) - clearly zs 6= zt for s 6= t and ze < ij+1 and ki ≥ k. Let xi, yi denote Sj[ki](1) and
Sj[ki](4). For k < ki < tj it follows from Lemma 6.9 that Sj[ki−1](4) = zi, Sj[ki+1](1) = zi,
Sj[ki − 1](2) = xi and Sj[ki + 1](3) = yi. We have two subcases.

i e is odd: In this case we first swap Sj[l](1) and Sj(l)(2) for all k ≤ l ≤ k1 − 1. Then
swap the two columns in Sk1 . And swap Sj[l](3) and Sj[l](4) for all k1 +1 ≤ l ≤ k2−1.
Do nothing with Sj[k2]. Instead start with z2 which appears in Sj[k2 + 1](1) and
Sj[k2 + 1](2) and repeat these steps. Since e is odd, the last set of swaps will happen
in the bottom row starting from ye = Sj[ke + 1](3) up to ij+1 = Sj[tj](4).

ii e is even: In this case we swap Sj[l](3) and Sj(l)(4) for all 1 ≤ l ≤ k1 − 1. Do nothing
with Sj[k1]. Instead swap Sj[l](1) and Sj[l](2) for all k1 + 1 ≤ l ≤ k2 − 1 and then
swap the two columns of Sj[k2]. And repeat the procedure from the y2 which appears
as Sk2+1[l](3). Since e is even it can be checked that the last swaps will happen in the
bottom row from ye = Sj[ke + 1](3) to ij+1 = Sj[tj](4).

After these round of swaps, we can use straightening as we did in case 1 above, to
complete the proof. The last set of swaps take place in the bottom row starting with an
element occurring in a 1 (mod m) position and ending with the first occurrence of ij+1

in the bottom row - this is true in both cases. In both cases the first set of swaps start
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with ij occurring in a 1 (mod m) position and end with an element occurring in a position 0
(mod m). It can be checked that if we form tableau Sj′ as we did in Case 1 above, the number
of ij has reduced and the number of ij+1 has increased. The number of occurrences of the
intermediate numbers does not change because of the column swaps performed. Furthermore,
the other set of swaps between elements in the top row and elements in the bottom row in
an Sj[l] take place in those l wherein Sj[l](3) > Sj[l](2). One checks as in Case 1 above
that straightening introduces new zero weight tableaux, but all of them are lexicographically
smaller than the tableau we start with. This completes the proof.

Example 6.12. We continue with the example in 6.8. We reproduce Tτ below. For the
subtableau Sτ,1 of Tτ we perform the operations suggested in Case 2 above, and for the
subtableau Sτ,2 we perform the operations as in Case 1. So we can write the monomial given
by

1 1 1 1 2 2 2 2 3 3 3 3 4 7 7 8 8 9 9 9 10 10 10 11 11 12
4 4 4 5 5 5 5 6 6 6 6 7 7 8 8 9 10 11 11 12 12 12 13 13 13 13

as a sum of the monomials given by the following two tableaux,

1 1 1 1 2 2 2 2 3 3 3 3 4 7 8 7 8 9 9 9 10 10 10 11 11 12
4 4 5 4 5 5 6 5 6 6 7 6 7 8 9 8 11 10 12 11 12 12 13 13 13 13

,

1 1 1 1 2 2 2 2 3 3 3 3 4 7 7 8 8 10 9 9 10 10 10 11 11 12
4 4 4 5 5 5 5 6 6 6 6 7 7 8 8 9 9 11 11 12 12 12 13 13 13 13

.

The first term of the sum can be written as a product of two zero weight vectors. The odd
numbered columns give rise to the zero weight vector represented by the tableau

1 1 2 2 3 3 4 8 8 9 10 10 11
4 5 5 6 6 7 7 9 11 12 12 13 13

.

The even numbered columns give rise to the zero weight vector represented by the tableau

1 1 2 2 3 3 7 7 9 9 10 11 12
4 4 5 5 6 6 8 8 10 11 12 13 13

.

The tableau corresponding to the second summand is nonstandard but lexicographically smaller
than Tτ .

Theorem 6.13. (T\\(G2,n))ssT (L(nω2)), L̃(nω2)) is projectively normal.

Proof. Now
(T\\(G2,n))ssT (L(nω2)), L̃(nω2))

is normal. R1-generation follows from Proposition 6. The theorem follows.
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Corollary 6.14. The GIT quotient of a Schubert variety in G2,n is projectively normal with
respect to the descent line bundle.

Proof. T is a linearly reductive group. For a Schubert variety X(w) in G(2, n) the map
H0(G2,n,L(nω2)

⊗m)T −→ H0(X(w),L(nω2)
⊗m)T is surjective. Since X(w)ssT (L(nω2)) is nor-

mal the corollary follows.

We have an analogue of Corollary 5.8. The proof is similar and is omitted.

Corollary 6.15. The GIT quotient of a Richardson variety in G2,n is projectively normal
with respect to the descent line bundle.
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