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Abstract

We extend our techniques developed in our manuscript mentioned in the subtitle to obtain
a deterministic polynomial time algorithm for computing the non-commutative rank together
with certificates of linear spaces of matrices over sufficiently large base fields.

The key new idea is a reduction procedure that keeps the blow-up parameter small, and
there are two methods to implement this idea: the first one is a greedy argument that removes
certain rows and columns, and the second one is an efficient algorithmic version of a result of
Derksen and Makam. Both methods rely crucially on the regularity lemma in the aforementioned
manuscript, and in this note we improve that lemma by removing a coprime condition there.

1 Introduction: blow-ups and the non-commutative rank

Let F be a field, and M(n,F) be the linear space of n×n matrices over F. We call a linear subspace
of M(n,F) a matrix space. Then, given a matrix space B ≤ M(n,F), its (k, `)-blow-up B{k,`} is
defined as the matrix space B⊗M(k×`,F) in M(nk×n`,F). Although the most relevant blow-ups
in this context are square (e.g, of the form B{k,k}), non-square blow-ups turned out to be crucial
in the reduction techniques in [DM15].

From earlier results, we can define the non-commutative rank of B to be the maximum over
d of 1

d times the maximum rank of a matrix from the blow-up B{d,d}. An important question is
to determine bounds on the blow-up parameter d (as a function of n) which achieves the desired
maximum. From the work of [Der01] it is known that d ≤ n22O(n2), over algebraically closed fields
of characteristic zero.1 In [IQS15] it was shown that over large fields of arbitrary characteristic
d ≤ n42O(n logn). This bound even holds over fields of characteristic zero.

These exponential bounds turned out to be sufficient in [GGOW15] to compute the non-
commutative rank in deterministic polynomial time, over fields of characteristic zero via a previous
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algorithm of Gurvits [Gur04]. In [GGOW15] the following open problems were posed (1) a poly-
nomial time algorithm for the problem over finite fields, and (2) a search version of the problem
- explicitly exhibiting a matrix of rank rd in the d-th blow-up (even over fields of characteristic
0) and a proof that the non commutative rank is at most r. Very recently, Derksen and Makam
proved in [DM15] that it suffices to take the maximum over d between 1 and n − 1 (in arbitrary
characteristic).

In this note we combine methods from [DM15] with those from [IQS15] to obtain an efficient
constructive version of the former result. After we wrote up the first version of this note we
discovered that a very simple observation gives us the result, without having to use the results
from Derksen and Makam. This argument also gives a different proof that the nullcone is defined
by polynomials with degree a polynomial in n.

We say that a subspace V of Fn is an s-shrunk subspace of B if dimBV ≤ dimV − s. If B has
an s-shrunk subspace, then no matrix from B can have rank larger than n − s. As by a square
d-blow-up, s-shrunk subspaces are blown up to ds-shrunk subspaces, the existence of an s-shrunk
subspace implies an upper bound n− s for the noncommutative rank of B. Fortin and Reutenauer
showed in [FR04] that the minimum of the number n− s such that there exist s-shrunk subspaces
coincides with the non-commutative rank.

Our main algorithmic result will construct objects witnessing the non-commutative rank from
both sides.

Theorem 1. Let B ≤M(n,F) be a matrix space given by a basis, and suppose |F| = nΩ(1). Suppose
that B has (a priori unknown) non-commutative rank r. Then there is a deterministic algorithm
using nO(1) arithmetic operations over F that constructs a matrix of rank rd in a blow-up B{d,d} for
some d ≤ r + 1 as well as an (n− r)-shrunk subspace of Fn for B. When F = Q, the final data as
well as all the intermediate data have size polynomial in the size of the input data and hence the
algorithm runs in polynomial time.

Remark 2. • For the above theorem, we use our method in Section 4.1. If the method of
Derksen and Makam [DM15] is used as in Section 4.2, then in the above theorem we can
improve the parameter slightly to d ≤ r − 1 instead of d ≤ r + 1.

• Polynomiality of the algorithm can also be proved for a wide range “concrete” base fields
F. These include sufficiently large finite fields, and also number fields and transcendental
extensions of constant degree over finite fields.

In particular, the non-commutative rank can be computed in deterministic polynomial time in
positive characteristic as well, assuming that the ground field is sufficiently large. This then settles
the aforementioned two open problems from [GGOW15].

Our result also settles a question of Gurvits [Gur04], asking if it is possible to decide, efficiently,
in fields of positive characteristic, whether or not there exists a nonsingular matrix in a matrix space
having the so called Edmonds–Rado property. A matrix space has the Edmonds-Rado property if
it satisfies the promise that it either contains a nonsingular matrix, or it shrinks some subspace.
Yet another way to view this result is that we settle the determinant identity testing for matrix
spaces satisfying the Edmonds Rado property, when the field size is as stated in the hypothesis.

However we can say more, even when the base field is a “too small” finite field. We can then
apply Theorem 1 to a sufficiently large extension. We can embed the extension field as a maximal
commutative subfield of the full matrix algebra of an appropriate degree over the original field,
using the regular representation. We obtain the following.
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Corollary 3. Let B ≤M(n,F) be a matrix space given by a basis, where F is a finite field. Suppose
that B has (a priori unknown) non-commutative rank r. Then there is a deterministic polynomial
time algorithm that constructs a matrix of rank rd in a blow-up B{d,d} for some d ≤ rO(log|F| r) as
well as an (n− r)-shrunk subspace of Fn for B.

So we settle Gurvits [Gur04] question completely, and also solve the determinant identity testing
for matrix spaces satisfying the Edmonds-Rado property.

2 Regularity and incrementing rank via further blow-up

The following lemma (Lemma 11 from [IQS15]) states that in a (square) blow-up it can be effi-
ciently arranged that the structure of a (seemingly) maximum rank matrix shows some minimal
consistencies with the block structure of the blow-up. Namely, it can be enforced that there is a
full rank sub-matrix which is a blow-up from the space of sub-matrices from the original matrix
space obtained by restricting the matrices to a “window” determined by a set of rows and set of
columns. In particular, the rank in the blow-up can be efficiently “rounded” up to the next multiple
of the blowing parameter. It is natural to scale down this rank with the blowing parameter and to
consider the result as an approximation of the non-commutative rank of the original space.

Lemma 4 (Regularity of blow-ups, [IQS15, Lemma 11]). For B ≤ M(n,F) and A = B{d,d},
assume that |F| > rd (which is obviously true when char(F) = 0). Given a matrix A ∈ A with
rkA > (r − 1)d, there exists a deterministic algorithm that returns Ã ∈ A and an r × r window W
in Ã s.t. W is nonsingular (of rank rd). This algorithm uses poly(nd) arithmetic operations and,
over Q, the algorithm runs in polynomial time. In particular, all intermediate numbers have bit
lengths polynomial in the input size.

Here by an r × r window of a matrix from the blow-up we mean a dr × dr sub-matrix whose
columns and rows are obtained by blowing up r rows and r columns from the n × n setting. To
be more precise, suppose i = (i1, . . . , ir), j = (j1, . . . , jr) are two sequences of integers, where
1 ≤ i1 ≤ · · · ≤ ir ≤ n and 1 ≤ j1 ≤ · · · ≤ jr ≤ n. For a matrix A ∈ M(n,F) ⊗M(d,F), the r × r
window indexed by i, j is the sub-matrix of A consisting of the blocks indexed by (ik, j`), k, ` ∈ [r],
the r × r window indexed by i, j.

The cases 1) char(F) = 0, 2) char(F) and d are coprime, and |F| > 2rd were settled in [IQS15,
Lemma 11]. The main issue with the case when d is divisible by char(F) was that then the proof
would have required an efficient construction of an appropriate Artin–Schreier–Witt extension of
Fp(x), which was unavailable to us at the time of writing [IQS15]. Now we have such a construction.
So we include a complete proof of Lemma 4 in this note. We borrow the idea from the cases solved
in the earlier paper and, to cover the remaining case, we prove Lemma 7 which gives an efficient
construction of an Artin–Schreier–Witt extension of Fp(x).

The main technical ingredient of our algorithm will be the following result from [IQS15] (The-
orem 13 of ibid.). It states that either a shrunk subspace witnessing that the (scaled down) rank
of a matrix in a blow-up reaches the non-commutative rank or a matrix in a larger blow-up having
larger scaled down rank can be efficiently constructed.

Theorem 5 ( [IQS15, Theorem 13]). Let B ≤ M(n,F) and let A = B{d,d}. Assume that we
are given a matrix A ∈ A with rk(A) = rd, and |F| is Ω(ndd′), where d′ > r is any positive
integer. There exists a deterministic algorithm that returns either an (n− r)d-shrunk subspace for
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A (equivalently, an (n− r)-shrunk subspace for B), or a matrix B ∈ A⊗M(d′,F) of rank at least
(r + 1)dd′. To be more specific, in this case an (r + 1) × (r + 1) window is also found such that
the corresponding (r + 1)dd′ times (r + 1)dd′ sub-matrix of B has full rank. This algorithm uses
poly(ndd′) arithmetic operations and, over Q, all intermediate numbers have bit lengths polynomial
in the input size.

The sentence on the (r + 1) × (r + 1) window is not explicitly stated in [IQS15]. However,
the algorithm in its proof contains, as a last step, a call to the method behind Lemma 4. Also,
the theorem was stated only under the assumption that d was not divisible by char(F) because of
this last call. As the algorithm up to this step constructs a matrix of rank greater than rdd′, the
complete version of Lemma 4 makes it possible to dispense with that assumption.

Finding an sd-shrunk subspace for the B{d,d} is equivalent to finding an s-shrunk subspace
for B because of the following simple observations. Firstly, for every s-shrunk subspace U of Fn
the subspace U ⊗ Fd for B is obviously an sd-shrunk subspace for B{d,d}. Conversely, a s′-shrunk
subspace for B{d,d} can be easily embedded into a subspace of the form U ⊗ Fd where U is an
s-shrunk subspace for B with sd ≥ s′.

The next lemma concerns a simple procedure originally developed in [dGIR96] for reducing
data for an algorithm for a task in a different, although not completely unrelated context. See also
the appropriate paragraph in Subsection 4.1 of [IQS15] for a brief description. This technique is
extensively used in the above mentioned two results for handling extension fields if necessary. It is
also used to keep data small over infinite base fields. Here it can also be applied to keep the entries
of the d by d matrices defining the large rank matrix from the d-blow-up in a finite (but sufficiently
large) subset of the base fields.

Lemma 6 (Data reduction, [dGIR96,IQS15]). Let A ≤M(k×`,F) be given by a basis A1, . . . , Am.
Let S be a subset S of F of size at least r+1. Suppose that we are also given a matrix B =

∑
βiAi ∈

A of rank at least r. Then we can find A =
∑
αiAi of rank also at least r with αi ∈ S. The algorithm

uses poly(k, `, r) rank computations for matrices of the form
∑
γiAi where γi ∈ {β1, . . . , βm} ∪ S.

3 Regularity of blow-ups

This section is devoted to a proof of Lemma 4.

3.1 Ingredients: cyclic extensions and cyclic division algebras

Recall that a cyclic extension of a field K is a finite Galois extension of K having a cyclic Galois
group. By constructing a cyclic extension L we mean constructing the extension as an algebra
over K, e.g., by giving an array of structure constants with respect to a K-basis for L defining the
multiplication on L as well as specifying a generator of the Galois group, e.g, by its matrix with
respect to a K-basis. Recall that for a finite dimensional algebra A over the field K, a common
way to specify the multiplication is using an array of structure constants with respect to a K-basis
A1, . . . , Ad. These are d3 elements γijk of K such that AiAj =

∑d
k=1 γijkAk. Then we can represent

elements of A by the vectors of their coordinates in terms of the basis A1, . . . , Ad. The size of the
data representing the structure constants give some control over the size of data representing the
product of element. Perhaps the easiest example is the case where K is the function field Fp(Z)
and the structure constants happen to be polynomials in Fp[Z]. Then for two elements of A with
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their coordinates being polynomials in Fp[Z], their product will have also polynomial coordinates,
and the degrees of the coordinates of the product are upper bounded by the sum of the maximum
degrees of coordinates the factors plus the maximum degree of the structure constants.

Lemma 7. Given a prime p and an integer s ≥ 1, one can construct in time poly(ps) a cyclic
extension Ks of Fp(Z) of degree ps such that Fp is algebraically closed in Ks. The field Ks will be
given in terms of structure constants with respect to a basis over Fp(Z), and the generator σ for
the Galois group will be given by its matrix in terms of the same basis. The structure constants as
well as the entries of the matrix for σ will be polynomials in Fp[Z] of degree poly(ps).

Proof. First we briefly recall the general construction given in Section 6.4 of [Ram54]. This, starting
from a field K0 of characteristic p, recursively builds a tower K0 < K1 < . . . < Ks of fields such
that Kj is a cyclic extension of K0 of degree pj . Assume that Ks together with a K0-automorphism
σs of order ps has already been constructed. (Initially let σ0 be the identity map on K0.) Then
for any element βs ∈ Ks with TrKs:K0(βs) = 1 and for any αs ∈ Ks such that ασss − αs = βps − βs
the polynomial Xp −X − αs is irreducible in Ks[X]. (Existence of αs with the required property
follows from the additive Hilbert 90.) Put Ks+1 = Ks[X]/(Xp −X − αs) and let ωs+1 ∈ Ks+1 be
the image of of X under the projection Ks[X] → Ks+1. Then σs extends to a K0-automorphism
σs+1 of degree ps+1 of Ks+1 such that ω

σs+1

s+1 = ωs+1 + βs. This gives a cyclic extension of degree
ps+1.

Now we specify some details of a polynomial time construction for K0 = Fp(Z) following the
method outlined above. In the first step we take β0 = 1, and, in order to guarantee that the only
elements in K1 which are algebraic over Fp is Fp (we also use the phrase Fp is algebraically closed
in K1 when this property holds), we take α0 = Z. Then K1 is a pure transcendental extension of
Fp. As Ks/K0 is a cyclic extension of oder ps, it has a unique subfield which is an order p extension
of K0. This must be K1. Then Fp has no proper finite extension in Ks as otherwise K0 would also
have another degree p extension.

We consider the following K0-basis for Ks:

Γs =


s∏
j=1

ωkj , (k = 0, . . . , p− 1)

 ,

where ωj is a root of Xp − X − αj−1 in Kj . We claim that TrKj :Kj−1(ωp−1
j ) = −1. Indeed, in

the Kj−1-basis ω0
j , . . . , ω

p−1
j for Kj , in the matrix of multiplication by ωp−1

j the diagonal entries

consist of p− 1 ones and one zero. Therefore TrKj :Kj−1(ωp−1
j γ) = −γ for every γ ∈ Kj−1, whence

TrKj :K0(ωp−1
j γ) = −TrKj−1:K0(γ). Now by induction we obtain TrKj :K0

∏j
i=1 ω

p−1
i = (−1)j . There-

fore in each step (when j > 0) we can choose βj = (−1)j
∏j
i=1 ω

p−1
i and αj thereafter, following

the construction in the standard proof of the additive Hilbert 90. Specifically, we set

αj = (−1)j+1
pj−1∑
k=1

β
σk
j

j

(
k−1∑
`=0

(βpj − βj)
σ`
j

)
. (1)

Then α
σj
j − αj = βpj − βj . Notice that αj is a sum of terms with each of which, up to a sign, is a

product of at most p+ 1 conjugates β
σ`
j

j (with various `s) of βj (` ≤ pj)
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Assume by induction that the structure constants of Kj with respect to the basis Γj are poly-
nomials from Fp[Z] of degree at most ∆j and the same holds for the entries of the matrix of σ`j
for every 1 ≤ ` < pj (written in the same basis). For j = 1 this holds with ∆1 = 1. (To see this,
observe that for 0 ≤ k, ` < p, the product ωk1ω

`
1 is the basis element of ωk+`

1 if k + ` < p, while

otherwise it equals the sum ωk+`−p+1
1 + Zωk+`−p

1 .) Then, if we express αj in terms of the basis Γj
using Eq. 1, we obtain that its coordinates are polynomials of degree at most (2p + 1)∆j . This is

because (−1)jβj ∈ Γj , whence βσ
`

j has coordinates of polynomials of degree bounded by ∆j . In
Eq. 1, we have the products of at most p + 1 such elements, so the result will have polynomial
coordinates of degree at most (2p+ 1)∆j .

Now consider the product of two elements ωkj+1γ1 and ω`j+1γ2 of Γj+1. Here k, ` < p and
γ1, γ2 ∈ Γj . The coordinates of the product γ1γ2 with respect to Γj are polynomials of degree
at most ∆j . The same holds for the product ωk+`

j+1γ1γ2 if k + ` < p. If k + ` > p, then ωk+`
j+1 =

ωpj+1ω
k+`−p
j+1 = (ωj+1 + αj)ω

k+`−p
j+1 , whence ωk+`

j+1γ1γ2 is the sum of ω1+k+`−p
j+1 γ1γ2 and αjγ1γ2. The

former term has coordinates of degree at most ∆j , the coordinates of the latter are polynomials of
degree at most (2p+ 1)∆j + ∆j + ∆j = (2p+ 3)∆j .

Now consider the conjugate of ωkj+1γ by σ`j+1, where 1 ≤ ` < pj+1, 1 ≤ k ≤ p − 1 and γ ∈ Γj .

This conjugate is (ω
σ`
j+1

j+1 )kγσ
`
j+1 . The second term equals γσ

`
j which has coordinates of degree at

most ∆j . To investigate the first term, recall that ω
σj+1

j+1 = ωj+1 + βj , whence

ω
σ`
j+1

j+1 = ωj+1 +

`−1∑
r=0

β
σr
j

j

The element δ =
∑`−1

r=0 β
σr
j

j , expressed in terms of Γj , has again polynomial coordinates of degree

at most ∆j . Then (ω
σ`
j+1

j+1 )k is the sum (with binomial coefficients) of terms of the form ωrj+1δ
k−r.

The power δk−r has coordinates of degree at most (k− r)∆j + (k− r− 1)∆j ≤ (2p− 1)∆j in terms

of Γj , whence we conclude that (ω
σ`
j+1

j+1 )k has, in terms of Γj+1 polynomial coordinates of degree at
most (2p− 1)∆j . It follows that the matrix of any power of σj+1 has polynomial entries of degree
at most 2p∆j .

We obtained that the function (2p + 3)s = poly(ps) is an upper bound for both the structure
constants and for the matrices of the powers of σs.

Lemma 8. Let p be a prime such that d = d1p
s where d1 is the largest divisor of d not divisible by

p. In particular p is an arbitrary prime and s = 0 if the characteristic of K is zero while otherwise
p is the characteristic of K. Assume that K contains a known d1th root of unity ζ. Then a cyclic
extension L degree d of K(X1, X2) can be computed using poly(d) arithmetic operations. L will be
given by structure constants with respect to a basis, and the matrix for a generator of the Galois
group in terms of the same basis will also be given. All the output entries (the structure constants
as well as the entries of the matrix representing the Galois group generator) will be polynomials of
degree poly(d) in K[X1, X2]. Furthermore for K = Q[ d1

√
1], the bit complexity of the algorithm (as

well as the size of the output) is poly(d).

Proof. Put L1 = K(Y ) and X1 = Y d1 . Then 1, Y, . . . , Y d1 are a K(X1)-basis for L1 with Y iY j =
Y i+j if i + j ≤ d1 and X1Y

i+j−d1 otherwise. Also, the linear extension σ1 of the map sending
Y j to ζjY j is an automorphism of degree d1. Let d2 = ps. For a cyclic extension L2 of K(X2)
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(if d2 > 1) we compute the prime field Fp of K by testing the multiples of the identity element,
and then take the tensor product of K with the cyclic extension of degree d2 of Fp(X2) obtained
by the construction of Lemma 7 over Fp. We also obtain the matrix a generator σ2 of the Galois
group. Then put L = L1 ⊗K L2. It contains a copy of K(X1, X2) ∼= K(X1) ⊗K K(X2). We take
the product basis for the structure constants and for matrix representation of the automorphism
σ1 ⊗ σ2.

The following statement follows from Wedderburn’s theorem characterizing cyclic division al-
gebras (see e.g. [Lam91, Theorem (14.9)]) as shown on Page 240 of [Lam91].

Fact 9. Let L be a cyclic extension of degree d of the field K ′. Let σ be a generator of the Galois
group. We consider the transcendental extension L(Z) of L. Then σ extends to an automorphism
(denoted again by σ) of L(Z) such that the fixed field of σ is K ′(Z). Thus L(Z) is a cyclic extension
of K ′(Z). Consider the K ′(Z)-algebra D generated by (a basis for) L and by an element U with
relations Ud = Z and Ua = aσU (∀a ∈ L(Z), or, equivalently ∀a ∈ the basis for L). Then D is a
central division algebra of index d over K(Z).

Lemma 10. Let K and L be as in Lemma 8. Then one can construct a K(X1, X2, Y )-basis Γ of
M(n,K(X1, X2, Y )) such that the K(X1, X2, Y

d)-linear span of Γ is a central division algebra over
K(X1, X2, Y

d) of index d using poly(d) arithmetic operations in K. Furthermore for K = Q[ d1
√

1],
the bit complexity of the algorithm (as well as the size of the output) is also poly(d).

Proof. Let K ′ = K(X1, X2), put Z = Y d and let D be a central division algebra over K ′ as in
Fact 9. We also consider the commutative subfield L(Z) of D which is a cyclic extension of degree
d of K ′(Z). Existence of a K(Z)-subalgebra D′ of M(d,K ′(Y )) isomorphic to D follows, e.g.,
from Theorem (14.7) of [Lam91]. To construct a basis Γ for such a matrix algebra D′ efficiently,
consider the K(Z)-basis for D consisting of the products AiU

j (i, j = 1, . . . , d). (Here we assume
that A1, . . . , Ad correspond in L(Z) to the basis elements of L for which Lemma 8 constructed the
structure constants.) This is also a K(Y )-basis for the algebra D′′ = K(Y )⊗D. Consider also the
element U0 = 1

Y U . Then Ud0 = 1. As the elements U j0 are linearly independent over K(Y ) and

hence over K(Z) as well, we have that E = U0 +U2
0 + ...+Ud−1

0 +Ud0 is nonzero. As U jE = Y jE,
we have AiE (i = 1, . . . , d) are a K(Y )-basis for the left ideal D′′E of dimension d. Now the action
of D′′ on this left ideal gives a matrix representation for D′′. Let γkij be the structure constants
for the multiplication of L (and of L(Z)):

AkAi =

d∑
j=1

γkijAj (k, i = 1, . . . , d).

Also, let δ`ij be the entries of the matrix of the `th power of the generator σ of the Galois group:

Aσ
`

i =
d∑
j=1

δ`ijAj (`, i = 1, . . . , d).

(Notice that the matrix (δ`ij)ij is the `th power of (δ1ij)ij , whence its degree is also bounded by
poly(d).) Then

AkAiE =

d∑
j=1

γkijAjE
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and

U `AiE = Aσ
`

i U
`E = Aσ

`

i Y
`E = Y `

d∑
j=1

δ`ijAjE.

Thus the matrix of the action of Ak has entries γkij and the matrix of the action of U ` has entries
Y `δ`ij . Then the action of of U `Ak can be obtained as the product of these two matrices. Let Γ
consist of all such d2 products, and the proof is concluded.

3.2 Proof of regularity

We shall make use of Lemma 10 as follows. First, we take a (transcendental) extension K of F so
that we can construct a central division algebra D of index d over K(Z) = K(Y d) by Lemma 8 and
Fact 9. Then, instead of the blow-up B{d,d} = B⊗M(d,F) we consider the blow-up B⊗M(d,K(Y )).
Let D′ be a K(Z)-subalgebra of M(d,K(Y )) such that K(Y ) ⊗ D′ = M(d,K(Y )) and that D′ is
a division algebra. Then both B{d,d} and B ⊗F D

′ span, as a K(Y )-linear space, the blow-up
B ⊗F Md(K(Y )).

Claim 11. Let K and D′ ⊂ M(d,K(Y )) be as above. Then every matrix in M(n,F) ⊗ D′ ⊂
M(d,K(Y )) has rank (as a matrix over K(Y )) divisible by d.

Proof. Consider the K-linear space K(Y )dn ∼= K(Z)d
2n over M(n,F)⊗FD

′ = M(n,K(Z))⊗K(Z)D
′.

Since D′⊗K(Z)D
′op ∼= M(d2,K(Z)) [Lam91, Corollary (15.5)], it follows that the centralizer of this

action is the opposite algebra D′op. Therefore the image of A′Kdn of any A′ ∈ M(n,F)⊗F D
′ is a

D′op-submodule, whence its dimension over K(Z) is divisible by d2. It follows that the dimension
over K(Y ) is divisible by d.

The claim enables us to “round up” ranks of an already constructed matrix in the blow-up to
the next multiple of d. We outline a method for this task below.

Let A be a matrix from B{d,d} of rank greater than (r − 1)d where r ≤ n. Then A, considered
as a matrix over K(Y ) has also rank greater than (r − 1)d. Now consider a basis for D′ over
K(Z). Then A can be expressed as a linear combination (with coefficients over K(Y )) of these
basis elements. We use the method of Lemma 6 to find coefficients from K(Z) (or even from F)
such that the combination A′ of the basis element for D′ has rank also larger than (r − 1)d. We
have A′ ∈ B ⊗ D′, whence by Claim 11, the rank of A′ is at least rd. Then we express A′ as a
linear combination of elements – with coefficients from K(Y ) – of an F-basis of B{d,d} which is also
a K(Y )-basis for B ⊗M(d,K(Y )). Then we use again the algorithm of Lemma 6 to replace these
coefficients to elements of F to find a matrix A′′ ∈ B of rank at least rd.

An efficient realization of this method gives the following.

Lemma 12. Let B ≤ M(n,F) and assume that we are given A ∈ A = B{d,d} of rank larger than
(n− 1)d. Then, provided that the size of F is (nd)Ω(1), using poly(nd) operations in F we can find
a matrix of rank nd in A. Furthermore, if F = Q then the bit complexity of finding such a matrix
is polynomial in the size of the input data (these are the entries of a basis B1, . . . , Bm for B and
the entries of the matrices Ci ∈M(d,F) such that A =

∑m
i=1Ai ⊗ Ci).

Proof. We describe the details of the critical ingredients for turning the method described above
into an efficient algorithm.
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To begin with, we need an extension K of our base field F such that we can construct a central
division algebra over K as in Fact 9. For this a finite extension F′ of F containing a (known)
primitive d1th root of unity ζ (here d1 is char(F)-free part of d) and K = F′(X1, X2) would be
sufficient.

Then K(Y ) = F′(X1, X2, Y ) is a pure transcendental extension of F′. Then computation of the
rank of nd× nd matrices with entries from K(Y ) can be accomplished as follows. Assume that the
entries of the given matrix are represented by quotients of polynomial form F′[X1, X2, Y ]. Then the
size of the input is the total size of these 2n2d2 polynomials. We multiply all the entries by an easily
computable common multiple (e.g., the product) of their denominators to obtain a matrix with
polynomial entries from F′[X1, X2, Y ]. The data describing this matrix have size polynomial in the
size of the input data. In particular, the degree of the determinant of any sub-matrix is bounded
by a polynomial s in nd and the sum of the degrees appearing in the input entries. We assume
that F′ (and even F) has more than s element. Then from (s + 1)3 specializations by elements of
subset of size s + 1 of F′ at least one gives a matrix with entries F′ having the same rank as the
original matrix. Thus to compute the rank over K(Y ) can be accomplished by computing the rank
over F′ of polynomially many specializations.

The bounds given in Lemma 10 guarantee that all the degrees of polynomials we encounter are
bounded by some polynomial of nd and, over the rationals the bit size of the coefficients of these
polynomials also remain bounded in the size of the data describing the input basis for B.

There is one issue regarding the construction of Kummer extensions. Namely, constructing
F′ = F[ζ] would require factoring the polynomial xd1−1 over F, a task which cannot be accomplished
using basic arithmetic operations. To see that this is indeed an issue notice that a black-box field
may contain certain “hidden” parts of cyclotomic fields. (Of course, over certain concrete fields,
such as the rationals, number fields or finite fields of small characteristic, this can be done in
polynomial time. However, even over finite fields of large characteristic no deterministic polynomial
time solution to this task is known at present.)

To get around this issue, one can perform the required computations over an appropriate ideal
R of the algebra C = F[x]/(xd1 − 1) in place F′ as if R were a field. To be specific, as d1 is not
divisible by the characteristic, we know that C is semisimple – actually it is isomorphic to a direct
sum of ideals each of which is isomorphic to the splitting field F[ e

√
1] of the polynomial xe − 1 for

some divisor e of d1 and the pojection of x to such an ideal is a primitive eth root of unity. It follows
that if we compute the ideal J of C generated by the annihilators of xe − 1 for all proper divisor
e of d1 then R = C/J is isomorphic to the direct sum of copies of the splitting field F′ of xd1 − 1
and the projection of x to each component is a primitive d1th root of unity. And this property is
inherited by any proper factor of R. The procedure (whose critical part is the computation of the
rank of specialized matrices via, e.g., Gaussian elimination) using R instead of F′ fail if and only if
a zero divisor in R is found. In that case we replace R with the factor of R by its ideal generated
by the zero divisor and restart the computation.

Note that a similar issue, namely that a black box field may even contain infinite algebraic ex-
tensions of its subfields has been circumvented by using the transcendental extension K = F′(X,Y )
in the construction of cyclic extensions (Lemma 8).

We are now in a position to finish the proof of Lemma 4.

Proof of Lemma 4. If F is a finite field of size poly(nd), if necessary we replace F with an extension
of size still poly(nd) but large enough for Lemma 12.
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The proof goes by induction on r. To see the initial case r = 1, let B be any nonzero matrix
from B. Assume that the (i, j)th entry of B is nonzero. Then the (i, j)th block of B⊗I is a nonzero
d× d scalar matrix.

For the inductive step, assume r > 1. By the induction hypothesis, we can find a matrix A′ ∈ A
and an (r−1)× (r−1) nonsingular window in A′. We assume w.l.o.g. that the window corresponds
to row and column indices 1, . . . , r − 1, that is, the nonsingular sub-matrix of A′ consists of its
upper left (r − 1)2 blocks. It is easy to see that if S is a subset of F of size at least 2rd + 1 then
for some (λ, µ) ∈ S × S, we have that the upper left (r − 1)d× (r − 1)d block of λA′ + µA is still
nonsingular and at the same time λA′ + µA has rank larger than (r − 1)d. We replace A with
such a λA′ + µA. We can again w.l.o.g. assume that already the upper left r2 blocks of A form a
sub-matrix of rank larger that (r − 1)d. We apply the algorithm for Lemma 12 to this upper left
rd× rd sub-matrix of A and to the corresponding r× r window to obtain a matrix of rank at least
rd.

As a final step, if we have extended our base field than we can go back to the original field using
the method of Lemma 6.

4 Blow-up reduction tools

To obtain the algorithm for Theorem 1, the regularity lemma needs to be accompanied with a
reduction procedure that keeps the blow-up parameter small. One such procedure can be obtained
by making effective the method of Derksen and Makam, who were the first to observe that it suffices
to consider blow-ups of size at most n−1. However there is a much simpler procedure, at the small
price of considering blow-ups of size at most n + 1 instead of n − 1. We give that proof first, and
later we also present a constructive version of the Derksen and Makam result.

4.1 A greedy argument

Lemma 13. Let B ≤ M(n,F), and d > n + 1. Assume we are given a matrix A ∈ B{d,d} of rank
dn. Then there exists a deterministic polynomial-time procedure that constructs A′ ∈ B{d−1,d−1} of
rank (d− 1)n.

Proof. Let A′′ be an appropriate (d − 1)n × (d − 1)n submatrix of A corresponding a matrix in
B{d−1,d−1}. We claim A′′ is of rank > (d− 1)(n− 1). Suppose not, as A is obtained from A′′ from
adding n rows and then n columns, and d > n+1, we have rk(A) ≤ rk(A′′)+2n ≤ dn−d−n+1+2n <
dn, a contradiction. Now that rk(A′′) > (d− 1)(n− 1), using Lemma 4, we obtain A′ ≤ B{d−1,d−1}

of rank (d− 1)n.

4.2 Derksen and Makam’s concativity argument

Here is an algorithmic version of Lemma 2.7 of [DM15].

Lemma 14. Let B ≤ M(n,F). Assume that for k, ` = 1, . . . , N we are given matrices M0(k, `) ∈
B{k,`} of rank r0(k, `), and suppose that |F| ≥ 2nN + 1. Then for every k, ` = 0, . . . , N we can effi-
ciently (that is, by an algorithm that uses poly(Nn) arithmetic operations and, over e.g. Q, produces
intermediate and final data of size polynomial in the input size) construct matrices M(k, `) ∈ B{k,`}
of rank r(k, `) ≥ r0(k, `) such that
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(1) r(k, `+ 1) ≥ r(k, `) (0 ≤ ` < N);

(2) r(k + 1, `) ≥ r(k, `) (0 ≤ k < N);

(3) r(k, `+ 1) ≥ 1
2(r(k, `) + r(k, `+ 2) (0 ≤ ` < N − 1);

(4) r(k + 1, `) ≥ 1
2(r(k, `) + r(k + 2, `) (0 ≤ k < N − 1);

(5) r(k, k) is divisible by k.

For k = 0 (resp. ` = 0) we assume that M0(k, `) is the empty matrix having ` columns (resp. k
rows), and r(k, `) = 0.

Proof. Initially put M(k, `) = M0(k, `) for every pair (k, `). For a k× ` matrix T let T+ denote the
(k+1)×` matrix obtained form T by appending a zero ((k+1)st) row, T++ is obtained by appending
two zero rows. For M =

∑m
i=1Bi⊗Ti we use M+ for

∑m
i=1Bi⊗T

+
i , while M++ =

∑m
i=1Bi⊗T

++
i .

Let (k, `) be a pair such that any of (1)–(5) is violated. Then we will replace some of the
matrices M(k′, `′) with matrices having larger rank. Over an infinite base field like Q, each such
replacement step (or each small group consisting of a few them) can be followed by an application
of the data reduction procedure from [dGIR96] to keep intermediate (as well as the final) data
small.

If (1) is violated then, like in [DM15], replace M(k + 1, `) with M(k, `)+. We can treat a
violation of (2) symmetrically.

When (3) is violated we consider the matrix A = A(t) = M(k+2, `)+tM(k, `)++ as a (k+2)×`
block matrix consisting of square blocks of size n from B. We can choose t from any subset S of
size 2nN + 1 of the base field so that A has rank at least r(k + 2, `), while the first kn rows form
a matrix of rank at least r(k, `). This is because a necessary condition for violating either of these
two conditions is that the determinant of an appropriate (but unknown) sub-matrix vanishes which
determinant is, as a polynomial of degree at most nN in t is not identically zero. The product of
these polynomials has degree at most 2nN therefore it cannot have more that 2nN zeros.

If A has rank larger than r(k+2, `) then we replaceM(k+2, `) with A. Otherwise, like in [DM15],
let U be the span of the first kn rows of A, V be the span of the first (k+1)n rows and W be the span
of the first kn rows and the last n rows. Note that these collections rows correspond to matrices of
the form A0 =

∑
Bi ⊗ Ti, A1 =

∑
Bi ⊗ T ′i and A2 =

∑
Bi ⊗ T ′′i where Ti are k× ` matrices, while

T ′i and T ′′i have (k + 1) rows and ` columns. As U ≤ V ∩W and the row space of A is V +W , we
have r(k, `) ≤ dimU ≤ dim(V ∩W ) = dimV + dimW −dimV +W = dimV + dimW − r(k+ 2, `).
It follows that dimV + dimW ≥ r(k, `) + r(k + 2, `), whence violation of (3) is only possible if
either dimV or dimW is strictly larger than 1

2(r(k, `) + r(k + 2, `)). Then we replace M(k + 1, `)
with A1 or A2, according to which one has larger rank. A violation of (4) is treated symmetrically.

When (5) is violated then we can apply Lemma 4.
As in each round when violation of (1),. . .,(4) or (5) occurs the rank of at least one of the matrices

M(k, `) is incremented, the total number of rounds for achieving (1)–(5) is at most N3n.

And here is essentially Proposition 2.10 of [DM15]. We include a proof (which is almost literally
the same as the proof in [DM15]) here for completeness. We note that this lemma deals only with
the property of certain families of functions, without referring to matrices.
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Lemma 15 ( [DM15, Proposition 2.10]). Assume that N > n > 0, r : {0, 1, . . . , N}2 → Z is a
function with 0 ≤ r(k, `) ≤ min(k, `)n for k, ` ∈ {0, 1, . . . , N} also satisfying (1)–(5) of Lemma 14.
Suppose further that r(1, 1) > 1, and there exists d such that n ≤ d+ 1 ≤ N and r(d+ 1, d+ 1) =
n(d+ 1). Then, r(d, d) = nd as well.

Proof. By r(d+ 1, d+ 1) = n(d+ 1), for 1 ≤ a < d+ 1,

r(d+ 1, a) ≥ (d+ 1− 1) · r(d+ 1, 0) + a · r(d+ 1, d+ 1)

d+ 1
= an.

As by assumption r(d + 1, a) ≤ an, we have r(d + 1, a) = an. Similarly r(a, d + 1) = an for
1 ≤ a < d+ 1.

Then we bound r(1, d) as follows:

r(1, d) ≥ (d− 1) · r(1, d+ 1) + 1 · r(1, 1)

d

≥ (d− 1)n+ 2

d
= n− n− 2

d
> n− 1.

Note that we use r(1, 1) > 1 and d ≥ n− 1. Since r(1, d) ∈ Z, r(1, d) = n.
We are ready to bound r(d, d) then.

r(d, d) ≥ (d− 1) · r(d+ 1, d) + 1 · r(1, d)

d

=
(d− 1)dn+ n

d
= nd− n+

n

d
.

From d ≥ n − 1 it is inferred easily that −n + n
d > −d. Therefore nd − n + n

d > (n − 1)d. By (5)
we conclude that r(d, d) = nd.

5 The algorithm

Proof of Theorem 1. Let B1, . . . , Bm be the input basis for B. The algorithm is an iteration based
on Theorem 5. During the iteration we have a matrix A =

∑
iBi⊗ Ti ∈ B{d,d} of rank rd for some

integer d ≤ r − 1. We assume that at least one of the basis elements Bi has rank larger than 1, as
otherwise [IKS10] works even with d = 1. Initially d = 1 and A is a basis element having rank at
least 2. The procedure behind Theorem 5 either returns an (n− r)-shrunk subspace (in which case
we are done), or a new matrix (denoted also by A) in a blow-up B{d′,d′} of rank at least (r + 1)d′

for some d′ < r2 together with a square window of size r+ 1 so that the corresponding sub-matrix
of A is of rank (r+ 1)d′. If d′ > r+ 2 then we apply either of the two methods in Section 4 to this
block.

• If Lemma 13 is used, then n in the statement will be r + 1, and we shall use it repeatedly to
get a matrix in the (r + 2, r + 2)-blow-up with a similar content as above.

• If Lemma 14 is used, then n in the statement of the lemma will be r + 1, N will be d′,
M0(d′, d′) is the nonsingular (r+ 1)d′× (r+ 1)d′ block of A and M0(p, q) can be actually even
the zero matrix for (p, q) 6= (d′, d′). It will prepare matrices in several not necessarily square
blow-ups, among others, most importantly, one in an (r, r)-blow-up. The main content of this
are r by r matrices T1, . . . , Tm such that the (r+ 1)r× (r+ 1)r sub-matrix of A′ =

∑
Bi⊗Ti

has full rank.
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Then we replace A with A′ and apply the size reduction procedure of [dGIR96] to arrange that the
entries of Ti fall into the prescribed subset of F, and continue the iteration with this new matrix
A.
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of the work was done when Gábor and Youming were visiting the Centre for Quantum Technolo-
gies at the National University of Singapore. Research of the first author was also supported in
part by the Hungarian National Research, Development and Innovation Office – NKFIH, Grants
NK105645 and 115288. Youming’s research was supported by the Australian Research Council
DECRA DE150100720.

References

[Der01] Harm Derksen. Polynomial bounds for rings of invariants. Proceedings of the American
Mathematical Society, 129(4):955–964, 2001.
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