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Abstract. In this paper we describe the ring of invariants of the space of m-tuples of
n×n matrices, under the action of SL(n)×SL(n) given by (A,B)·(X1, X2, · · · , Xm) 7→
(AX1B

t, AX2B
t, · · · , AXmBt). Determining the ring of invariants is the first step in

the geometric approach to finding multiplicities of representations of the symmetric
group in the tensor product of rectangular shaped representations. We show that
these invariants are given by multi-determinants and can also be described in terms
of certain magic squares. We compute the null cone for this action. We also study a
birational subring of invariants and an analysis thereof results into a different proof
of the Artin-Procesi theorem for the ring of invariants for several matrices under the
simultaneous conjugation action of SL(n).
Keywords: Invariant theory; Artin-Procesi theorem; Null cone

1. Introduction

The basic problem addressed in this paper concerns describing the ring of invariants,
over say the field of complex numbers C, of m-tuples of n× n matrices under the left-
right action by the direct product SL(n) × SL(n) of two copies of the special linear
group. This problem naturally arose out of the earlier work of the first and third author
in [1]. Let us briefly recall the underlying motivations.

Let Sk denote the symmetric group on k letters. It is well known (see [6]) that
the complex irreducible representations of Sk are parameterized by integer partitions
of k. As we are primarily interested in complex representations, by ‘representation’
we always mean a complex representation. Let λ, µ and ν be three partitions of the
integer k. Further, let Wλ, Wµ and Wν be the associated irreducible representations
of Sk. Under the natural diagonal action of Sk, Wµ ⊗Wν becomes a representation of
Sk. The Kronecker problem, in this context, is to ‘compute’ the multiplicity mλµν with
which the representation Wλ occurs in the representation Wµ ⊗Wν .

Our interest in this problem is motivated by the work ‘Geometric Complexity The-
ory’ of Mulmuley and Sohoni, [9, 10]. In this work, a strong link is established between
the separation of complexity classes in Computer Science and algorithmic problems
in Representation Theory. It has been shown there that a good understanding of the
‘subgroup restriction problem’ (see [10]) will be an important step in demonstrating
separation of complexity classes via the proposed approach. The Kronecker problem,
of determining tensor product multiplicities of the symmetric group is a special, albeit
very important case of the ‘subgroup restriction problem’ [10]. However very little is
known about this problem. The problem has been solved when λ and µ are partitions
with at most two parts [14], and when they are both hook shaped [15].
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In [1] a geometric approach was proposed to study this problem. The approach was
based on the well known Schur-Weyl duality [16, 7]. Assume that λ has atmost m rows,
µ has atmost n rows and ν has atmost p rows. Then λ parameterizes an irreducible
representation, Vλ, of GL(m), µ parameterizes an irreducible representation, Vµ, of
GL(n) and ν parameterizes a representation, Vν , of GL(p) (see [6]). Now we have a
natural action of GL(m)×GL(n)×GL(p) on Cm⊗Cn⊗Cp, and so an induced action
on Symk(Cm ⊗ Cn ⊗ Cp). Note that the k here is the same as the parameter in the
symmetric group Sk whose tensor product multiplicities we wish to determine. In [1]
it was shown that mλµν is equal to the multiplicity of the GL(m) × GL(n) × GL(p)
module Vλ⊗Vµ⊗Vν in Symk(Cm⊗Cn⊗Cp). In [1] this problem was completely solved
in the case when m = n = p = 2 using geometric methods.

In this paper we address the following question - determine mλµν in the case when µ
and ν are rectangular shapes. We make a further assumption that µ and ν are identical
with exactly n = p rows. Under these assumptions, Vµ and Vν are both GL(n) modules.
This viewpoint of the problem brings in a lot of geometry and seems promising. This is
because GL(n) irreducible modules parameterized by rectangular shapes with n rows
are precisely the semi-invariants for the given action.

So, the problem is to study GL(m)×GL(n)×GL(n) acting on Symk(Cm⊗Cn⊗Cn),
and understand the GL(m) module structure of the GL(n) × GL(n) semi-invariants.
In other words, working instead with SL(m)× SL(n)× SL(n), we ask:

(A) What are the SL(n)× SL(n) invariants of Symk(Cm ⊗ Cn ⊗ Cn)?
(B) How does the invariant space in (A) decompose as an SL(m) module? We are

interested, of course, in an explicit decomposition rule.

We give a complete solution to question (A) above. We also get a combinatorial
model for the invariant space, which we believe will be useful to solve question (B)
above.

Now identify Cm⊗Cn⊗Cn with m-tuples of n×n matrices X = (X1, X2, · · · , Xm).
Let SL(n)× SL(n) act on X as,

(A, B) ◦ (X1, X2, · · · , Xm) = (AX1B
t, AX2B

t, · · · , AXmBt).

Thinking of Xi as the i-th column of an n2 × m matrix, we get a natural action of
SL(m) on X which commutes with the action of SL(n) × SL(n) just defined. It can
be easily checked that the total action of SL(m)× SL(n)× SL(n) on X, is compatible
with the natural action of SL(m)× SL(n)× SL(n) on Cm ⊗ Cn ⊗ Cn.

And so the answer to question (A) above is - these invariants are precisely the degree
k invariants of m-tuples of n× n matrices under the natural action of SL(n)× SL(n).
So what we need to know is a description of this ring of invariants Rm,n and the
SL(m)-structure of the k-th graded piece of this ring.

Now we recall a closely related problem which is well studied in the literature. Con-
sider the action of SL(n) on l-tuples of n×n matrices, (Y1, Y2, . . . , Yl) by simultaneous
conjugation

C ◦ (Y1, Y2, · · · , Yl) = (CY1C
−1, CY2C

−1, · · · , CYlC
−1).

For this action, in characteristic 0, Artin [2] conjectured that every invariant is a
polynomial in the elements Tr(Yi1Yi2 · · ·Yir); traces of monomials in Y ′

i s. In [13],
Procesi proved this conjecture. He also showed that the ring of invariants Pl,n (for the
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conjugation action) is generated by trace elements of the form Tr(Yi1Yi2 · · ·Yir), with
r ≤ 2n − 1.

Returning to our left-right action of SL(n) × SL(n) on X = (X1, X2, · · · , Xm), let
Yij = XiX

′
j and Zij = X ′

iXj, where for a matrix M , M ′ denotes its adjoint. Then

(A, B) ◦ Yij = AYijA
−1 and (A, B) ◦ Zij = (Bt)−1ZijB

t. Therefore the trace of any
monomial in Yij and Zij is an invariant for our action. In view of the Artin-Procesi
theorem, one might expect that the ring of invariants Rm,n for the simulataneous left-
right action equals the subring generated by these trace elements. Indeed, this turns
out to be the case when n = 2. However for bigger n, the statement is not true.
What is true, however, is that this subring of invariants is birational to the full ring
of invariants. This observation coupled with our new description of the ring Rm,n

allows us to give another proof of the Artin-Procesi theorem - albeit not as elegant
as Procesi’s. We should point out here that our theorem appears to be more general
- while we can derive Procesi’s theorem from ours, it is not clear how to derive our
results from Procesi’s theorem.

Naturally our new description of Rm,n is inspired by the beautiful paper of Procesi.
The technique of proof is also similar in spirit to Procesi’s, and, in Procesi’s language,
‘quite simple’. As in Procesi’s work, it suffices to find multilinear invariants (cf. ([4],
Chapter I) and [16]). We first observe that multilinear invariants of degree k exist only
when k is a multiple of n. We then give a matrix-theoretic description of each multilin-
ear invariant. We show that each multilinear invariant of degree nd is a specialization
of the multi-determinant of degree nd. By the multideterminant of degree nd, we mean
the complete polarization of the determinant of a nd× nd matrix of indeterminates.

We then give a combinatorial description of the multilinear invariants - we show that
for all d, every multilinear invariant of degree nd is parameterized by a d × d matrix
with row and column sum equal to n. For want of a better term, we call such matrices
magic squares.

This allows us to succinctly describe a generating set for the invariants of degree nd
- they are the coefficients of the monomials which occur in the determinant of a generic
nd× nd matrix (see Theorem 11 for an exact statement). This theorem also allows us
to extract a combinatorial model for the invariant space (see Remark 12). We believe
that this combinatorial model will be useful in determining the SL(m) structure of the
ring of invariants, thus settling question (B) above. This in ongoing work.

Our solution to question (A) above may also be seen in the light of classical invari-
ant theory. The first fundamental theorem of invariant theory settles the question of
invariants, when GL(n) acts diagonally on an arbitrary number of copies of its defining
representation space Cn. Procesi’s theorem settles question of invariants, when GL(n)
acts diagonally on an arbitrary number of copies of its adjoint representation space.
Our result settles the question of invariants, when SL(n) × SL(n) acts diagonally on
an arbitrary number of copies of its defining representation space, Cn ⊗ Cn.

The outline of our paper is as follows. In section 2 we develop the necessary notation
and recall some results from classical invariant theory. We describe the multilinear
invariants for our action. In the section 3 we show that every multilinear invariant is in
fact a specialization of the multi-determinant. We then describe how each multilinear
invariant is parameterized by a magic square. We then use this to give a succinct
description of the generators of a homogeneous piece of the ring of invariants. We also
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describe the invariants combinatorially. In section 4 we show that a localization of
Rm,n, is closely related to Pm−1,n. We deduce Procesi’s result as a consequence. In
section 5 we restrict ourselves to the m = 2 case. We show that the ring of invariants
is a polynomial ring and exhibit generators for the same. We then consider the n = 2
case, and give a set of generators for the ring of invariants. In section 6 we give a
description of the null cone. We conclude in section 7 with some open problems and
ongoing work.

Remark. The results in sections 5, 6 already appear in [3]. We discovered these
results independently, and stumbled upon the above paper, quite by accident, just as
we were writing the paper for submission. We have still included these results for the
sake of completeness. In [3], the authors consider the problem of computing the null-
cone for the left-right action of G = SL(n)×SL(n) on m-tuples of matrices (a problem
we address in section 6). The authors then show that a complete polarization of the
determinant function determines the null-cone in the case when m = 2 or when n = 2
(see Theorem 2.7 in [ibid]). This is precisely the content of our theorems 22, 24 given
in section 5 below. Our proofs are however different and straightforward.

2. Multilinear invariants for n× n matrices.

Before describing the main problem, let us fix some notation. Let K be an alge-
braically closed field of characteristic zero; Kn denotes the n-dimensional vector space.
The general linear group is denoted by GL(n, K) or simply GL(n) while SL(n, K)
or SL(n) denotes the subgroup of matrices of determinant 1. We denote the ring of
n × n matrices by M(n,K) or simply M(n) or Mn. The k-fold symmetric power of a
vector space V shall be denoted by Sk(V ).

Set G := SL(n)×SL(n). Set X (m) := M⊕m
n the space of m-tuples of n×n matrices.

The group G acts rationally on X = X (m) according to the rule

(2.1) (A, B) · (X1, X2, . . . , Xm) = (AX1B
t, AX2B

t, . . . , AXmBt)

where (A, B) ∈ G and (X1, X2, . . . , Xm) ∈ X .

Our aim is to describe the ring Rm,n of G-invariant polynomial functions on X .
Clearly Rm,n is a graded subring of the coordinate ring of X under the natural grading
that assigns to each monomial, its degree. Therefore it suffices to concentrate on
describing the individual graded pieces of Rm,n.

To narrow down further, one can linearize the problem using classical methods,
wherein to any homogeneous invariant (of degree k) one associates a multilinear in-
variant (on k copies of the original space) via polarization and working backwards,
one recovers invariants from multilinear invariants via substitutions, (see [4], Chap-
ter I). In abstract terms, if the field K has characteristic zero, then for any group G
acting on a finite-dimensional vector space U and for any integer k, the polarization
process produces an inclusion p : (Sk(U∗))G ↪→ ((U⊗k)∗)G while substitution corre-
sponds to a map s : ((U⊗k)∗)G → (Sk(U∗))G and sp is identity on (Sk(U∗))G. Let
us identify (U⊗k)∗ = (U∗)⊗k. One obtains p for instance, by applying (−)G to a
splitting of the natural G-surjection (U∗)⊗k → Sk(U∗), the splitting being given by
f1 · · · fk 7→ (1/k!)

∑
σ∈Sk

fσ(1) ⊗ · · · ⊗ fσ(k) where fi’s are functionals on U . For s, we

apply (−)G to the sequence of G-maps (U∗)⊗k ↪→ Sk((U∗)⊕k) ∼= Sk((U⊕k)∗)→ Sk(U∗),
the last map being induced by the diagonal embedding of U in U⊕k.
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Keeping the notation and assumptions as in the preceding paragraph, suppose fur-
ther that U has a decomposition U = M⊕r as G-modules. Then (U∗)⊗k admits a
natural decomposition into a direct sum of various copies of (M∗)⊗k. In particular, for
any invariant in (Sk(U∗))G, the corresponding multilinear invariant in ((U⊗k)∗)G is a
sum of multilinear invariants in ((M⊗k)∗)G.

We remark here that what we have called polarization is actually called the complete
polarization in classical language. For partial polarization, one introduces for each
coordinate function xi on the space U , a new variable yi and then applies

∑
i yi∂/∂xi

to a homogeneous invariant. Clearly this too is useful only in characteristic 0. Finally
for multihomogeneous polynomials on products of spaces, polarization is achieved by
polarizing on each space separately.

Returning to our situation at hand, we may thus reduce the problem of describing the
degree k invariant polynomials on X (m) to that of describing the invariant multilinear
functions on k copies of X (1) = Mn, i.e., elements of ((M⊗k

n )∗)G. Now we shall apply
the fundamental theorems of invariant theory for SL(n).

Let V = Kn = W . Note that for our choice of G-action on Mn = X (1), there is an
isomorphism of G-modules Mn

∼= V ⊗W where the G-action on V ⊗W results via the
tensor product of the standard action, namely,

(A, B) · (v ⊗ w) = Av ⊗Bw.

It follows that there are natural isomorphisms

((M⊗k
n )∗)G ∼= ((V ⊗k)∗ ⊗ (W⊗k)∗)G ∼= ((V ⊗k)∗)SL(n) ⊗ ((W⊗k)∗)SL(n).

For 1 ≤ i ≤ k, set Vi = Kn = Wi. For any k-tuple ~X = (X1, . . . Xk) of n × n
matrices, we shall think of Xi as an element of Vi ⊗Wi. Let {e1, . . . , en} denote the
standard basis of Kn.

Suppose k is a multiple of n, say k = nd. To any permutation σ of {1, . . . , k} we
associate a functional sσ on V1 ⊗ · · · ⊗ Vk via the natural surjections

V1 ⊗ · · · ⊗ Vk
∼= (Vσ(1) ⊗ · · · ⊗ Vσ(n))⊗ · · · ⊗ (Vσ(k−n+1) ⊗ · · · ⊗ Vσ(k))

→ (∧nV )⊗ · · · ⊗ (∧nV ) ∼= K ⊗ · · · ⊗K ∼= K

where the isomorphism (∧nV ) ∼= K is the one sending e1∧· · ·∧en to 1. This functional
is SL(n)-invariant for the standard action of SL(n) on each Vi. Let tσ denote the SL(n)-
invariant functional W1 ⊗ · · · ⊗Wk → K obtained by replacing the Vi’s with Wi’s in
the definition of sσ. Thus for any two permutations σ, τ of {1, . . . , k}, sσ ⊗ tτ can be
identified as an element of ((M⊗k

n )∗)G.

Recall that by classical invariant theory, V1 ⊗ · · · ⊗ Vk admits a nonzero invariant
functional if and only if k is a multiple of n, say k = dn, and moreover the space
of invariant functionals on V1 ⊗ · · · ⊗ Vk is spanned by {sσ |σ ∈ Sk}. It follows that
for any such k, ((M⊗k

n )∗)G is spanned by elements of the kind sσ ⊗ tτ . These are
the multilinear invariants which, via substitution, give us the degree k homogeneous
invariants on M⊕m

n for any m. Of course, substitution does not change the degree of
the invariant.

Let us summarize our discussion so far.

Theorem 1. Let G = SL(n) × SL(n) act on the space X (m) of m-tuples of n × n
matrices as in (2.1) above. Then
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(1) The degree of any nonzero homogeneous invariant function f on X (m) is neces-
sarily a multiple of n.

(2) Any such invariant f is a K-linear combination of invariants obtained via sub-
stitution from multilinear ones of the kind sσ ⊗ tτ as defined above.

In the next section we give more matrix-theoretic interpretations of these invariants.

Example 2. Let n = 2. Let {x11, x12, x21, x22} denote the coordinate functions on the
first matrix entry of X (m). Then

(X1, . . . , Xm) 7→ det(X1) = x11x22 − x12x21

is a degree 2 invariant on X (m). Polarizing it gives rise to a multilinear invariant, which,
using an additional set of variables, say {y11, y12, y21, y22}, can be written as

x11y22 − x12y21 + y11x22 − y12x21.

This is the multideterminant of two matrices (represented by (xij), (ykl)). This multil-
imear invariant is also the same as sσ ⊗ tτ where σ and τ are the identity permutation
in S2.

In the definition of the multilinear invariant sσ, the role of σ ∈ Snd is mainly to
provide a partition of the set {1, . . . , nd} into d ordered parts of n elements each.
Therefore it will often be convenient to represent σ via the corresponding partition.

Example 3. Let n = 3 and k = 9. Let σ be the permutation in S9 that gives rise
to the partition (1, 3, 6|2, 4, 8|5, 7, 9) and let τ be the identity permutation. Then the
corresponding invariant sσ ⊗ tτ on 9 matrices sends (v1⊗ · · · ⊗ v9)⊗ (w1⊗ · · · ⊗w9) to
the element

(v1 ∧ v3 ∧ v6)(v2 ∧ v4 ∧ v8)(v5 ∧ v7 ∧ v9) · (w1 ∧ w2 ∧ w3)(w4 ∧ w5 ∧ w6)(w7 ∧ w8 ∧ w9).

3. Multideterminants and magic squares

Our aim now is to give appropriate matrix-theoretic descriptions of the invariants in
Theorem 1 above. As is to be expected, these descriptions rely on computing suitable
determinants and their multilinear avatars called multi-determinants.

To begin with let us recall the notion of a multi-determinant which is nothing but
the (complete) polarization of the determinant function. In characteristic-free terms it
means the following.

Definition 4. The multideterminant of p matrices A1, . . . , Ap of size p×p is the sum of
determinants of p! matrices indexed by the elements of the symmetry group Sp wherein
to any π ∈ Sp we associate the matrix whose i-th column is the i-th column of Aπ(i).
We denote the multideterminant as multi-det(A1, . . . , Ap).

Since multi-det is multilinear in the matrices Ai involved, we may also think of it as
a functional on M⊗p

p . One can check that the multi-det is in fact the functional sσ⊗ tτ
defined in §2 where σ = τ = the identity permutation in Sp.

For the purpose of describing the invariant functions on X of §2, we shall first embed
each matrix from our original set into a bigger matrix in the form of a block. This
motivates the following definition.
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Definition 5. A collection of d2 matrices {Nij}1≤i,j≤d of size n× n is said to form an
n × n-tiling of an nd × nd matrix M (or M is said to admit a tiling by {Nij}) if the
(p, q)-th entry of Nij equals the ((i − 1)n + p, (j − 1)n + q)-th entry of M . In other
words, if we imagine M as consisting of d2 blocks (= tiles) of size n× n each, then the
(i, j)-th block is Nij.

We call M a one-tile matrix based on N if N appears as one of the tiles of M and
the remaining tiles are zero.

Here is our first matrix-theoretic version of Theorem 1.

Theorem 6. The space of invariants of degree nd on X := M⊕m
n is spanned by those

of the form
~X = (X1, . . . , Xm) 7→ multi-det(M1, . . . ,Mnd)

where each Mi is a one-tile nd× nd matrix based on one of the Xj’s.

Proof. As explained in §2, it suffices to show that every multilinear invariant on nd
copies of Mn can be expressed in the form stated in the theorem. Therefore we shall
now assume that m = nd.

Let us now note that every function of the kind stated in the theorem is G-invariant.
This follows from the fact that multi-det is G′-invariant for G′ = SL(nd)×SL(nd) acting
on Mnd (analogous to the G-action on Mn) and that the action of G on the multi-det
is induced by the block-diagonal embedding of G in G′.

Now we proceed to prove that every multilinear invariant is a multi-determinant of
suitable one-tile matrices. By (2) of Theorem 1, it suffices to consider the invariants
of the kind sσ ⊗ tτ . For any such σ, τ ∈ Snd, and for 1 ≤ i, j ≤ d consider the set

Cij := {σ((i− 1)n + 1), . . . , σ(in)} ∩ {τ((j − 1)n + 1), . . . , τ(jn)}.

We now assign to any ~X = (X1, . . . , Xnd) ∈ X a sequence of one-tile nd× nd matrices
(X�

1 , . . . , X�
nd) as follows. Each X�

k is based on Xk and the tiling position of Xk in X�
k

is given by the unique pair (i, j) such that k ∈ Cij.

We claim that sσ ⊗ tτ satisfies the multilinear rule

(X1, . . . , Xnd) 7→ multi-det(X�
1 , . . . , X�

nd).

or equivalently, that the induced functional on M⊗nd
n determined by

X1 ⊗ . . .⊗Xnd 7→ multi-det(X�
1 , . . . , X�

nd)

equals sσ ⊗ tτ via the usual identification of Vi ⊗Wi with the i-th copy of Mn.

Let Ek,l denote the elementary matrix having entry 1 at the spot (k, l) and zero
elsewhere. Let us use e1, . . . , en to denote the standard basis of V = Vi and f1, . . . , fn

for W = Wj. Recall that the identification V ⊗W = Mn sends ek ⊗ fl to Ek,l. Thus,
to prove the claim above it suffices to show that for any two sequences of integers
(i1, . . . , ind) and (j1, . . . , jnd) coming from the set {1, . . . n}, it holds that

(sσ ⊗ tτ )((ei1 ⊗ fj1)⊗ · · · ⊗ (eind
⊗ fjnd

)) = multi-det(E�
i1,j1

, . . . , E�
ind,jnd

)

This is a straightforward verification. �

For the rest of this section we provide yet another description of the matrix invari-
ants.
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Definition 7. A d× d matrix L = (lij) is said to be a magic square with row sum and
column sum n, if each lij is an integer satisfying 0 ≤ lij ≤ n and the sum of the entries
of each row and each column of the matrix equals n.

Definition 8. Let M be an nd×nd matrix of distinct indeterminates, and let {Nij} be
the corresponding n× n-tiling of M . Let L be a d× d magic square with row sum and
column sum n. We say that a monomial expression f in the entries of M has grade L,
if it has exactly lij indeterminates from the tile Nij. In particular then, f necessarily
has degree dn.

With notation as in the Definition 8, we set det(M)L to be the sum of monomials in
det(M) having grade L. Let us now choose an ordering of the tiles Nij, the lexicographic

ordering for instance. Via this ordering let us identify Mnd with M⊕d2

n . In particular,
we may now identify the indeterminates in M with the usual coordinate functions on

the space M⊕d2

n . Recall that G = SL(n)× SL(n) acts on M⊕d2

n as before.

Lemma 9. For any magic square L, the function det(M)L is G-invariant. Moreover
det(M) =

∑
L det(M)L where L ranges over all the magic squares.

Proof. First note that det(M) is G-invariant. This follows from the same argument
used for G-invariance of multi-det in the proof of Theorem 6 above. Next note that
every monomial that appears in the expansion of det(M) has a grade corresponding
to a suitable magic square. Thus det(M) is the sum of all the det(M)L’s. Finally,
since the action of any g ∈ G preserves the tiling, therefore g sends any monomial of
grade L, to a sum of monomials with grade L. Thus det(M)L is G-invariant. �

For the sake of illustration, let us see that the invariant det(M)L from Lemma 9 can
also be realized as the multi-determinant of nd one-tile matrices. Let L = (lij). Let Nij

denote the n×n tile of M at the (i, j)-th position. For each (i, j), we consider lij number
of copies of the one-tile nd×nd matrix N�

ij having Nij as its unique nonzero tile at the
position (i, j). Since

∑
ij lij = nd, we obtain, in all, nd number of one-tile matrices.

The multi-determinant of these matrices is precisely det(M)L multiplied by Πij(lij!).

Now suppose we polarize det(M)L (completely). In the above multi-det description,
this amounts to distinguishing between the various copies of N�

ij by introducing a new
set of indeterminates for each extra copy of Nij used. Of course, only those (i, j) for
which lij 6= 0 matter. Since

∑
ij lij = nd, the resulting expression involves nd tiles of

indeterminates again and is moreover multilinear vis-a-vis each tile.

Looking at the proof of Theorem 6 we see that this multilinear invariant is in fact
sσ ⊗ tτ , where for L one chooses lij to be the cardinality of the set Cij constructed
in the proof of the Theorem. It is easy to see that every magic square L arises from
suitable σ, τ in this manner. To summarize, we have the following.

Proposition 10. Every multilinear invariant on Mn of degree nd of the kind sσ ⊗ tτ
is a complete polarization of the invariant det(M)L for a suitable d×d magic square L
determined by σ, τ . Conversely, for every magic square L, the complete polarization
of det(M)L is of the kind sσ ⊗ tτ .

Let us call the complete polarization of det(M)L as pd(M)L.

We remark here that the invariants sσ ⊗ tτ , det(M)L and pd(M)L do not uniquely
determine σ, τ or L. As remarked before, sσ ⊗ tτ depends, upto a sign, only on the
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size n partitions of nd letters induced by σ and τ . For det(M)L and pd(M)L, we note
that permuting the rows and columns of L produces the same invariant upto renaming

of variables and sign. Finally note that our identification of the space Mnd with M⊕d2

n

involved an ad-hoc choice of a suitable ordering.

Combining all that we have done so far, we get a succinct description of the gener-
ators of the degree nd piece of Rm,n.

Theorem 11. Let {tijs}, 1 ≤ i, j ≤ d, 1 ≤ s ≤ m be a set of md2 indeterminates. For

any ~X = (X1, . . . , Xm) ∈ X , let N( ~X) be the nd× nd matrix whose (i, j)-th tile is the
n× n matrix

∑m
s=1 tijsXs. For any monomial m that is a product of nd terms chosen

from {tijs}, let m( ~X) denote its coeffecient in det(N( ~X)). Then the set of functions

of the type ~X 7→ m( ~X) forms a generating set of the degree nd piece of the ring of
invariants Rm,n.

Proof. Let m = ti1j1s1ti2j2s2 · · · tindjndsnd
(here the terms may actually be repeating) be a

monomial that appears in det(N( ~X)). Corresponding to m, let lij be the cardinality of
the set {k | i = ik, j = jk}. Then L = (lij) forms a magic square with row and column
sum d and moreover every magic square arises this way from some monomial. It is easily
verified that the function ~X 7→ m( ~X) is nothing but the multilinear invariant pd(M)L

evaluated on Xs1 , . . . , Xsnd
. Since s1, . . . , snd can be chosen arbitrarily, the theorem

follows from Theorem 1, part (2) and Proposition 10. �

Remark 12. One can associate to the generator m( ~X) from the previous theorem, a

d×d matrix, also denoted by m( ~X). The entries of m( ~X), are m-tuples of non-negative
integers < lij1, lij2, . . . , lijm >, where lijk is the degree of tijk in m. Clearly for every

i, Σjklijk = n and for every j, Σiklijk = n. We call m( ~X) a generalized magic square.
We believe that this combinatorial data will be useful in understanding the SL(m)
structure of the invariants of degree nd. It is reasonable to conjecture that there is a
set of generalized magic squares arising from linearly independent, spanning monomials
m, and an Am-type crystal structure on this set of magic squares. The underying crystal
structure will then allow us to compute the desired multiplicity information.

Remark 13. The results above can be generalized to the case when SL(n)× SL(p) acts
on m-tuples of n× p matrices. In this case invariants of degree d exist only when d is
a multiple of the lcm of n, p. Invariants of degree d are again graded. This time the
determinant of a d × d matrix, is tiled by n × p-sized tiles. So multilinear invariants
can be obtained using d/n × d/p rectangles, whose entries are non-negative integers
such that the sum of the entries of each column is p and the sum of the entries of each
row is n.

4. Birational invariant rings and invariants for conjugation action

We now focus our attention towards providing a smaller set of invariants of X
of §2 that generate a subring which is birational to the full ring of invariants. These
generators are chosen to be analogous to the trace monomials that appear in the
Artin-Procesi description of invariants for the conjugation action. We also show that
our description of invariants in §3 gives us a new though somewhat less efficient proof
of the Artin-Procesi theorem.
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In our setup the conjugation action is naturally induced via the obvious twisted
diagonal embedding of SL(n) in G. Our calculations below exploit this embedding.
Let us first set up some notation.

As before, let X = X (m) := M⊕m
n be the space of m-tuples of n×n matrices together

with a G-action as given in (2.1) above. Set Y := K ⊕ M⊕(m−1)
n , i.e., Y consists of

m-tuples whose first entry is an element of the field K and the remaining m−1 entries
are from Mn. We write a typical element of Y as (a, Y2, . . . , Ym). We define an action
of H := SL(n) on Y wherein any matrix A ∈ H acts trivially on the first component K
and via inner conjugation on the rest, i.e., A·Yi = AYiA

−1. Clearly this action makes Y
a rational H-module.

Let Z be the closed subset of X consisting of those m-tuples whose first entry
is a scalar matrix. Thus Z can be naturally identified with Y and we shall also
think of it as an H-module the same way. A typical element of Z may be written
as (λI, X2, X3, · · · , Xm).

Let X o, Yo, Zo be open subsets of X ,Y ,Z respectively, defined via non-vanishing
of the first entry in case of Y and Z and non-vanishing of the determinant of the first
matrix in case of X . Each of these open subsets, being the complement of an invariant
hypersurface, is affine and also a saturated subset, i.e., is a union of orbit closures too.

Consider the natural maps α : Z → X and β : X → Y where α is the natural closed
immersion and β is given by

(X1, X2, . . . , Xm) 7→ (det(X1), X2X
′
1, . . . , XmX ′

1),

where X ′
1 denotes the adjoint of the matrix X1. Both α and β are compatible with

the corresponding group actions via the homomorphisms H → G and G → H given
respectively by

A 7→ (A, (At)−1), (A, B) 7→ A.

In particular, the composite map βα is H-equivariant. Observe that β−1(Yo) = X o

and α−1(X o) = Zo.

Consider the following commutative diagram of obvious natural induced maps.

(*)

Zo −−−→ Zo/H −−−→ Zo//H

αo

y α′

y α′′

y
X o −−−→ X o/G −−−→ X o//G

βo

y β′

y β′′

y
Yo −−−→ Yo/H −−−→ Yo//H

The objects in the middle column are orbit spaces, i.e., they are merely sets whose
elements represent orbits in the corresponding object of the leftmost column. The
objects in the rightmost column are varieties given by the corresponding geometric
quotients in the sense of Mumford. The horizontal arrows are all surjective maps of
sets while the composite map across each row is a map of varieties. Also α′′, β′′ are
maps of varieties.

Our main aim now is to show that β′′ is an isomorphism. Before that we shall need
a couple of lemmas.

Lemma 14.
10



(a) The map β′ : X o/G→ Yo/H is a bijection.
(b) If m ≥ 3, then the natural surjection Yo/H → Yo//H is one-one over some

open subset of the base.
(c) The composite map βoαo : Zo → Yo is finite.

Proof. (a). To prove that β′ is surjective it suffices to show that βo is surjective since
the horizontal maps are all surjective. Surjectivity of βo is obvious since for any a ∈ K∗,
and any n-th root a1/n of a, we have

β
(
a1/nI, a(1/n)−1Y2, . . . , a(1/n)−1Ym

)
= (a, Y2, . . . , Ym).

To prove injectivity, let ~S = (S1, S2, . . . , Sm) and ~T = (T1, T2, . . . , Tm) be elements
of X o mapping to the same element in Yo/H. Then det(S1) = det(T1) and there exists
A ∈ H such that ASiS

′
1A

−1 = TiT
′
1, for all i ≥ 2. Hence the pair (A, (S−1

1 A−1T1)
t) ∈ G

sends ~S to ~T .

(b). It suffices to show that the open subset Yo′ of Yo consisting of points hav-

ing closed H-orbits of maximum dimension is nonempty. Indeed, for any point ~P
outside Yo′, the orbit closure of ~P cannot intersect Yo′ since the orbit dimension on
the boundary is necessarily smaller. Therefore Yo′ is preserved under the semi-stable
equivalence relation on Yo (namely, ~P ∼ ~Q if the orbit closures of ~P and ~Q meet).
Since Yo//H parameterizes the semi-stable equivalence classes of Yo, the image of Yo′

in Yo//H gives us the desired open set.

Now we show that the open subset of Yo consisting of points having finite stabilizer
in H is nonempty, i.e., we exhibit one point with finite stabilizer. Consider the m-
tuple ~Y = (1, Y2, Y3, . . . , Ym) where Y4, . . . , Ym are allowed to be arbitrary and Y2, Y3

are defined as follows. For Y2 we choose a diagonal matrix with distinct diagonal entries
while for Y3 = (yij) we set yij = 1 if |i−j| = 1 and yij = 0 otherwise. In other words, Y3

has superdiagonal and subdiagonal entries 1 and rest 0. Let us now verify that ~Y has
finite stabilizer. Indeed, any matrix A stabilizing Y2 is necessarily a diagonal matrix
with diagonal entries say (a1, . . . , an). Since A stabilizes Y3, we have ai = ai+1 and
hence A is a scalar matrix given by the roots of unity.

At this point one can invoke a result of Popov ([12], Chapter 3, remarks after
Lemma 3.9), to deduce that Yo′ is nonempty. We shall now give a direct proof of this

by showing that for ~Y as chosen in the above paragraph, its H-orbit O(~Y ) is in fact
closed. Suppose

~P = (a, P2, P3, . . . , Pm) ∈ O(~Y ) \O(~Y ).

Then, by Hilbert-Mumford theory, (see [8]) there is a nonconstant one-parameter sub-

group λ : Gm → H that drives ~Y to ~P . Such a λ necessarily stabilizes ~P . Since H
acts via conjugation, the action preserves characteristic polynomials of the matrices
involved and hence P2 has eigenvalues same as those of Y2. In particular, they are
distinct. Since λ(t) fixes P2, it is a diagonal matrix for all t ∈ Gm. In particular, we
may write the diagonal entries of λ(t) as (ta1 , . . . , tan) for suitable integers ai satisfying∑

i ai = 0. Now λ(t) · Y3 is a matrix having entries tai−ai+1 and tai+1−ai . Hence for
limt→0 λ(t) · Y3 to exist, it must hold that ai − ai+1 ≥ 0 and ai − ai+1 ≤ 0. Hence
ai = ai+1. But this contradicts the fact that λ is nonconstant. (In effect, no Gm-orbit

through ~Y has a boundary.)
11



(c). Both Zo and Yo are affine and βoαo is given by

(λI, X2, X3, · · · , Xm) 7→ (λn, λn−1X2, λn−1X3, · · · , λn−1Xm).

Let Γ(Z) = K[l, (xi)jk], 2 ≤ i ≤ n, 1 ≤ j, k ≤ n denote the coordinate ring of Z
and likewise for Y we use Γ(Y) = K[d, (yi)jk]. Then Γ(Zo) = K[l, 1/l, (xi)jk] and
Γ(Yo) = K[d, 1/d, (yi)jk] and the natural map induced by βoαo sends

d 7→ ln, (yi)jk 7→ ln−1(xi)jk.

Then (xi)jk satisfies the monic equation

(xi)
n
jk = ((yi)jk)

n(1/d)n−1.

�

Lemma 15. Let φ : R → S be an integral extension of domains with R normal and
suppose H is a group acting via homomorphisms on R,S in a way compatible with φ.
Then the induced map of invariant rings RH → SH is also integral.

Proof. Let Q(R) → Q(S) denote the corresponding algebraic extension of quotient
fields. Let s ∈ SH and σ ∈ H. Since R is normal, the (unique) minimal monic
polynomial of s over Q(R) has coefficients in R, say

sn + rn−1s
n−1 + · · ·+ r0 = 0.

Applying σ to this equation results in another such monic polynomial, whence each ri

is also invariant. �

An immediate consequence of part (c) of Lemma 14 and Lemma 15 is that the
map β′′ of the diagram (*) is a finite surjective map. For m ≥ 3 we have a stronger
statement.

Proposition 16. For m ≥ 3 the map β′′ of the diagram (*) is an isomorphism.

Proof. Let U be the open subset of Yo//H as in (b) of Lemma 14. By (a) of Lemma 14,
the inverse image of U in X o/G is bijective over U . Since the horizontal maps in (*)
are surjective, hence β′′ is bijective over U . As K has characteristic zero, we conclude
that β′′ is birational. By (c) of Lemma 14 and Lemma 15, β′′α′′ is finite and hence β′′

is also finite. Since X o//G and Yo//H are normal, the result follows. �

Set W := M⊕(m−1)
n with H-action via conjugation in each component. Then W is a

factor of Z and Y (also of Zo and Yo), i.e., there are natural projections Z → W and
Y → W which moreover admit section maps W → Z and W → Y that correspond to
choosing for the first entry of an m-tuple, the identity element (the identity matrix I
for Z ⊂ X and 1 ∈ K for Y). There results the following commutative diagram of
obvious natural maps.

(**)

W W Wy x
Z α−−−→ X β−−−→ Y

Proposition 17. Let d be the invariant function on X which assigns to any m-tuple,
the determinant of the first term. Then, there is a natural integral extension of rings
of invariants Γ(W)H [t, 1/t] ↪→ Γ(X )G[1/d] = Γ(X o)G with t 7→ d, t an indeterminate,
which moreover is an isomorphism for m ≥ 3.

12



Proof. This follows from the above discussion and Proposition 16. �

The isomorphism part of the above proposition can now be used to give a birational
subring of the ring of invariants on X . This requires invoking the Artin-Procesi theorem
on invariants for the conjugation action. We postpone this application for now and
instead first show how our description of the invariants in §3 can also be used to deduce
(a complicated proof of) the Artin-Procesi theorem.

We shall use Rm,n to denote the ring of invariants of X = X (m) and Pm,n for the
invariants under conjugation action.

Lemma 18. Every invariant of Pm−1,n is obtained from Rm,n by specializing the first
matrix X1 to identity.

Proof. From the diagram in (**) above we obtain maps W → X → W that compose
to identity. Hence there are also natural maps Γ(W)H → Γ(X )G → Γ(W)H composing
to identity. In particular, the last map is surjective. �

Theorem 19. The ring Pm,n of invariants for simultaneous conjugation action is gen-
erated by the trace monomials of the form Tr(Xi1Xi2 · · ·Xik).

Proof. The trace monomials in Xi’s are clearly invariant. From Lemma 18 it follows
that if we first rename Xi to Xi+1 for 1 ≤ i ≤ n, next take the elements of Rm+1,n, and
finally set X1 to identity, then we get all the elements of Pm,n.

Before proceeding further with the proof we first express multideterminant in terms
of trace monomials.

Claim 20. For any permutation π ∈ Sp and p× p matrices A1, A2, . . . , Ap, set

Trπ(A1, A2, . . . , Ap) := Tr(Ai1Ai2 · · ·Aik) · · · Tr(At1At2 · · ·Ats).

where (i1 i2 . . . ik)(j1 j2 . . . jr) · · · (t1 t2 . . . ts) is the cycle decomposition of π. Then
the multi-determinant of p× p matrices A1, A2, . . . , Ap is obtained as

multidet(A1, A2, . . . , Ap) =
∑

π ∈Sp

(sgn π)Trπ(A1, A2, . . . , Ap).

Proof. Both sides are multilinear in the Ai’s and hence we may consider them as func-
tional on M⊗p

p in the obvious way. Via the usual identification Mp = V ⊗W , if e1, . . . , ep

denote the standard basis of V and f1, . . . , fp of W , then to prove the formula in the
claim it suffices to show that both sides evaluate the basis elements as follows,

(ei1⊗· · ·⊗eip)⊗(fj1⊗· · ·⊗fjp) 7→


0 if {i1, . . . , ip} not all distinct,

0 if {j1, . . . , jp} not all distinct;

sgn(σ · τ) if ik = σ(k) and jk = τ(k) for σ, τ ∈ Sp.

Clearly the left hand side satisfies this property. For the right hand side, first note
that Trπ is the functional

⊗i(Vi ⊗Wi) ∼= ⊗i(Vi ⊗Wπ(i))
⊗i(TrVi,Wπ(i)

)

−−−−−−−−→ ⊗iK = K

where TrV,W denotes the trace functional on V ⊗ W = Mp. (This follows easily by
using the product map Pr described before Lemma 26 below.) In particular, Trπ maps
the basis element (ei1 ⊗ · · · ⊗ eip)⊗ (fj1 ⊗ · · · ⊗ fjp) to 1 if π(jk) = ik and 0 otherwise.

13



If ik = σ(k) and jk = τ(k) for some σ, τ ∈ Sp then Trπ is nonzero on the above basis
element only for π = σ · τ−1. Now assume that the ik’s are not all distinct. Then
the subset T ⊂ Sp of π’s satisfying π(jk) = ik is a coset of a certain subgroup in Sp

which is in fact a direct product of nontrivial permutation subgroups of Sp and hence∑
π∈T sgn(π) = 0. �

Continuing with the proof of the theorem, by Theorem 6, Rm+1,n is generated by
the multi-determinant of one-tile matrices Mj based on the original matrices, the Xi’s.
The product of any collection of such one-tile matrices is either zero or again a one-tile
matrix where the new tile is the corresponding product of the older ones. In view of the
claim proved above, it follows that the mulitdeterminant of Mj’s is the sum of products
of traces of monomials in the underlying tiles of the Mj’s and hence also the Xi’s. Thus
after putting X1 to identity the invariants we arrive at are again polynomials in trace
monomials on remaining Xi’s. �

We now come to the main result of this section.

Theorem 21. For any 1 ≤ j ≤ m, the subring of Rm,n generated by the trace mono-
mials functions in the m matrices X1X

′
j, . . . , XmX ′

j is birational to Rm,n.

Proof. For m ≥ 3 the result follows from Proposition 17 and the Artin-Procesi theorem.
For m = 1, we in fact have equality. It remains to consider the case m = 2. This is
proved in Corollary 23 below. �

5. The m = 2 case and the n = 2 case.

In the two special cases stated here, we are able to give a smaller set of invariants
that generate the full ring of invariants.

Let us start with m = 2.

Theorem 22. Let X = M⊕2
n be the space of pairs of n × n matrices with a G-action

as before. For any i, let pi be the polynomial function on X that assigns to any pair
(X1, X2) ∈ X , the coefficient of tn−i

1 ti2 in det(t1X1 + t2X2). Then {p0, . . . , pn} are
algebraically independent over K and moreover generate the ring of invariant functions
on X .

Proof. We note that p0 = det(X1) while pn = det(X2). Clearly the pi’s are invariant
functions. Their algebraic independence follows easily by looking at the bidegree of
these polynomials in the variables associated to X1 and X2.

Consider the G-invariant map i : X → An+1
K given by

(X1, X2) 7→ (p0(X1, X2), . . . , pn(X1, X2))

where the action of G on the affine (n + 1)-space An+1
K is trivial. To complete the

proof of the theorem it suffices to give a regular section s : An+1
K → X of i whose image

Z ⊂ X (which is necessarily a closed subset isomorphic to An+1
K via i) is such that its

G-span is dense in X . Indeed, for any such s and Z, if f is an invariant function on X ,
then fsi is an invariant function on X that agrees with f on Z and hence must equal f
on all of X . Since fs is a regular function on An+1

K , therefore f = fsi lies in the subring
generated by the pi’s.
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The desired section s is the one which sends the point u = (u0, u1, . . . , un) to the
following pair of matrices.

1 0 · · · 0 0
0 1 · · · 0 0
... 0

. . .
...

...
...

... 0 1 0
0 0 0 0 u0

 ×


0 0 · · · 0 (−1)n+1un

1 0 · · · 0 (−1)nun−1
... 1

. . .
...

...
...

... 1 0 −u2

0 0 0 1 u1


Clearly s is regular. The verification is = identity is straightforward. �

Corollary 23. For j = 1, 2 the subring generated by the trace monomial functions on
the two matrices X1X

′
j, X2X

′
j is birational to R2,n.

Proof. Let us take the case j = 1. Then the trace monomial functions are polynomial
expressions in det(X1) and the coeffecients of the characteristic polynomial of X2X

′
1

(since K has characteristic is 0). Now the result follows easily from the above theorem
by using

det(t1X1 + t2X2) det(X ′
1) = det(t1X1X

′
1 + t2X2X

′
1).

�

Let us now move on to the case n = 2. In this case we show that the birational
subring of invariants given in Theorem 21 can in fact be used to obtain the full ring.

Theorem 24. Let X = M ⊕m
2 be the space of m-tuples of 2 × 2 matrices and let

G = SL(2)×SL(2) act on X as before. Then a generating set for the ring of invariants
of X is given by functions that assign to any m-tuple (X1, . . . , Xm) ∈ X , the trace of
a monomial in the m2 matrices Yij := XiX

′
j.

Let us use the notation as in §2. In view of Theorem 1, it suffices to prove the
following result.

Proposition 25. Via the isomorphism X := M ⊕m
2
∼= ⊗m

i=1(Vi ⊗Wi), any invariant of

of degree m of the kind sσ ⊗ tτ evaluates an m-tuple ~X = (X1, . . . , Xm) to a product of
trace monomials in the m2 matrices Yij := XiX

′
j.

Before proceeding with a proof of this proposition, we need a few elementary re-
marks. Let V = K2 = W . In what follows, we make the identification V ⊗W = M2

as before. Let TrV,W denote the functional on V ⊗W that sends a matrix to its trace
and let AdjV,W : V ⊗W → V ⊗W denote the linear involution that sends a matrix X
to its adjoint X ′. Finally, let PrV1,W1,V2,W2 : M2 ⊗M2 → M2 denote the natural map

(V1 ⊗W1)⊗ (V2 ⊗W2) ∼= V1 ⊗ (V2 ⊗W1)⊗W2

1⊗TrV2,W1
⊗1

−−−−−−−−→ V1 ⊗W2

which in fact sends X⊗Y ∈ M2⊗M2 to the product matrix XY . The following lemma
follows easily from direct calculations.

Lemma 26. Let φ : V → W be the isomorphism sending e1 7→ −e2, e2 → e1.

(1) The composition of the following maps equals AdjV,W .

V ⊗W
φ⊗1−−→ W ⊗W

1⊗φ−1

−−−−→ W ⊗ V
w⊗v 7→ v⊗w−−−−−−−→ V ⊗W
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(2) The following diagram commutes.

V ⊗ V
1⊗φ−−−→ V ⊗W

φ⊗1−−−→ W ⊗W

canonical

y yTrV,W

ycanonical

∧2V −−−→ K ←−−− ∧2W

Proof of Proposition 25. We proceed by induction on m. By Theorem 1, m is an even
number. By permuting the m entries of M⊕m

2 if necessary, we may assume without
loss of generality that σ is the identity permutation, τ(1) = 1 and τ(2) is either 2 or 3.

Let ~X = (X1, . . . , Xm) ∈ M⊕m
2 . If τ(2) = 2, then it is clear that sσ ⊗ tτ is a product

of multi-det(X1, X2) = Trace(X ′
1X2) and an invariant sσ′ ⊗ tτ ′ on the remaining m− 2

entries (X3, . . . , Xm) for suitable σ′, τ ′ ∈ Sm−2. By induction, sσ′ ⊗ tτ ′ is a product of
desired trace monomials, whence so is sσ ⊗ tτ .

Let us now assume that τ(2) = 3. Recall that Vi ⊗Wi denotes the i-th component
of M⊕m

2 . We now apply the preceding lemma. First we use φ to replace V1 by W1

and W1 by V1. By part (1) of the lemma this amounts to replacing the matrix X1 by X ′
1.

Moreover, by part (2) of the lemma, the determinant of V1 with V2 is transformed
into TrV2,W1 while the determinant of W1 with W3 is transformed to TrV1,W3 . Using the

description of the product map Pr, it now follows that (sσ ⊗ tτ )( ~X) = (sσ′ ⊗ tτ ′)(~Z)

where ~Z = (X3X
′
1X2, X4, . . . , Xm) ∈ M⊕m−2

2 and σ′ is the identity permutation on
(3, . . . ,m) while τ ′ is the restriction of τ to (2, 4, 5, . . . ,m). By induction sσ′ ⊗ tτ ′ is a

trace monomial of the desired kind on the entries of ~Z and it is now straightforward
to check that (sσ′ ⊗ tτ ′)(~Z) is a trace monomial of the desired kind on the Xi’s.

�

6. The Null cone

When a group acts linearly on an affine space, the null cone associated to this action
is the common zero locus of the invariant polynomials. In the context of constructing
projective quotients for the group action, the points of the null cone are also called
unstable points (for reductive groups). We now give a simple characterization of the
null cone in our setup of G = SL(n)× SL(n) acting on X = M ⊕m

n . Here we allow the
field K to have arbitrary characteristic. As mentioned in the remark at the end of our
introduction, this result already appears in [3]. The proof is also similar, but we avoid
the language of the max-flow min-cut theorem used in [3].

Proposition 27. Let X = M ⊕m
n be the space of m-tuples of n × n-matrices with G

action as before. Then an m-tuple (X1, X2, . . . , Xm) ∈ X lies in the null cone N if and
only if there there exists an integer r, 1 ≤ r ≤ n and subspaces W1, W2 of Kn having
dimensions r, r − 1 respectively, such that each Xi maps W1 inside W2.

Proof. Let us first show that every point in the null cone has this property. Suppose
~P = (P1, P2, · · · , Pm) ∈ N . Then by Hilbert-Mumford theory, there is a one-parameter

subgroup (1-ps, in short) λ : Gm → G which drives ~P to the origin ~0 of X , i.e., as

t ∈ Gm ⊂ A1
K approaches 0, it holds that λ(t) · ~P approaches ~0.

Composing λ with the two natural projections πi : G→ SL(n) results in two 1-ps’s
λi : Gm → SL(n). Since the image of each λi is a torus, there exist S, T ∈ SL(n)
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such that for all t, Sλ1(t)S
−1 and Tλ2(t)T

−1 are diagonal subgroups of SL(n). For any
sequence c = (c1, . . . , cn) of integers satisfying

∑
i ci = 0 let us denote the corresponding

diagonal subgroup of SL(n) with diagonal entries (tc1 , . . . , tcn) as diag(tc1 , . . . , tcn) or
simply D(c). Thus we may write

Sλ1(t)S
−1 = diag(ta1 , . . . , tan) = D(a), Tλ2(t)T

−1 = diag(tb1 , . . . , tbn) = D(b),

for suitable sequences of integers a, b such that
∑

i ai = 0 =
∑

i bi.

Consider the point ~Q := (S, T ) · ~P lying in the orbit of ~P . In view of the definition

of the G-action, we also write ~Q = S ~P T t for convenience. We claim that the 1-ps
(D(a), D(b)) of G drives ~Q to ~0. Since ~0 = limt→0 λ(t) · ~P = limt→0 λ1(t)~P λ2(t)

t, we
deduce that upon applying limt→0, the following expressions

(Sλ1(t)S
−1, Tλ2(t)T

−1) · ~Q = (Sλ1(t), Tλ2(t)) · ~P = Sλ1(t)~P λ2(t)
tT t

evaluate to ~0, whence the claim follows. To prove the proposition for ~P , it suffices to
find corresponding subspaces W ′

1, W
′
2 for ~Q, for then T t(W ′

1), S
−1(W ′

2) will work for ~P .

To simplify notation, we now work with only one of the matrices in ~Q, say the first
one Q1, which we call Q. As will be obvious from the argument below, this simplifi-
cation does not affect the final conclusion. Without loss of generality we may assume
that (a1, . . . , an) and (b1, . . . , bn) are decreasing sequences. Multiplication by D(a) on
the left and D(b) on the right sends the (i j)-th entry qij of Q to tai+bjqij. Since Q is
being driven to zero, we must have qij = 0 whenever ai + bj ≤ 0. We claim that there
exists an r such that ar + bn+1−r ≤ 0. Since 0 =

∑
i ai +

∑
j bj =

∑
i(ai + bn+1−i), the

claim follows. Hence qij = 0 for i ≥ r, j ≥ n + 1 − r as ai’s and bj’s are decreasing.
Thus Q maps the subspace spanned by the basis vectors {en−r+1, . . . , en} inside the
subspace spanned by {e1, e2, . . . , er−1}. (For r = 1, the latter is chosen as (0)).

The converse works out in a similar manner. Suppose ~P maps W1 inside W2. Choose
S, T ∈ SL(n) such that T t maps the span W ′

1 of {en+1−r, . . . , en} to W1 and S−1 maps

the span W ′
2 of {e1, e2, . . . , er−1} to W2. Then ~Q := (S, T ) · ~P maps W ′

1 inside W ′
2.

Hence for every matrix Qk of ~Q, its (i, j)-th entry is zero for i ≥ r, j ≥ n + 1 − r.
We now show that under these conditions all the Qk’s can be simultaneously driven to
zero by a suitable 1-ps in G, or equivalently, a pair of diagonal 1-ps’s, say D(a), D(b)
in SL(n).

For r = 1 we choose a = (0, . . . , 0) and b = (1, 1, . . . , 1,−n + 1). Similary, for the
other extreme case r = n, we choose a = (1, 1, . . . , 1,−n+1) and b = (0, . . . , 0). For the
rest, first choose a rational number γ such that 1 < γ < (r/(r−1))((n−r+1)/(n−r)).
Set

α := (n− r + 1)/(r − 1), β := −1, δ := −γ(n− r)/r.

Note that α + δ > 0 and β + γ > 0. Choose an integer N such that Nα,Nβ, Nγ,Nδ
are all (nonzero) integers. Set

a = (

r−1 times︷ ︸︸ ︷
Nα, . . . , Nα,

n−r+1 times︷ ︸︸ ︷
Nβ, . . . , Nβ), b = (

n−r times︷ ︸︸ ︷
Nγ, . . . , Nγ,

r times︷ ︸︸ ︷
Nδ, . . . , Nδ).

It is a straightforward verification that (D(a), D(b)) drives each Qk to zero.

Since the orbit closure of ~Q contains ~0, every invariant function vanishes at ~Q, i.e.,
it is in the null cone. Thus ~P is also in the null cone. �
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The points arising from the two extreme cases r = 1 and r = n of the proposition
can also be interpreted as follows. An m-tuple ~P satisfies the case r = n, iff the n×mn
matrix obtained by row-wise concatenation of Pi’s has row rank less than n. Such points
form the null cone for the corresponding Grassmannian of n×mn matrices under left
multiplication by SL(n). Likewise, ~P satisfies r = 1 iff the mn × n matrix obtained
by column-wise concatenation of Pi’s has column rank less than n. Such points give
the null cone for the corresponding Grassmannian of mn × n matrices under right
multiplication by SL(n).

7. Conclusions

A lot of questions remain to be answered—the most important one being the SL(m)-
module decomposition of the space of invariants. This is ongoing work. Another
interesting question is to determine upper bounds on the degree of the generators for
the ring Rm,n. A further natural question to consider is that of studying the algebro-
geometric properties of the quotient variety.

Most of our results have been in characteristic zero. One could ask the same question
in characteristic p, namely what are the invariants in characteristic p for the simultane-
ous left-right action of SL(n)×SL(n) on m-tuples of n×n matrices ? It is tempting to
conjecture that our description of invariants carries over to characteristic p. We know
from Donkin’s work, [5], that for the simultaneous conjugation action on m-tuples of
matrices, the coeffecients of the characteristic polynomials of monomials in the matri-
ces generate the ring of invariants in all characteristic. The trace monomials only work
in characteristic zero. Thus our motivation partly has also been of providing trace-free
descriptions of the invariants in our setup. As in Donkin’s work this may lead to some
deeper connections with Kazhdan Lusztig theory or a suitable analogue thereof.
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