
Lecture 13: From Streett automata to Rabin automata and Back

Rabin and Street conditions are “complements” of each other and so it is not obvious as
to how to transform an automaton of one type into the other. Let A be a Streett automaton
with accepting family (E1, F1), (E2, F2) . . . (Ek, Fk). A run ρ is accepting iff

∀i. (inf(ρ) ∩ Fi 6= ∅) ⇒ (inf(ρ) ∩ Ei 6= ∅).

We keep track of the Eis and Fis hit along a run as part of the state. We then use this
to translate the Street acceptance condition into an equivalent Rabin condition. The idea is
similar to that used in translating Müller conditions to Rabin conditions via LARs. Instead
of keeping a permutation of the states we keep a permutation of the indices 1, 2 . . . k giving
the order in which the sets E1, E2, . . . Ek were last seen. We shall use Perm(k) to refer to the
set of permutations of 1, 2, . . . k. However, we need to do a little more work here because,
in each move the run would visit a number Ei’s (as opposed to single state) and all of them
have to be moved to the right end of the sequence. As in the case of LARs we use a pointer e

to keep track of the leftmost position from which a index was moved right in the last move.
With these ideas we set a state to be a triple (q, I, e) where q is a state of A and I is a

permutation (i1, i2, . . . ik) of (1, 2, . . . k) and 1 ≤ e ≤ k. The transition relation is given by:
(q′, I ′, e′) ∈ δ′((q, I, e), a) if I ′ is obtained from I by moving all the indices i with q′ ∈ Ei to
the right end (in some fixed order, say the lexicographic order), and e′ identifies the leftmost
position p in I, such that such that q′ ∈ Eip (thus, e′ identifies the leftmost position from
which an index was moved right in the move leading to the current state). For example,
consider a transtion q

a
−→ q′ where q′ ∈ E1 and q′ ∈ E4. From a IAR state (q, (3, 2, 4, 5, 1), 2)

we would get a transition on a to (q′, (3, 2, 5, 4, 1), 3). The last component is 3 since the left
most position from which an index (4) was moved right is 3. To ensure that e is always
defined we throw in the pair (Q, Q) to the set of Streett pairs (if it is not already there). Of
course, this does not change the language accepted.

For any run ρ we write InfI(ρ) to denote the list of indices i such that the set Ei is visited
infinitely often and FinI(ρ) to denote the indices i such that Ei is visited finitely often along
ρ. In any infinite run

(q0, I0, e0)
a1−→ (q1, I1, e1)

a2−→ . . .

of this automaton on a word a1a2 . . ., there is a point N beyond which all indices in InfI(ρ)
appear to the right of all the indices in FinI(ρ). Let m be the leftmost position whose value
is taken by e infinitely often along this run. Then, for all j ≥ N , the first m − 1 positions
of Ij are identical and all of them belong to FinI. Moreover, if the index i appears among
positions m, m + 1, . . . k at Ij , j ≥ N , then i ∈ InfI(ρ). So far everything has been pretty
much as it was in the case of LARs, with states replaced by indices.

When is such a run accepting in A? The Streett acceptance requires that if Fi is hit
infinitely often then the corresponding Ei must also be hit infinitely often. Equivalently,
if Fi is hit infinitely often then i must appear among positions m + 1 . . . k in IN , IN+1 . . ..
To keep track of this we add another component, an index f , to the state. So, a state is

1



a 4-tuple (q, I, e, f) where q,I and e are as before. f keeps track of the leftmost position p

such that q ∈ Fip where I = (i1, i2, . . . , ik). (Notice the difference between e and f . e refers
to the leftmost position in the previous state that was moved right in the last transition. f

refers to a position in the current state.)
With this definition, a run (q0, I0, e0, f0)

a1−→ (q1, I1, e1, f1) . . . is accepting precisely when
leftmost position that appears as ej for infinitely many js is to the left of the leftmost position
that appears as fj for infinitely many js. Equivalently, the run is accepting precisely when
there is a position p such that

1. For infinitely many j, ej = p.

2. fj < p for only finitely many j.

This follows from the fact that if p is hit infinitely often then p ≥ m and item 2 guarantees
that fj < m only finitely many times. Thus, beyond some point fj ≥ m and thus if Fi is hit
infinitely often then so is Ei. The two conditions above can be directly translated as a Rabin
pair and thus we can translate any Streett automaton into an equivalent Rabin automaton
with O(n.r!) states and O(r) accepting pairs.

Theorem 1 Let A = (Q, Σ, δ, s, ((E1, F1), (E2, F2) . . . (Ek, Fk)) be a Streett automaton. Then

the automaton

IAR(A) = (Q×Perm(k)×{1, . . . k}×{1, . . . , k}, Σ, ∆, (s, (1, 2, 3, . . . , k), k, k), ((E ′
1, F

′
1), . . . (E

′
k, F

′
k))

where the transition relation ∆ is as defined in the above discussion and

F ′
i = {(q, I, e, f) | e = i}

E ′
i = {(q, I, e, f) | f < i}

accepts the same language as A. Further, A′ is deterministic whenever A is deterministic.

Thus any Streett automaton can be translated into and equivalent Rabin automaton, preserv-

ing determinism, whose size is bounded by O(n.r!) and which has at the most r accepting

pairs.

Can we extend this to a transformation from Streett automata to Parity/Rabin-Chain
automata? Here is how: As discussed above a run ρ is accepting if the leftmost position
that appears as ej for infinitely many j is to the left of the leftmost position that appears
as fj for infinitely many j. This smacks of a parity condition! Note that ej can take values
among 1, 2, . . . k and similarly for fj. Let us assign the value 2i to e instead of i (so that e

now takes values from the set {2, 4, . . .2k}) and the value 2i + 1 to f instead of i (so that f

takes values from the set {3, 5, . . . , 2k + 1}).
Suppose that in the original run, the leftmost position taken infinitely often by e is j and

that taken by f is l. With the new values the smallest value taken by e along this infinite
run is 2j, while the smallest value taken by f along the run is 2l + 1. Notice that j ≤ l if
and only if 2j < 2l + 1. Equivalently, j ≤ l if and only if the smallest value taken infinitely
often by either e or f is an even number. We use this to define the parity automaton. We
do not bother to replace the values of e and f by 2e and 2f + 1, but use the rank function
to capture this.

2



Theorem 2 Let A = (Q, Σ, δ, s, ((E1, F1), (E2, F2) . . . (Ek, Fk)) be a Streett automaton. Con-

sider the automaton

IAR(A) = (Q × Perm(k) × {1, 2, . . . k} × {1, 2, . . . , k}, Σ, ∆, (s, (1, 2, 3, . . . , k), 2k, 2k + 1), σ)

where the transition relation ∆ is as in theorem 1 and the rank function σ is given by

σ((q, I, e, f)) = Min(2e, 2f + 1)

This parity automaton accepts the same language as A, more over this automatonis deter-

ministic whenver A is deterministic. The size blowup is bounded by O(n.r!) and the number

of levels in the rank function is bounded by O(r).

Rabin to Streett

Recall that a Rabin automaton can be transformed into an equivalent Nondeterministic
Büchi automaton of size O(n.r). And since NBAs are also NSAs, this gives a efficient way
to tranform NRAs into NSAs. But this does not preserve determinism. However, given a
DRA, we can complement it to get a DSA (without any blowup), transform the DSA into an
equivalent Deterministic Parity automaton (of size O(n.r!) and with at the most O(r) rank
levels) and finally complement this parity automaton (without any blowup) to get a DPA
automaton equivalent to the original Rabin automaton. Thus, we also have transformations
from Rabin automata to Streett automata and Parity automata with a size blow up at at
most O(n.r!) and with at the most O(r) size for the acceptance condition.

A Lowerbound on transformations from Streett Automata

In this section we shall show that the transformation from deterministic Streett automata
to deterministic Rabin automata described in the previous section is optimal. This result
(and the following proof) is due to Christof Löding ([?]).

The technique used to prove this result will be almost identical to that used to proving
the optimality of Safra’s construction. Recall, that the proof there proceeded using the
following steps:(where Ln is the language used in that proof.)

1. Assume that there is a NSA of size < n! that accepted the language Ln.

2. Pick words σ1, σ2 . . . σk in Ln and corresponding accepting runs ρ1, ρ2, . . . ρk.

3. Construct a new word σ and a run ρ on σ by splicing together parts of ρ1, ρ2, . . . such
that inf(ρ) =

⋃
1≤i≤k Inf(ρi).

4. Show that σ 6∈ Ln and use the fact that if X and Y satisfy a Streett condition then so
does X ∪ Y to conclude that we have an accepting run on a word not in Ln and arrive
at a contradiction to 1.

3



A similar technique would not work for Nondeterministic Rabin automata. For Rabin
conditions the analogue of the property used in item 3 above is: if X and Y do not satisfy a
Rabin condition then X ∪ Y also does not satisfy the Rabin condition. To use this property
we have dualize the entire argument and get:

1. Assume that there is a NRA of size < n! that accepted the language Ln.

2. Pick words σ1, σ2, . . . σk outside Ln and corresponding non-accepting runs ρ1, ρ2, . . . ρk.

3. Construct a new word σ and a run ρ on σ by splicing together parts of ρ1, ρ2, . . . such
that inf(ρ) =

⋃
1≤i≤k Inf(ρi).

4. Show that σ ∈ Ln and use the fact that if X and Y do not satisfy a Rabin condition
then X ∪ Y also does not satisfy it to conclude that ρ is not an accepting run.

But we have no contradiction since there might be other runs that accept σ. As a matter
of fact, I do not know any technique to show a lowerbound on the translation from Streett
automata to Nondeterministic Rabin automata.

However if we work with Deterministic Rabin automata the above technique works,
because, ρ is the unique run for the automaton on σ and if it is rejecting then there is no
accepting run and so it rejects a word in Ln and thereby contradicts 1. This is the scheme
we shall follow here. Consider the family of automata (An)n≥1 described below.

An = ({i,−i | 1 ≤ i ≤ n}, {1, 2, . . . n}, δ, s, (({1}, {−1}), ({2}, {−2}), . . . , ({n}, {−n})))

where δ(i, j) = −j and δ(−i, j) = j for all 1 ≤ i, j ≤ n. The automaton is in negative states
after even number of moves and in positive states after odd number of moves. Moreover, the
state reached after reading a word w depends only on the last letter of w (and the parity of
the length of w).

Let ρ = a0a1 . . . be a word over Σ. The set of positive states entered during this run
is completely determined by a0a2a4 . . . and similarly the set of negative states entered is
determined by a1a3 . . .. In particular if even(ρ) is the set of letters that appear infinitely
often at positions 0, 2, . . . and odd(ρ) is the set of letters that appear infinitely often at
positions 1, 3, . . . then, the word ρ is accepted if and only if odd(ρ) ⊆ even(ρ). This leads us
to the following observation:

Observation 1: Let u be a word of even length over Σn. For any ρ, ρ is in the language
Ln if and only if uρ is in Ln.

The proof proceeds by induction on n. We shall actually prove a slightly stronger result.
Namely:

4



The Hypothesis: Any deterministic Rabin automaton A accepting the language Ln

must contain a strongly connected component with at least n! states.
If n is 1, the result follows immediately as any automaton accepting L1 must have at

least a scc with one state.
For the induction step, pick an automaton A with minimum size that accepts Ln. If we

omit the letter i from the alphabet of A, it accepts the language Ln−1 (modulo some renaming
of letters) and therefore, by the induction hypothesis, we have the following observation:

Observation 2: The automaton A has an scc with least (n − 1)! states. As a matter of
fact, A restricted to the set of letters Σ − {i} has a scc with at least (n − 1)! states.

We can say something interesting about the structure of A:

Observation 3: The automaton A considered as a graph is strongly connected.
Suppose A has multiple sccs. These sccs themselves form a directed acyclic graph. Pick

any scc at the leaf of this DAG. Now, there is a word of even length u from s to some state
q in this scc. But σ ∈ Ln if and only if uσ ∈ Ln. Thus, the automaton A with q as the start
state accepts exactly the same language as A. But the states reachable from q are only its
scc (since this scc forms a leaf in the DAG on sccs). Thus, we might as well restrict ourselves
to this scc and use q as the start state to obtain an automaton that accepts Ln. But we had
assumed that A was the smallest automaton that accepts Ln. Therefore, A must consist of
just a single strongly connected component.

Observation 4: Any automaton A accepting Ln has a sub scc that accepts Ln.
This just follows from the argument given above to prove Observation 3.
Now, for each i we construct a word σi that even(σi) = Σn −{i} and odd(σi) = Σn. Thus

none of these words are accepted by A. The word σi and the run of A on σi are constructed
in unison as follows: Let the word ui

s = 112233 . . . (i − 1)(i − 1)(i + 1)(i + 1) . . . nn. This
word has every letter in Σn − {i} in both odd and even numbered positions. Suppose this
word leads us from s to some state q. Now, A with q as starting state accepts Ln. Thus,
by Observation 2, there is an scc of size at least (n − 1)! reachable from q even when the
alphabet is restricted to Σn −{i}. Let w be word over Σn −{i} that labels a path from q to
this scc and visits at least (n−1)! states in this scc. We set vi

s = ui
s.w.ik where k ∈ Σn−{i}.

We point out two important properties of this word:

1. The set of letters appearing at odd positions is Σn and the set of letters appearing at
even numbered positions is Σn − {i}.

2. The run ρi
s of the automaton A on this word (starting at s) has atleast (n−1)! distinct

states.

We could do this for any state q. That is, we could construct a word vi
q such that the two

properties listed above are satisified (with q in place of s.) The word σi = vi
sv

i
q1

vi
q2

. . ., where
qi+1 is the state reached on reading vi

q starting at state qi. The run ρi on σi is ρi
sρ

i
q1

. . ..

5



We now show that inf(ρi)∩ inf(ρj) must be empty whenever i 6= j. Suppose that a state
q appears infinitely often in both these runs. Let ρi = r1.r2.ρ

′
i where

1. r1 leads to the state q

2. r2 (begins and) ends in the state q

3. r2 includes at least one of the ρi
p entirely (and therefore the word read along r2 contains

some vi
p entirely)

4. r2 visits exactly the set of states in inf(ρi).

This can always be ensured since q is visited infinitely often.
Similarly we can write ρj = t1.t2.ρ

′
j satisfying similar properties. Now consider the run

ρ = r1(r2t2)
ω. This run reads a word σ that includes infinitely many copies of some ρi

p and

infinitely many copies of some ρ
j

p′ . Thus, even(σ) = odd(σ) = Σn. Thus, the word is in Ln.
However, the set of states hit infinitely often along this run is inf(ρi) ∪ inf(ρj). Thus the
run ρ cannot satisfy the Rabin condition. However, the automaton is deterministic and ρ is
the only run of this automaton on σ and this contradicts the assumption that L(A) = Ln.
Hence, we may conclude that inf(ρi)∩ inf(ρj) is empty whenver i 6= j. Notice that there are
at least (n − 1)! states in each inf(ρi). Thus, there are at least n! states in A.

Now, we can apply Observation 4 to conclude that any automaton accepting Ln has an
scc with at least n! states.

References

[1] Christof Löding: Optimal Bounds for Transformations of ω-automata, Proceedings of
the International Conference on Foundations of Software Techonology and Theoretical
Computer Science (FSTTCS) 1999, Springer Lecture Notes in Computer Science 1738,
1999.

[2] S. Safra: On the complexity of ω-automata, Proceedings of the 29th FOCS, 1988.

[3] Wolfgang Thomas: Languages, automata, and logic In the Handbook of Formal Lan-
guages, volume III, pages 389-455. Springer, New York, 1997.

6


