
Lecture 9: Büchi Games over Infinite Graphs

We shall first generalize the definition of alternating automata over finite words. Recall
that in our definition of alternating automata, the set of states Q is divided into two sets
Q∀ and Q∃ and every transition out of any Q∀ state is interpreted as a logical and while
transitions out of any Q∃ state are interpreted as logical ors.

Instead of associating the type of the transition to a state, we could associate it with
a (state, letter) pair. In other words, we define an alternating automaton to be a tuple
(Q, Σ, δ, s, F ), where for each q ∈ Q and a ∈ A, δ(q, a) = ∀S or δ(q, a) = ∃S, for some some
set S of states. The interpretation of these transitions is the obvious one: if δ(q, a) = ∀S

then, we need to start one copy of the automaton for each state in S to read the rest of the
input, and δ(q, a) = ∃S represents a nondeterministic choice and we need to pick one state
from S to read the rest of the input.

For each such automaton A and word w we can associate a game. The only difference
w.r.t the game defined in the Lecture 6 is that, whether a state q in the ith copy belongs to
the automaton or the pathfinder depends on the input letter ai. if δ(q, ai) is a ∀ transition
then the state belongs to the pathfinder and it belongs to the automaton otherwise. And with
this definition we can reprove all the results in Lecture 6 once again without any difficulty.

We can generalize this further as follows: We define an alternating automaton to be a
tuple (Q, Σ, δ, s, F ) where δ(q, a) is positive boolean formula over Q. That is, a formula
constructed using elements of Q and the operators ∨ and ∧ as well as the constants false and
true. In particular, negation is not permitted. Before venturing into the precise definition
of runs etc, let me explain this definition informally. Suppose δ(q, a) = (q1 ∨ q2) ∧ q3. This
means that in order to read the word aw starting at state q, we must start one copy of the
automaton at state q3 to read w and a second copy starting at state q1 or q2 to read w. We
could also start three copies, one each at states q1, q2 and q3 (recall, that all the copies must
accept for a run to be accepting).

Let S ⊆ Q and let φ be a formula over Q. We define when S satisfies the formula φ as
follows:

S |= true always
S |= q if q ∈ S

S |= φ1 ∧ φ2 if S |= φ1 and S |= φ2

S |= φ1 ∨ φ2 if S |= φ1 or S |= φ2

We can now define a run of an alternating automaton from state q on a word w =
a1a2 . . . an to be a tree labelled by Q satisfying the following properties

1. The tree has n + 1 levels.

2. The root is labelled by q.

3. If a node at level i is labelled by q and then the labels of its children constitute a set
S such that S |= δ(q, ai).

1



The run is accepting if all the leaves of this tree are labelled by states in F and a word w is
accepted if there is an accepting run starting at state s on w.

We illustrate these definitions with the automaton A1 = ({s, q0, q1, q2}, {a, b}, δ, s, {s, q0, q2})
where

δ(s, a) = s ∨ q2

δ(s, b) = (s ∨ q2) ∧ (q0 ∨ q2)
δ(q0, a) = q1

δ(q0, b) = q0

δ(q1, a) = q0

δ(q1, b) = q1

δ(q2, a) = q2

δ(q2, b) = false

Here are is an accepting run of this automaton on the input baabaa:

q
1

q
0

q
0

q
0

q
1

q
0

q
0

q
1 q

0s

s

b

b

a

a a

a

b

b

b

a

a a

a

a as ss

s s

The set {s, q0} satisfies (s ∨ v2) ∧ (q0 ∨ q2). Here is an accepting run on baba.

q
0

q
2

q
2

q
1

q
1

q
0

s

s

b

b

a

a

as b

b a

Here we also use the fact that q2 |= (s ∨ q2) ∧ (q0 ∨ q2).

Exercise: What is the language accepted by this alternating automaton?

We shall say that a run is positional, if for each level i and any two states in level i

labelled by the same state, the entire subrun (subtree) rooted at these states is identical.

1 Games from Automata

How do we associate a game with a given automaton A and word w? In the “simpler”
version of alternating automaton considered earlier, nodes where the choice is nondetermin-
istic belong to the automaton while nodes with conjunctive choice belong to the pathfinder.

2



However, in the more elaborate model a transition may involve both nondeterministic and
conjunctive choices. (For example consider δ(s, b) above. )

The idea is to first translate each transition δ(q, a) into a small game graph. First we
construct the tree representation of this formula with the operators in the formula consti-
tuting the interior nodes and the states in the formula constituting the leaves. For example,
the formula (s ∧ q2) ∨ (q0 ∧ q2) gives:

q
0

q
2

q
2

s

The nodes corresponding to the ∧ operator are treated as pathfinder nodes and and those
corresponding to ∨ operator belong to the automaton. The leaves of this tree are labelled
by states.

We then combine the leaves labelled by the same state. In the above example, we get:

q
0

q
2

s

Finally, the game graph corresponding to an automaton A and word a1a2 . . . an is con-
structed using n + 1 copies of the set state set Q. The levels are connected up as follows:
Pick the game graph associated with δ(q, ai), identify its root with the copy of q at level i

and its leaves with their corresponding copies in level i + 1. Thus, the type of a state q at
level i is determined by the outermost operator in δ(q, ai). Here is the game graph associated
with the automaton A (described earlier) on the input word baba.

3



q
0

q
1

q
2

q
0

q
1

q
2

q
0

q
1

q
2

q
0

q
1

q
2

q
2

q
1

q
0

s

2

a

s

1

b

ss

b a

s

3 4 5

The state s belongs to the pathfinder at levels 1 and 3 since the first and third letters are b. It
belongs to the automaton at levels 2,4 and 5. Also notice that there are states (corresponding
to the operators in the transition formulas) that appear in between the levels.

We can show that an automaton A accepts a word w if and only if the player automaton
has a positional winning strategy in the game G(A,w). Recall that in games played on
DAGs either the automaton or the pathfinder always has a positional winning strategy. So
we might as well restrict our attention to positional winning strategies.

Fix any positional strategy f for the automaton in a game G. By R(f, p) we shall refer
to the subgraph consisting of all positions in the game graph that appear in some play
consistent with f and beginning at position p. (We shall write R(f) if p is the copy of s in
level 1.)

We can show that if f is a positional winning strategy of the automaton then R(f)
corresponds to the folding into a DAG (where nodes with identical subtrees rooted below
them have been identified) of some positional accepting run of the automaton.

We wish to reformulate this game into a more useful form. First note that if Gφ is the
game graph obtained from a formula φ, and f is ANY strategy for the automaton in this game
then the set of labels of the leaves in R(f, r), where r is the root (the node corresponding to
the top level operator), satifies φ. Conversely, note that if a set S satisfies a formula φ then
there is a strategy fS for the automaton that ensures that the leaves in R(fS, r) are labelled
by a subset of S.

Thus a strategy for the automaton over a graph of the form Gφ corresponds to restricting
the set of possible outcomes (i.e. the state reached at the end of a play) to some subset S

that satisfies φ (or if φ is false, then the automaton is stuck and cannot make a move.) and
which of these states in S is reached at the end of a particular play is fixed by the choices
made by the pathfinder.

Thus, we can reformulate the game G(A,w) equivalently as the follows: The game begins
at state s at level 1. The automaton picks a subset X1 of Q that satisfies δ(s, a1). The
pathfinder then picks an element q1 of X1. The automaton then picks a subset satisfying
δ(q1, a1) and then the pathfinder picks a state and so on till we reach some state qn. The

4



automaton wins if qn is in F and the pathfinder wins otherwise (with the understanding
that the pathfinder wins if at any point the automaton is unable to make a move.) Notice
that if X satisfies δ(q, a) then it makes no sense for the pathfinder to play any set X ′ with
X ⊆ X ′. So we might as well restrict the choices available to the automaton to minimal
subsets satisfying φ. Henceforth by G(A,w) we shall refer to this game.

Here is the game corresponding to the earlier defined automaton A on input ba.

q
2

q
0

q
2

q
0

q
2

q
1

q
2

q
2

q
1

{ }

{ s, }

s

s}{

{ }

{ }

{ }

s

b a

s

In this setting it is quite easy to see that if winning strategies for the automaton on
G(A,w) correspond to accepting runs for A on w and positional winning strategies correspond
to positional accepting runs for A on w. Thus we have the following theorem:

Theorem 1 An alternating automaton A accepts a word w if and only if the player automa-
ton has a positional winning strategy in the game G(A,w).

As discussed in Lecture 6, this immediately results in the equivalence of nondeterministic
and alternating automata. The nondeterministic automaton simulates the runs of the the
alternating automaton level by level and by keeping just one copy of each state that appears
at a level.

Corollary 2 For every alternating automaton A, there is a nondeterministic automaton A′

such that L(A) = L(A′).

Is it easy to complement these generalized alternating automata? To complement alter-
nating automata, the standard technique is as follows: First transform the automaton A into
another automaton A′ so that the game graph G(A′, w) is simply the game graph G(A,w)
with the roles of the two players interchanged. Secondly, complement the accepting condi-
tion. A′ with the complement accepting condition accepts a word if and only the automaton
wins in G(A′, w) if and only if the pathfinder wins in G(A,w) if and only if A does not accept
w.

How to construct such an A′? Here we find the original definition of the game to be more
useful. Recall that for δ(q, a) we simply constructed a game graph where the nodes labelled
by ∧ belongs to the pathfinder while ∨ nodes belong to the automaton. Thus, by simply

5



interchanging the ∨ and ∧ operators we get a game graph where the roles of the pathfinder
and automaton are interchanged. Given a formula φ we write φd (i.e. the dual of the formula
φ) for the one obtained by replacing ∧ and ∨ by ∨ and ∧ respectively (and false is replaced
by true and vice versa). Thus, we have the following theorem:

Theorem 3 Let A = (Q, Σ, δ, s, F ) be an alternating automaton. Then, the automaton
A′ = (Q, Σ, δd, s, Q \ F ), where δd(q, a) = δ(q, a)d, accepts the complement of the language
accepted by A.

2 Alternating Büchi Automata

An Alternating Büchi Automaton is a tuple A = (Q, Σ, δ, s, F ) where δ(q, a) is a positive
boolean formula over Q. Thus it is essentially a alternating automaton treated as an automa-
ton over infinite words. The run of such an automaton over an infinite word a1a2 . . . an . . .

is a infinite tree labelled by states from Q satisfying:

1. The root is labelled by q.

2. If a node at level i is labelled by q and then the labels of its children constitute the set
S such that S |= δ(q, ai).

A run is accepting if every complete path through the run tree is infinite and visits the set
F infinitely often. Here is an accepting run of the automaton A1 on the input bababa . . .

q
0

q
1

q
1

q
0

q
0

q
1

q
0

q
1

q
0

s

s

b

b

a

a

ab

b a

b

a

s

s

b

b

b

b

s

s

As usual we say that a runtree is positional if it has the following property: for any two
nodes labelled by the same state at the same level, the subtrees rooted at these two nodes
are identical.

Clearly the class of languages accepted by Alternating Büchi automata subsumes the class
of ω-regular languages. What about the converse? Can we simulate every alternating Büchi
automaton using a traditional Büchi automaton? In the case of finite words, we simulated
the alternating automaton level by level using the fact that we need to keep only one copy
of each state at a level. This in turn relied on the fact that alternating finite automata have
positional accepting runs on every word they accept and this was proved by establishing

6



that the player automaton has a positional winning strategy in the game (associated with
the automaton and any word w).

We shall follow the same route here. First we associate a game with every automaton–
word pair. Then we show that the word is accepted if and only if the player automaton has
a positional winning strategy in the game. This in turn implies the existence of positional
accepting runs, which in turn allows us to simulate alternating automata via nondeterministic
automata.

2.1 The Game G(A, σ)

Let A be an automaton and a ω-word σ = a1a2 . . . we associate a game as follows. The
nodes are classified as those in level 1, 2, . . .. At level 2i − 1 there are nodes labelled by the
elements of Q. At level 2i there are nodes labelled by elements of 2Q. Nodes in the odd
levels belong to the automaton and the nodes at the even levels belong to the pathfinder.
From a node labelled q at level 2i− 1, there is an edge to a state labelled X in level 2i if and
only if X |= δ(q, ai). From a node labelled X at level 2i there is an edge to a node labelled
q at level 2i + 1 if and only if q ∈ X. Thus, the automaton picks sets of states that satisfy
the transition formula and the pathfinder picks a state from this set.

Since we are interested only in the result of games starting at the state s at level 1 we
might as well omit all the states that are not reachable in any play starting at this state.
We may also assume that the automaton will never play an X ′ if there is an X ⊆ X ′ that
also satisfies the transtion formula. (Thus, this is exactly the same game as defined for the
finite case, however, we have not stated the winning condition yet.) Here is the game graph
G(A1, bababa . . .):

q
2

q
0

q
2

q
0

q
2

q
1

q
2

q
2

q
1

q
0

q
2

q
0

q
2

q
0

q
2

q
1

q
2

q
2

q
1

{ }

{ s, }

s

s}{

{ }

{ }

{ }

s

s

{ }

{ }

{ s, }

s

s}{

{ }

{ }

{ }

s

b a

s

b a

In this game, the winning criterion is as follows: Any play that is finite is winning for the
pathfinder (this happens if the play reaches a state q at some level i with if δ(q, ai) = false).
An infinite play is winning for the automaton if it visits states in F infinitely often. This
game is what is called a Büchi Game (we define and analyse Büchi games in the next section).
Thus, a winning strategy for the automaton is one in which, every play consistent with the
strategy is infinite and visits the set F infinitely often. A winning strategy for the pathfinder
is one in which every play consist with the strategy is either finite or visits elements of F

only finitely often.
For any strategy f of the automaton we set R(f) to be the subgraph of the game graph

that is reached by some play consistent with the strategy f . It is quite easy to see that we

7



can unfold the DAG R(f) (i.e. expand the DAG into a tree, duplicating vertices whenver
necessary in the obvious manner) for any strategy f for the automaton to get a run for A on
σ. This unfolding yields a positional run whenever the strategy is positional. And clearly,
the strategy is winning implies that the unfolded runtree is accepting.

Conversely, given an accepting run for A on w, we can easily construct a winning strategy
in the game: For any position s → X1 → x1 → X2 → x2 . . . → Xi → xi, if s → x1 → x2 . . . xi

is a path in the accepting run and if X is the set of labels of the children of this xi, then play
xi → X. If this path does not appear in the accepting run, play anything. It is quite easy to
verify that if the automaton plays this strategy, then any play will stay within a path that
appears in the accepting tree and hence visit the set F infinitely often and will therefore be
winning for the automaton. Further, notice that if the accepting run was positional then
this construction yields a positional winning strategy for the automaton. Thus we have the
following theorem:

Theorem 4 Let A be an alternating Büchi automaton and let σ be an ω-word. A has an
(positional) accepting run on w if and only if the player automaton has a (positional) winning
strategy in the game G(A, σ).

3 Reachability Games

We begin by considering a simple game called the reachability game. In a reachability game
we are given a graph G = (V0, V1,→) (where V0 is the set of nodes from where player 0
makes moves and V1 is the set of vertices from where player 1 makes moves) and a set
X ⊆ V = V0 ∪ V1. The aim of player 0 is to ensure that the game enters some vertex in X

while the aim of player 1 is to ensure that this does not happen. For the moment, we shall
assume that every vertex has at least one out going edge.

We would like to calculate the set of nodes W0 from which the player 0 can force the
game to enter X. Clearly X ⊆ W0. What else? Consider any vertex v ∈ V0 with at least
one outgoing edge into X. Clearly player 0 can win from v too. Moreover, if v ∈ V1 and all
the outgoing edges from v go into X then once again player 0 will win from v (he needs do
nothing, the first move by player 1 will force the game into X.)

For any set U let us define pre(U) to be the following set:

pre(U) = {v ∈ V0 | ∃w. v → w ∧ w ∈ U}
⋃

{v ∈ V1 | ∀w. v → w ⇒ w ∈ U}

The above argument says that X ⊆ W0 and pre(X) ⊆ W0 and moreover player 0 has a
positional strategy to win from all the nodes in X ∪ pre(X).

8



X
Pre(X)

We can generalise this to say that whenvever U ⊆ W0 then pre(U) ⊆ W0 and if player 0
has a positional strategy that ensures that he wins the game starting at any position in U

then he also has a positional winning strategy that wins the game starting at any position in
U ∪ pre(U). The strategy is the following: Within U play the (positional) winning strategy
that is promised by the hypothesis. For any node q ∈ pre(U)∩ V0, we are assured that there
is at least one neighbour w in U . Fix such a w for each q and the strategy plays q → w at
q. Thus, after the first move the game enters U and in U the strategy is already assured
force the game into X after some sequence of moves. For any v ∈ pre(U)∩V1, the first move
by player 1 will move the game into U where the winning strategy for player 0 will force
the game to enter X. Thus, player 0 has a winning strategy from all of U ∩ pre(U) and in
particular has a positional winning strategy if he has a postional strategy to win from U .

Therefore, if we set X0 = X and Xi+1 = pre(Xi) ∪ Xi then, for all i, Xi ⊆ W0.

X 0 X 1 X 2 X i X i+1

X iU
i W0

However, there may be nodes in W0 that are not in
⋃

i<ω Xi. This is because we have placed
no restrictions on our game graphs. They could be of any cardinality, and the degree of a
vertex could be infinite or even uncountable. In the following game (where the nodes in X

are the dark coloured ones), the node v 6∈
⋃

i<ω Xi but player 0 wins from v.

v

9



But note that pre(
⋃

i<ω Xi) ⊆ W0 and we could continue our iterations to higher ordinals.
We define the sequence Xi as follows:

X0 = X

Xi+1 = pre(Xi) ∪ Xi i + 1 is a successor ordinal
Xβ =

⋃
i<β Xi when β is a limit ordinal

We know that there is a smallest ordinal κ such that Xκ = Xκ+1. We shall now show
that W0 = Xκ. We define the positional winning strategy over Xκ now. Suppose v ∈ Xκ∩V0

then there is a smallest ordinal β such that v ∈ Xβ. We call this ordinal ord(v). From the
inductive construction it is clear that β = i+1 for some i (or β = 0 which means that player
0 has already won. So we may pick any outgoing edge as the strategy.) Therefore there is
some w ∈ Xi and v → w. Fix such a w and define the positional strategy at v to be v → w.
We call this strategy reduce(X) and we shall refer to Xκ as wforce(X).

Also note that if v ∈ Xκ ∩ V1 and ord(v) = i + 1 then every edge out of v leads to a
node in Xi. Thus, if the game starts in Xκ and player 0 plays the strategy reduce(X) then
every move in the play reduces the value of ord. But ordinals are wellfounded and so within
finite number of moves the play must enter some node node w with ord(w) = 0, in other
words, the game must enter the set X. Thus, this positional strategy is winning for player
0 starting at any node in Xκ.

Suppose v ∈ V \Xκ. Since v 6∈ pre(Xκ), it follows that either v ∈ V0 and ∀w. (v → w) ⇒
w ∈ V \Xκ or v ∈ V1 and ∃w. (v → w) ∧ w ∈ V \Xκ. Thus, from a node in V \Xκ, player
0 cannot move the game into Xκ.

Here is a positional strategy avoid(X) for player 1: Given any v ∈ V1 \ Xκ, pick any
v → w such that w ∈ V \ Xκ and play v → w as the move at v. (For nodes in Xκ the
moves for player 1 are defined arbitrarily.) This positional strategy ensures that player 1
never moves the game into Xκ from any vertex in V \ Xκ.

Combining the conclusions of the previous two paragraphs we see that player 1 has a
positional strategy that ensures that a game starting in V \ Xκ stays within V \ Xκ for
ever and thus results in a win for player 1 (since X ⊆ Xκ). This gives us the following
determinacy theorem for reachability games:

Theorem 5 Let (V0, V1,→) and X specify a reachability game. We can partition the set
V as W0 and W1 such that player 0 has a positional winning strategy that wins the game
starting at any position in W0 and player 1 has a postional winning strategy that wins the
game starting at any position in W1.

Also observe that if G is a finite graph then the sets W0 and W1 can be computed and
the positional winning strategies for player 0 and 1 can also be computed.

An useful fact: If the game starts within V \ wforce(X) and player 1 plays avoid(X)
then the play never enters wforce(X) (or equivalently stays within V \ wforce(X).

10



Exercise: Given a finite reachability game G what is the complexity of computing the
winning sets for player 0 and 1 ?

3.1 A useful variant

Suppose we modified that the reachability game to demand that the game visit X after at
least one move has been made (i.e. player 0 does not win immediately if the game starts in
a vertex in X.). Then what are the winning sets for player 0 and player 1?

Notice that any node in wforce(X) \ X is still winning for player 0. Because, starting at
such a node , the strategy reduce(X) forces the game to visit the set X. Also, every node
in V \wforce(X) is still winning for player 1 as he can keep the game within V \wforce(X).
So the only nodes which may change hands are those within X. States in X can be divided
into two sets X ′ and X ′′ where X ′ = X ∩ pre(wforce(X)) and X ′′ = X \ pre(wforce(X)).

X

X’

X’’

Vwforce(X)

We claim that player 0 has a positional winning strategy that wins from all the vertices
in wforce(X) \X ∪X ′. At vertices in wforce(X) \X it plays the usual reduce(X) strategy. If
v ∈ X ′∩V0 then, there is a w ∈ wforce(X) such that v → w. Fix such a w and player 0 plays
v → w at v. It is quite easy to check that this is a winning strategy for player 0 starting at
any position in wforce(X) \ X ∪ X ′ and we shall henceforth refer to this set as force(X).

Player 1 has a positional winning strategy that wins from all the vertices in V \wforce(X)∪
X ′′. The strategy for player 1 is the usual avoid(X) strategy at vertices in V \wforce(X). For
a vertex v in X ′′ ∩ V1 notice that there is at least one edge v → w with w ∈ V \ wforce(X).
Fix such a w and player 1 player v → w at this v. When player 1 plays this strategy, after
the first move the game never enters the set wforce(X) and thus is winning for player 1.

We shall refer to these strategies for player 0 and 1 as reduce(X) and avoid(X) (since they
continue to be winning positional winning strategies for 0 and 1 in the simple reachability
game though over different winning sets).

4 Büchi Games

A Büchi game consists of game graph (V0, V1,→), a finite set of colours C, a labelling function
λ assigning a colour to each vertex, and a set F ⊆ C. A play in this game is winning for
player 0 if it visits vertices coloured with colours from F infinitely often. For any Büchi
automaton A and word w, the game G(A,w) is a Büchi game. Take the colouring set to be

11



Q ∪ {⊥}. Colour every vertex at the even levels by {⊥} and colour a vertex q at any odd
level by q.

We wish to establish that in every Büchi game, the set of nodes can be divided into to
sets such that player 0 has a postional winning strategy for games starting in one set and
player 1 has a positional winning strategy starting in the other.

So, we are interested in vertices from where player 0 can force the game to enter the
set X = {v | λ(v) ∈ F} infinitely often. We know that force(X) is the set of vertices from
where he can force the game to enter X at least once (not including the start vertex). From
where can we force the game to visit vertices in X at least twice? If we start from a vertex in
force(X∩ force(X)) then clearly we can force the game to enter some vertex v ∈ X∩ force(X)
and from such a vertex we can clearly force the game to enter X once more. Similarly, from
a vertex in force(X ∩ force(X ∩ force(X))) player 0 can force the game to enter X at least
three times and so on.

If we can find a set Y such that Y = force(X ∩ Y ) then clearly, player 0 would win
starting at any vertex in Y . He simply plays the reduce(X∩Y ) strategy and this would force
the play to enter the set X ∩ Y . But Y = force(X ∩ Y ) and so the play would be forced to
enter Y ∩ X again (Note that this argument would not work if we had used wforce instead)
and so on. Thus the play would enter X infinitely often and player 0 wins.

The Tarski-Knaster theorem suggests how to find the most generous such Y and here is
how: Define a sequence Y0, Y1, . . . as follows:

Y0 = V

Yi+1 = force(X ∩ Yi) i + 1 is a successor ordinal
Yβ =

⋂
i<β Yi when β is a limit ordinal

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

Y
κ

Y
κ

force(X)

X V

force(X    force(X))

force(        )= X

Notice that the function force is monotone (i.e. if S ⊆ T then force(S) ⊆ force(T )). And
since Y0 = V , Y1 ⊆ Y0. Thus, for all i Yi+1 ⊆ Yi and consequently Yi ⊆ Yj for any i > j.
Thus, there must a least ordinal κ such that Yκ+1 = Yκ. Thus Yκ = force(X ∩ Yκ) and thus
player 0 has a positional winning strategy (i.e. reduce(X ∩Yκ)). that wins from all positions
in Yκ.

12



What about vertices not in Yκ? Suppose x ∈ V \ Yκ. Y0 = V , therefore there is a least
i such that x ∈ Yi and x 6∈ Yi+1 for some successor ordinal i + 1. We define ord(x) to be
the least ordinal i such that x 6∈ Yi+1. If ord(x) = i then x ∈ V \ force(X ∩ Yi). Within the
set V \ force(X ∩ Yi) player 1 can play avoid(X ∩ Yi) to ensure that the play never enters
X ∩ Yi. We define a positional strategy for player 1 as follows: at any x ∈ V \ Yκ play
avoid(X ∩ Yord(x)

).

X Y
iforce(         )

Y
i

force(X    force(X))
avoid(X    force(X))

X Y
iavoid(         )

V

X

force(X)
avoid(X)

Notice that as long as player 1 plays avoid(X ∩ Yi) the game can never enter Yi+1 and
thus all vertices visited in such a play have ord values less than or equal to i. If at some
point the ord value j becomes strictly less than i then our strategy would play avoid(X ∩Yj)
and consequently the game would never visit a vertex in Yj+1 and so on . Thus, in any
play consistent with this strategy for player 1, the ord values of the vertices visisted forms a
nonincreasing sequence.

Now let us examine what happens whenever a play enters a vertex x ∈ X. Suppose
ord(x) = i.

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

V

X

force(X)

force(X    force(X))

X

Y
i

Y
iforce(         )

13



In this figure, the area enclosed by the thick boundary is V \wforce(X∩Yi) while the area
enclosed by the dotted boundary is V \ force(X ∩Yi) (i.e. V \Yi+1). If x ∈ X and ord(x) = i,
then x ∈ X ∩ Yi (and therefore x ∈ wforce(X ∩ Yi)). On the other hand, x 6∈ force(X ∩ Yi).
Therefore, by the discussion in section 3.1, the avoid(X ∩ Yi) strategy for player 1 ensures
that the play never returns to X∩Yi after the first move. In particular, the first move results
in the game moving to V \ wforce(X ∩ Yi). Thus as long as the game stays within positions
with ord equal to i, the game will never return to X ∩ Yi. And since every vertex v ∈ X

with ord(v) = i is in Yi this means that game never returns to X as long as the ord value
stays at i. This together with the fact that the ord values are nonincreasing along any play
consistent with our strategy ensures that X is visited only finitely often.

Thus, we have the following theorem:

Theorem 6 In any Büchi game the set of vertices can be partitioned in two sets W0 and
W1 such that player 0 has a positional winning strategy that wins all plays starting from any
position in W0 and player 1 has a positional winning strategy that wins all plays starting at
any position in W1.

14


