
Lecture 7: Büchi Automata

In this lecture we shall study finite automata as acceptors of infinite words. The study
of such automata goes back to Büchi ([1]) and continues to be a topic of research ([5]).

Let Σ be a finite alphabet. An infinite word (or ω-word) over Σ is simply an infinite
sequence a1a2 . . . where each ai ∈ Σ. We shall use Σω to denote the set of all infinite words
over the alphabet Σ.

Let A = (Q,Σ, δ, s, F ) be a finite automaton. There is a natural generalization of the
notion of a run from finite to infinite words. A run over an infinite word σ = a1a2 . . . is a
sequence ρ = sq1q2 . . . with s

a1−→ q1
a2−→ q2 . . .. But, when is such a run accepting? One

obvious choice is to define an accepting run as one that visits some state in F . But with such
a definition one can’t even describe the set of words which have infinitely many as (Why?).

In any run ρ, some states of Q are visited only finite number of times and some others are
visited infinitely often. Let us call these sets fin(ρ) and inf(ρ). There is an (infinite) suffix
of the run where none of the states from fin(ρ) appear and the states from inf(ρ) appear
infinitely often. Thus, it is reasonable to assume that the classification of a run as accepting
or rejecting must rely on its behaviour in the limit and hence must depend only on inf(ρ).
Büchi’s suggestion was to classify a run as accepting if it visits the set F infinitely often.
Since there are only finitely many states in Q and F , this is equivalent to demanding that
the run visit some fixed state in F infinitely often.

Formally, a Büchi Automaton is a finite automaton A = (Q,Σ, δ, s, F ), and the language
accepted by such an automaton is L(A) = {σ | there is a run ρ over σ such that inf(ρ) ∩ F 6= ∅}.
A langugage L ⊆ Σω is said to be ω-regular if it is accepted by some Büchi automaton.

The automaton
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accepts all infinite words over {a, b} in which, every a has a b occuring some where to its
right. In this lecture we shall omit the ω and call a ω-word as simply a word.

The following automaton
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accepts all words that have infinitely many as.
The automaton
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accepts all words that have finitely many as. Call this language Finite(a).

1 Deterministic Büchi Automata

Of the three automata described above the first two are deterministic whilst the last one is
not. Can one design a deterministic Büchi automaton that accepts the set of words with
finite number of as? The answer is negative and this can be seen as follows: Suppose there
is a deterministic Büchi automaton A accepting this language. This automaton must have
an accepting run on the word abω (where bω = bbbb . . .). Suppose this (unique) run enters a
state in F after abn1 for some n1 ≥ 1. Now, abn1abω is also in the language and there is a
unique run on this word, which extends the aforementioned run on abn1 , that is accepting
and such a run must visit a state in F after reading abn1abn2 for some n2 ≥ 1. Repeating
this argument we can construct a sequence abn1abn2 . . . abni . . . on which the unique run visits
a state in F after reading abn1 , abn1abn2 , . . . abn1abn2 . . . abni , . . .. Thus, this run visits the
set F infinitely often and hence this string with infinitely many as is accepted by A. This
contradicts our assumption that A accepted the language of words with finite number of
as. Thus, nondeterministic Büchi automata are more powerful than deterministic Büchi
automata.

Let L be a regular language of finite words. We define L̂ to be the ω-language consisting
of all words that have infinitely many prefixes in L1. For example if L = Σ∗.a then L̂ is
the set of words with infinitely many as. Then, we can characterize the class of languages
accepted by deterministic Büchi automata as follows:

Theorem 1 Let A be a deterministic Büchi automaton and let Lf (A) be the language of
finite words accepted by A when treated as a finite automaton and let L(A) be the language
accepted by A as a Büchi automaton. Then,

L(A) = L̂f (A)

The proof of this theorem quite easy and we leave it as an exercise. Our proof above
showing that Finite(a) is not accepted by any deterministic Büchi automaton can be seen as

showing that Finite(a) is not L̂ for any language L.
We now examine the closure properties of ω-regular languages. Given Büchi automata

recognizing languages L1 and L2 it is quite trivial to construct a Büchi automaton accepting
the language L1 ∪ L2. On the other hand constructing an automaton that accepts L1 ∩ L2

requires some ingenuity. We leave that as an interesting exercise.

1If you wonder I write L̂ and not ~L, the answer is rather embarassing. I can’t get ~L to stretch over longer

expressions like ~L1 ∪ L2
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Exercise: Show how to construct a Büchi automaton accepting L1 ∩ L2 from automata
accepting L1 and L2.

Exercise: Show how to construct deterministic Büchi automata accepting L1 ∪ L2 and
L1 ∩ L2 from deterministic automata accepting L1 and L2.

2 Complementation of Büchi Automata

We saw three different techniques to establish the closure under complementation of regular
languages: via deterministic automata, via Myhill-Nerode congruences and finally via alter-
nating automata. From the previous section it seems that the first route is not available in
the case of ω-regular languages. However, using more general acceptance conditions than the
Büchi condition, one can obtain deterministic automata accepting all ω-regular languages.
In the next couple of lectures we shall use each of the three routes in demonstrating the
closure under complementation of ω-regular languages.

The easiest technique, and the one used by Büchi himself, is via congruences. Our
presentation below follows that of Thomas [7]. Recall that we associated a congruence
over Σ∗ with every deterministic finite automaton A, given by x ≡A y if and only if ∀q ∈
Q.δ(q, x) = δ(q, y). Since acceptance of finite words is decided by where the run starting at
s ends up, this is the right notion. This equivalence is of finite index and further it saturates
L(A). That is, [x]≡A

⊆ L(A) or [x]≡A
∩ L(A) = ∅ for each x ∈ Σ∗. Since each x ∈ Σ∗

lies in some class (namely [x]) we can write both L(A) as well as L(A) as unions of these
equivalence classes (each of which is a regular language).

How do we extend these ideas to ω-regular languages? We need to extend the above
construction in two ways, firstly we must be able associate a congruence with nondetermin-
istic automata and secondly it must capture the notion of Büchi acceptance. The first step
is easy: With any nondeterministic finite automaton A we can associate a congruence ≡A

defined by x ≡A y if and only if ∀q. δ(q, x) = δ(q, y) where this equality is an equality of sets.
In other words, there is a run from q to q′ on the word x if and only if there is a run from
q to q′ on the the word y (for any q and q′). This relation is a congruence, is of finite index
and saturates L(A). Extending this relation to capture accepting runs over infinite words
requires a little bit of thought. If x and y are equivalent then we would like to be able to
replace any number of occurances of x with y in any run without affecting acceptance. This
leads us to the following definition: With each Büchi automaton A we associate a relation
≡A over Σ∗ given by

x ≡A y
△
= ∀q, q′. q

x
−→ q′ ⇐⇒ q

y
−→ q′ ∧

∀q, q′. q
x

−→g q
′ ⇐⇒ q

y
−→g q

′

where q
x

−→g q′ means that there is a run from q to q′ on the word x that passes through
some state in F (there may be other runs that do not pass through any state in F ). We
shall often write [x] for [x]≡A

.
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If x and y are equivalent then in any infinite run we may replace any number of subruns
on x by an appropriate runs on y in such a way that if the original run was accepting then
the modified run continues to be accepting.

It is easy to check that this relation is a congruence. It is of finite index as the number
equivalence classes is bounded by the number of functions from Q to 2Q × 2Q (Why?).
Further, we claim that for any x and y, [x].[y]ω ⊆ L(A) or [x].[y]ω ∩ L(A) = ∅. This can be
seen as follows: Suppose x1y1y2 . . . ∈ L(A) with x1 ∈ [x] and yi ∈ [y] for i. Consider any

accepting run ρ = s
x1−→ q1

y1
−→ q2

y2
−→ q3 . . .. Let x

′
1 ≡ x1, y

′
1 ≡ y1 and so on. Then, we know

that there are runs s
x′

1−→ q1, q1
y′
1−→ q2 and so on, such that whenever the run qi

yi−→ qi+1

visits a final state so does the run q′i
yi−→ y′i+1. Thus, the run s

x′

1−→ q1
y′
1−→ q2

y′
2−→ q3 . . . visits

F infinitely often and hence x′
1y

′
1y

′
2 . . . is also in L(A).

So what have we got so far? Suppose ≡ has N congruence classes. Then, each of the N2

ω-languages obtained as [x].[y]ω is either completely contained in L(A) or in L(A). Further,
the following exercise guarantees that all these N2 languages are ω-regular.

Exercise: Let U and V be regular languages. Show that U.V ω is a ω-regular language.

So, it seems that we have shown that ≡ “saturates” L(A) and should be able to conclude
that both L(A) and L(A) are just finite unions of languages of the form [x].[y]ω. Then,
using the above exercise we have a proof that the complement of a ω-regular language is also
ω-regular. However, there is a gap. Unlike the case of finite words where it is a trival fact
that each word in Σ∗ lies in some equivalence class of ≡, it is not clear that every ω-word is
an element of [x].[y]ω for some x, y. This needs proof and is in fact the most intricate part
of Büchi’s argument.

Following Gastin and Petit [4] (who attribute the original ideas to Perrin and Pin, see
for instance, [8]), we shall find it convenient to use the monoid Σ∗/≡A and prove following
general result about monoids.

Theorem 2 Let M1 be the free monoid over a (possibly infinite) alphabet Σ. M be a finite
monoid and let h be a homomorphism from M1 to M . Let a1a2a3 . . . be any infinite word over
Σ. Then, there are elements s and e in M such that, e.e = e and a1a2 . . . ∈ h−1(s)(h−1(e))ω.

Proof: For i < j, let m(i, j) denote h(ai.ai+1. . . . aj−1). This mapping is a colouring of all
the 2-subsets of N using the finite set M . Then, the infinite version of Ramsey’s theorem
guarantees that there is a subset i1, i2, . . . such that the colour of any 2-subset in this set
is identical. That is m(ij, ik) = m(il, im) for any j < k, l < m. Let s = m(1, i1) and
e = m(i1, i2). Then, e.e = m(i1, i2).m(i1, i2) = m(i1, i2).m(i2, i3) = m(i1, i3) = e. Finally, by
the definition of m(i, j), a1 . . . ai1−1 ∈ h−1(s) and aijaij+1 . . . aij+1

∈ h−1(e).
If you do not like the infinite version of Ramsey’s theorem, here is a direct argument.

Let N0 = {1, 2, . . .}. For i = 0, 1, 2, . . . we define the set Ni, the number ni and an element
si ∈ M as follows:

ni = smallest number in Ni

si = some element of M such that for infinitely many j ∈ Ni, m(ni, j) = si
Ni+1 = {j | m(ni, j) = si}

4



Clearly, Ni is infinite for each i. Let e be an element that occurs as si for infinitely many i
and let i1 < i2 < . . . be such that sij = e. Then, m(nij , nik) = e for any j < k. Thus, the
indices i1, i2, . . . identify a Ramsey subset and the rest of the proof follows as above. Notice
that since n0 = 1, we also have that s = m(1, ni1) = m(1, ni2) = . . . and hence s.e = s.

A pair of elements (s, e) in a monoid with s.e = s and e.e = e is called a linked pair. Thus
we have established that any infinite sequence overM1 is in a set of the form h−1(s).(h−1(e))ω

for a linked pair (s, e). It turns out that linked pairs play a rather important role in the
study of the algebraic theory of ω-regular languages, a topic to which we shall return later
in the course. Notice that the second element of a linked pair is an idempotent and we shall
exploit this fact shortly.

Using Σ∗ asM1 and Σ/≡A asM we can conclude that each a1a2 . . . in Σω is in η−1([x]).(η−1([y]))ω

where η(x) = [x]. But η−1([x]) = [x] and thus a1a2 . . . ∈ [x].[y]ω for some x, y. Putting this
together with our earlier calculations yields the following result:

Theorem 3 (Büchi) Let A be a Büchi automaton. Then,

L(A) =
⋃

{x,y | [x][y]ω⊆L(A)}[x][y]
ω

L(A) =
⋃

{x,y | [x][y]ω 6⊆L(A)}[x][y]
ω

We also obtain the following characterization of ω-regular languages:

Theorem 4 ([8]) A language L over Σω is a ω-regular language if and only if there is a
homomorphism h from Σ∗ to a finite monoid M and a colletion X of linked pairs over M
such that L =

⋃
(s,e)∈X h−1(s).(h−1(e))ω.

One direction of this theorem is proved above and the other direction is left as a (rather
trivial) exercise.

3 Determinizing Büchi Automata

We shall follow the route taken by Eilenberg and Schutzenberger [?], Choueka [2] as well as
Rabin [9] as described by Perrin and Pin in [8]. Recall that deterministic Büchi automata

recognize limit languages (i.e. languages of the form L̂ for some regular language L). We next
show that if h is any homomorphism from Σ∗ to a finite monoid M and e is an idempotent
in M then (h−1(e))ω is a limit language.

Let Xe denote h−1(e) and let Pe denote the prefix minimal words in Xe (i.e. Pe = {x ∈
Xe | y < x implies y 6∈ Xe}. Let σ ∈ Xω

e . Then, σ = x1x2 . . . with each xi ∈ Xe. For each i
there is a pi ∈ Pe with pi ≤ xi. Thus, there are infinite many prefixes of the word σ, namely

x1p2, x1x2p3, . . . , x1x2 . . . xipi+1, . . ., in Xe.Pe. Thus Xω
e ⊆ X̂ePe. The following lemma

establishes the converse.

Lemma 5 Let h be a homomorphism from Σ∗ to a finite monoid M and let e be an idem-

potent and let Xe and Pe be as defined above. Then, X̂e.Pe = Xω
e .
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Proof: The discussion above established that Xω
e ⊆ X̂e.Pe. Let σ ∈ X̂e.Pe. Then, there are

infinitely many xis in Xe and pis in Pe such that x1p1 < x2p2 < . . . xipi . . . < σ. Suppose the
lengths of these xis were bounded. Then for some i < j, xi = xj and this in turn means that
xipi < xipj contradicting the requirement that pj has no prefixes in Xe. Thus, without loss
of generality we may assume that xipi < xi+1. Let us define v1, v2, . . . as words such that
xivi = xi+1. Note that pi < vi.

x1 p1

x2 p2

x3 p3

v1

v2

Thus, σ = x1v1v2v3 . . .. Now, we use the fact that x1, v1, v2, . . . are elements of the monoid Σ∗

and Theorem 2 to conclude the existence of s and f in M such that x1v1v2 . . . can be factored
as h−1(s).h−1(f)ω with f.f = f and s.f = s. Since we treat x1, v1, v2, . . . as elements of the
monoid Σ∗ the factoring respects these word boundries. That is, there is a factorization
where h−1(s) looks like x1v1 . . . vi and vi+1 . . . vj is in h−1(f) for some j > i and so on. Then,
h(x1v1 . . . vi) = h(xi+1) = e. Thus s = e.

From the factoring, we have that vi+1 . . . vj ∈ h−1(f) and since pi+1 < vi+1 there must be
a g = h(vi+1 . . . vj/pi+1) (where x/y is z if x = yz) with eg = f .

Here is a cute fact about idempotents. If e and f are idempotents and eg = f then
ef = f . In proof note that ef = eeg = eg = f . Thus, ef = f . But recall that s.f = s and
s = e and thus e.f = e. Thus e = f we have actually factored σ = x1v1v2 . . . as (h

−1(e))ω

and thus σ ∈ Xω
e .

Now, putting together Theorem 4 and Lemma 5 we have the following characterization
of ω-regular languages.

Theorem 6 A language L is ω-regular if and only if there is a finite set I and regular
languages Ui, Vi, for each i ∈ I, such that

L =
⋃

i∈I

Ui.V̂i

Actually, there is a monoid M and a homomorphism h to M and a a linked pair (si, ei) for
each i such that Ui is recognized via si and Vi via ei. Note, that there is no hope of replacing
UiV̂i by some Ŵi (Why? Use the fact that limit languages are closed under union).
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Notes: The most widely used introductary article on ω-automata is [7]. Another good
introduction to this topic is found in [6]. Our presentation has drawn from [7] and [8].
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