
Lecture 6a: Alternating Automata: Direct arguments and a different
formulation

Given an NFA A = (Q,Σ, δ, s, F ) and word w = a1a2 . . . an, we can characterize when
A accepts the word w as follows : Construct a tree of height n + 1. The root of the tree is
labelled by s. If a node at level i, 1 ≤ i ≤ n, is labelled by a state q and δ(q, ai) = X then it
has |X| children labelled by the elements of X. Now treat each internal node in this tree as
the logical ∨ operator to obtain a propositional formula over the set of propositions Q. This
formula evaluates to true on a valuation that assigns true to the elements of F (and false to
all other states) iff the word w is accepted. We shall write X to stand for the function σX

which assigns true to each element of X and false to elements of Q \X.
Formally, for each state q and each word w ∈ Σ∗ we define a formula F(q, w) as follows:

1. F(q, ǫ) = q

2. F(q, aw) =
∨

p∈δ(q,a) F(p, w)

Then, we have the following proposition which is easy to prove by induction on the length
of the word w.

Proposition 1 There is an accepting run from the state q on the input w iff F |= F(q, w).

It is easy to generalize this idea to alternating automata. We construct the tree exactly
as above, but in turning it into a formula, we replace each state in an internal node by ∨ if
it belongs to Q∃ and by ∧ if it belongs to Q∀. Consider the following alternating automaton
from Lecture 6.
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The tree and the formula corresponding to this automaton’s behaviour on the input word
babaa are given below. As you can verify, the formula is not satisfied by a valuation that
assigns true to s and q0 and false to the other states confirming that this word is not accepted
by this automaton.
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This translation of acceptance to satisfiability of formulas an be formalised as follows:
For each state q and each word w ∈ Σ∗ we define a formula F(q, w) as follows:

1. F(q, a) = q

2. F(q, aw) =
∨

p∈δ(q,a) F(p, w) if q ∈ Q∃

3. F(q, aw) =
∧

p∈δ(q,a) F(p, w) if q ∈ Q∀

The following proposition follows from an easy induction on the length of the word w.

Proposition 2 Let A be an alternating automaton and let w be a word over its alphabet.
There is an accepting run from the state q on the input w iff F |= F(q, w).

One consequence of this characterization is the complementation construction for the
alternating automata. Let Fd(q, w) be the dual formula obtained by replacing every ∨ by a
∧ and vice versa. Then,

A rejects w ⇐⇒ F 6|= F(s, w) By Proposition above
⇐⇒ F |= ¬F(s, w) Definition of |=
⇐⇒ F |= Fd(s, w)[q 7→ ¬q] DeMorgan’s Laws
⇐⇒ (Q \ F ) |= Fd(s, w)

Using Fd(s, w) for F(s, w) corresponds to interchanging the sets Q∃ and Q∀ and using
Q \ F in place of F corresponds to switching the accepting and non-accepting states. This
gives the following theorem

Theorem 3 Let A = (Q∃, Q∀,Σ, δ, s, F ) be an alternating automaton. Then, the automaton
A = (P∃ = Q∀, P∀ = Q∃,Σ, δ, s, Q \ F ) accepts the complement of the language accepted by
A.

A better formulation of Alternating Automata

The translation of transitions to boolean functions ∧ and ∨ above, suggests an obvious
generalization to the definition of alternating automata, one that allows not just ∧ and
∨ in the definition of transitions but any expression involving these operators (and hence
eliminating the distinction between Q∃ and Q∀).

We now define an alternating automaton to be a tuple (Q,Σ, δ, s, F ) where δ : Q ×
Σ → B+(Q), where B+(Q) is the set of positive boolean formulas over Q i.e. expressions
constructed from Q using the operators ∧ and ∨.

A run of an automaton of this form is the natural generalization of the run defined earlier.
A run starting at state q on the word ǫ is just the tree with the single node labelled q. On
a word a1a2 . . . an it is a tree with n+ 1 levels where the root is labelled by q. Further, if a
node at level i, 1 ≤ i ≤ n, is labelled by a state p and X is the set of labels of its children
then X |= δ(q, ai). The run is accepting if all the leaves are labelled by elements of F . A
word is accepted if there is an accepting run on that word starting at the state s.
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Next, we show that acceptance can be reduced to the truth of a propositional formula for
this model as well. For each state q in the automaton A = (Q,Σ, δ, s, F ) and word w ∈ Σ∗

we define a formula FA(q, a) as follows (where we omit the A):

1. F(q, ǫ) = q

2. F(q, aw) = δ(q, a)[p 7→ F(p, w) | p ∈ Q]

where δ(q, a)[p 7→ F(p, w) | p ∈ Q] stands for the formula obtained by replacing the
proposition p by F(p, w), for each state p, in the formula δ(q, a). We can prove that

Proposition 4 A has an accepting run starting at state q on the word w iff F |= F(q, w).

Proof: The proof proceeds by induction on the length of w. If w = ǫ then w is accepted iff
q ∈ F iff F |= q and F(q, ǫ) = q.

Suppose, A accepts aw. Then there is a set X ⊆ Q, such that X |= δ(q, a) and for each
p ∈ X, there is an accepting on the word w (by the definition of accepting runs). By the
induction hypothesis, for each p ∈ X, F |= F(p, w). But then

F |= F(q, aw) ⇐⇒ F |= δ(q, a)[p 7→ F(p, w) | p ∈ Q] by definition of F(q, aw)
⇐⇒ {p | F |= F(p, w)} |= δ(q, a) Definition of |=
if X |= δ(q, a) X ⊆ {p | F |= F(p, w)}, monotonicity

Thus F |= F(q, aw). The converse is as easy and the reasoning is almost identical

F |= F(q, aw) ⇐⇒ F |= δ(q, a)[p 7→ F(p, w) | p ∈ Q] by definition of F(q, aw)
⇐⇒ {p | F |= F(p, w)} |= δ(q, a) Definition of |=

By induction hypothesis, there are accepting runs on w for each p such that F |= F(p, w).
The accepting run on aw is constructed by taking the set {p | F |= F(p, w)} as the set of
children of the root labelled q (which satisfies δ(q, a) by above) and then following the
accepting runs available from the induction hypothesis.

Let αd denote the dual of α for any positive boolean expression α ∈ B+(Q), obtained by
interchanging the ∧ and ∨ operators. Then, the following Lemma is an easy consequence of
the proposition above.

Lemma 5 Let A = (Q,Σ, δ, s, F ) be an alternating automaton. Then, A = (Q,Σ, δd, s, Q \
F ) where δd(q, a) = (δ(q, a))d accepts the complement of the language accepted by A.

Proof: First observe that FAd

(q, w) = (FA(q, w))d. Thus,

A rejects w ⇐⇒ F 6|= FA(s, w) By Proposition above
⇐⇒ F |= ¬FA(s, w) definition of |=
⇐⇒ F |= (FA(s, w))d[q 7→ ¬q] DeMorgan’s Laws

⇐⇒ (Q \ F ) |= FAd

(s, w) Observation above
⇐⇒ A accepts w
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Further, for this version of alternating automata, closure under other boolean operations
is also easy.

Lemma 6 Let A1 = (Q1,Σ, δ1, s1, F1) and A2 = (Q2,Σ, δ2, s2, F2) be alternating automata
accepting the languages L1 and L2. Then, B∪ = (Q1∪Q2∪{s},Σ, δ∪, s, F1∪F2) with δ∪ = δ1∪
δ2∪[(s, a) 7→ δ(s1, a)∨δ(s2, a)] accepts L1∪L2. Further, B∩ = (Q1∪Q2∪{s},Σ, δ∩, s, F1∪F2)
with δ∩ = δ1 ∪ δ2 ∪ [(s, a) 7→ δ(s1, a) ∧ δ(s2, a)] accepts L1 ∩ L2.

The proof of this lemma is left as an easy exercise. For the formulation of alternating
automata in Lecture 6, it is not easy to carry out these constructions (For L1 ∪ L2, how do
we deal with the case when s1 or s2 or both are ∀ states?).

Converting this version of alternating automata to nondeterministic automata is easy
and we leave the proof of the following lemma as an exercise as well.

Lemma 7 Let A = (Q,Σ, δ, s, F ) be an alternating automaton. Then the nondeterministic
automaton (2Q,Σ, δn, {s}, 2

F ) with δn(X, a) = {Y |Y |= δ(q, a), q ∈ X} accepts the same
language as A.

Connection to Games

In the game graph construction in Lecture 6, we had one copy of each state in each of the n+1
levels (where the word under consideration is a1a2 . . . an). State q at level i is connected to
the states from δ(q, ai) at level i+1. Any node labelled by q ∈ Q∀, belongs to the pathfinder
and captures the fact that all successors should have accepting runs on ai+1 . . . an while a
node labelled by a q ∈ Q∃ belongs to the automaton is required to pick one successor with
an accepting run on ai+1 . . . an.

In the new setting, δ(q, ai) is a formula and the game has to capture the fact that for
some set X satisfying δ(q, ai) every state in X accepts ai+1 . . . an. One way to do this as a
game is the following: Have 2n + 1 levels where each of the levels 1, 3, . . . , 2n + 1 consist
of a copy each of Q while the levels 2, 4, . . . , 2n consist of copies of 2Q. The nodes in the
odd levels belong to the automaton while those in the even numbered levels belong to the
pathfinder. The edges from level 2i + 1 to 2i + 2 connect a node labelled q with a node
labelled X if and only if X |= δ(q, ai) and an edge from level 2i to 2i + 1 connects a node
labelled X to a node labelled q iff q ∈ X. Thus, on each letter ai, the automaton proposes
an X such that X |= δ(q, ai) as the next move on the accepting run and the pathfinder may
choose to challenge this by picking any suspect state from this set.

It is quite easy to prove that these games are determined and further that the existence
of winning strategies for the automaton in the game defined by the word w is equivalent to
acceptance of the word w. We leave this as an exercise.

However, this game suffers from two deficiencies — firstly, the size of the game graph
depends exponentially on the number of states Q and secondly, the role of the two players is
not symmetric and hence it is not clear how to translate the existence of winning strategies
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for the pathfinder into an alternating automaton accepting the complement. The former is
not such a serious problem (since the game graph is only used as a tool in the proofs) but
the latter is a more serious irritation.

We now provide an alternative game, one that is more natural in this setting and does
not suffer from either of these deficiencies. It is based on the following simple idea. Instead
of picking the set X and then an element q in X in just two moves, we arrange for more
elaborate game on the graph defined by the formula δ(q, a) to achieve the same effect.

Let α be a positive boolean formula over Q. We define a game graph associated with α,
Gα, by induction on α. This graph is acyclic and constructed by taking the expression tree
of the formula α and identifying all leaves labelled by same states (so that there is at most
one leaf per state in Q). For the same of uniformity we also assume that there is one leaf
labelled by q for each q in Q. All the leaves as well as nodes labelled by ∨ belong to the
automaton while all the nodes labelled by ∧ belong to the pathfinder. The following figure
describes the game graph for the formula q ∧ ((p ∨ q) ∧ s) over Q = {p, q, r, s}.
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The starting position of the game is the root of the expression tree (the left most ∧ node
in the above figure). Here is an useful fact:

Proposition 8 Let Gα be the game graph as described above. Then, X |= α iff the automa-
ton has a (positional) strategy to ensure that the game ends in a state in X and X 6|= α iff
the pathfinder has a (positional) strategy to ensure that the game ends in a state in Q \X.

Proof: The proof as usual is by induction on the size of α.
Suppose X |= α. If α = q then the result holds by definition.
If α = α1 ∨ α2 then w.l.o.g. we may assume that X |= α1. Then, at the root of α, the

automaton moves to the root of α1 and then follows the winning strategy on Gα1
, available

by induction hypothesis, from there on to win this game.
If α = α1 ∧ α2 then if the pathfinder moves to the root of αi then the automaton follows

the w.s. for αi for i ∈ {1, 2}. Thus, the automaton can always force the game into a state
in X.

Conversely, suppose the automaton has a strategy to force the game into X on the game
Gα. If α = q then q ∈ X then by definition X |= q.

If α = α1 ∨ α2. If the strategy for the automaton picks αi then by defn. of winning
strategy, the automaton also has a winning strategy on the game on Gαi

and hence X |= αi

and hence X |= α.
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If α = α1 ∧ α2. Since the pathfinder may move the game to root of either of the games
Gα1

or Gα2
it follows that the automaton has a winning strategy in both of these games and

hence X |= α1 and X |= α2 and thus X |= α1 ∧ α2.
We leave the corresponding result for pathfinder winning strategies as an exercise to the

interested reader.

As a consequence of the above proposition, we can replace the two move subgame defined
by the transition δ(q, a) (automaton picks X satisfying α and then pathfinder picks an
element of X) by an entire subgame played on Gδ(q,a) to achieve the same effect but with a
clean symmetry between the two players.

We now define the game graph GA,w for an alternating automaton A and word w by
induction on the length of w. By construction each such graph has |w| + 1 copies of the
states from Q, organized as |w| + 1 layers (in addition to other nodes) and from a node in
layer i only nodes in higher layers are reachable in this graph. Further, the nodes in the 1st
layer have no incoming edges and the nodes in the last layer have no outgoing edges.

1. if w is ǫ then the game graph consists of one node each for the states in Q, all of which
belong to the player automaton

2. The graph GA,aw is constructed from GA,w as follows: Take a new copy of the states
of Q. For each state q in this copy, add a copy of the game graph Gδ(q,a) and add an
edge from q to the root of δ(q, a). Identify the nodes labelled q in the leaves of the
games graphs Gδ(q,a) with each other as well as the corresonding state in the 1st layer
of GA,w.

The winning set in the game is the set of states in F in layer |w|+ 1. We illustrate this
definition with an example here.

Let A = ({s, p, q}, a, b, δ, s, q) be the automaton where the transition function is given by
the following table:

a b

s s ∧ (s ∨ q) s

p q s ∧ q

q q ∨ s s ∨ p

The following figure describes the game graph GA,aba. The parts added to GA,ba to obtain
GA,aba are in green.
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Observation: We observe that the internal nodes in this game labelled with states from
Q have only one out going edge and hence it makes no difference as to whether these states
belong to the automaton or the pathfinder.

The following theorem states that the winner of the game on GA,w determines whether
w is accepted or not.

Lemma 9 Let A = (Q,Σ, δ, s, F ) be an alternating automaton and let w ∈ Σ∗. If the
automaton has a winning strategy from the level 1 state labelled q in the game GA,w then
there is an accepting run on w starting in state q.

Proof: The proof is by induction on the length of w and the case when w = ǫ is trivial.
For the inductive case, suppose the automaton has a winning strategy in the game GA,aw

from q. Let X be the set of nodes in the second level of nodes labelled by Q that is reachable
starting at q in this game while the automaton is playing this winning strategy. Then, by
definition of winning strategy, the automaton has a winning strategy from each of these
nodes. But these are the level 1 nodes in the game GA,w and by induction hypothesis, for
each of these states p ∈ X, the automaton has an accepting run on w starting at state p.
Also, X |= δ(q, a) (by Proposition 8 above). Thus there is an accepting run from q on aw.

Lemma 10 Let A = (Q,Σ, δ, s, F ) be an alternating automaton and let w ∈ Σ∗. Let W be
the set of states from which A has an accepting run on the word w. The automaton has a
postional strategy in the game GA,w that wins from every position at level 1 that is labelled
by a state from W .

A remark is in order before we present the proof. The statment of the lemma is stronger
than required in that it claims that a single winning strategy works for all the states q from
where there is an accepting run. This is needed because in the inductive step, the automaton
can only force the game to reach one of a good set of states X on the first letter, from each of
which this is accepting run/winning strategy. If different states in X have different winning
strategies then we need to combine the these into a single strategy, something that can be
avoided with this stronger induction hypothesis.
Proof: The proof is by induction on the length of w and the case of w = ǫ is trivial.

Suppose the set of states from where the automaton has an accepting run on aw is W .
Pick an accepting run starting at each q ∈ W and let Xq be the set of states labelling the
children of q in these accepting runs and let X =

⋃
q∈W Xq. Clearly, there is an accepting

run on w from each state in X. Thus, by the induction hypothesis there is a strategy for the
automaton in the game GA,w that wins from all the positions in X (and perhaps more).

In GA,aw the automaton simply has to play so that when it enters the part of the game
graph coming from GA,w it does so in one of the states in X.

Let q ∈ W . In the game graph Gδ(q,a), since the automaton plays the positional strategy
that will guarantee that the play ends (i.e. enters the game GA,w) in a state in Xq. Such a
positional strategy exists by Proposition 8. The game graph GA,aw decomposes into disjoint
parts contributed by Gδ(q,a) for each q ∈ Q, followed by the game graph GA,w. Thus,
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the positional strategies for each Gδ(q,a), q ∈ W that guarantees that the game ends in Xq

combined with the strategy for GA,w that wins from all the positions in X works as a winning
strategy for the automaton in GA,aw.

Theorem 11 Let A = (Q,Σ, δ, s, F ) be an alternating automaton and let w ∈ Σ∗. The game
GA,w is determined with the winner having positional strategies. Further, the automaton has
a winning strategy from a level 1 node labelled q iff there is an accepting run starting at
q (and the pathfinder has a winning strategy from a level 1 node labelled q iff there is no
accepting run starting at state q.)

Proof: The positional determinacy is proved exactly as for the similar game described in
Lecture 6 and the details are left as an exercise. The rest is a consequence of the two lemmas
10 and 9.

We can use this result to give an alternate proof of the complementation construction.
Observe that the game graph GA,w and GA,w are duals of each other (i.e. one is obtained
from the other by just interchanging the ownership of nodes between the two players, hence
interchanging their roles). Well, almost, but not entirely. This is because the internal nodes
labelled by states from Q are automaton owned in both games. But, as observed earlier, this
is irrelevant as those nodes have a single outgoing edge. Thus, the automaton cannot win
the game GA,w iff the pathfinder has a winning strategy in the game GA,w to force the game
to end in a state in Q \ F , which by the duality is possible if and only if the automaton has
a winning strategy in the game GA,w to force the game in Q \ F . Thus L(A) = L(A).
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