Bounded Synchronization lodes and aperiodic Languages

We descale yet another characterization of the class of aperiodic languages. This is also due to M.P. Schutzenberger.
our presentation is based on the proofs of this result by V. Diekout \& M. Kufleitner and uses the local monacid idea seen carla in shooing NTh is expresonely complete. The references for the original papers are:
V. Diekert, M. Kufleitner: A survey on the local divisor technique. Theoretical Computer Science Volume 610 Part A. Pages 13-23.
V. Diekert, M. Kufleitner: Omega-Rational Expressions with Bounded Synchronization Delay. Theory of Computing Systems Volume 56. Pages 686-696.

Both papers are available via Manfred knfleitner's horme page.

Let Σ be an alphabet. A prefix code P owe Σ is a language \rightarrow if $x, y \in P$ then
x is ret a prefix of y.
ned delay d if it
A prefix code is of bounded, delay d if it satisfies the following property:
$\forall u v \omega \in P^{*}$
if $v \in P^{d}$ then $u v \in P^{*}$.
Remark: Given a word $\omega \in P^{*}$
There is a unique decompression of ω as

$$
w=w_{1} w_{2} w_{3}, w_{n}, \quad w_{i} \in P .
$$

- So in a bound delay code, if we can find a sequence of d code words then The prefix seen so for is a segnence of codewords \& by the uniquansdecompositions, what is left is the voled parse of the rest of the message.
"san resunchoonige after loatuy at only d coo words"
usually codes are bounded birth and sa the delay leapt is bounded.
Exercise: Give an example of a pref x code that in not

Schilzenterger alow showed that one may drop complementation form star -free regular eapsceroins and replace it arch kleene.810r of bounded delay prefer codes. "Synchronization Delay"
Defn: SD (A):

$$
\begin{array}{rll}
\phi,\{a\} & \in S D(A) & a \in A \\
L_{1} \cup L_{2} & \in S D(A) & L_{1}, L_{2} \in S D(A) \\
L_{1} \cdot L_{2} \in S D(A) & L_{1}, L_{2} \in S D(A) \\
L^{*} \in S D(A), & L \in S D(A) \\
& & \\
& & \\
& & \text { of a pounded cole delay }
\end{array}
$$

over z
Theorem: Every aperiodic language, is in $S D(\Sigma)$.
Proof: By ind! on the size of the nonowid and size of alphabet.

Basis:

- size of omonoid is 1 :

$$
L=2^{*} \text { or } \varnothing
$$

clearly both are m SD(Σ)

- Size of alphabet is 1:

$$
\begin{aligned}
L & =\left\{a^{i_{1}}, a^{i_{2}} \cdot a^{i_{t}}\right\} \cup\left\{a^{i} \mid i \geqslant N\right\} \\
& =\left\{a^{i_{1}} \ldots a^{i_{k}}\right\} \cup a^{N} \cdot a^{*}
\end{aligned}
$$

clearly L is in $S D(\{a\})$.
Induction: Let $\overline{=}=A \cup\{c\}$.

$$
\begin{aligned}
& L=h^{-1}(x) \quad h: \Sigma^{*} \rightarrow \begin{array}{c}
(M, \cdot, 1) \\
\text { aperiodic }
\end{array} \\
& L=L_{0} \cup L_{1} \cup L_{2} \\
& L_{0}=L \cap A^{*} \\
& L_{1}=L \cap A^{*} \subset A^{*} \\
& L_{2}=L \cap A^{*} \subset A^{*} \subset \Sigma^{*}
\end{aligned}
$$

- L_{0} is recognized via h, x but is aver a smaller alphabet and hence $L_{0} \in S D(A)$.
Then as it is $k_{0} \in S D(\Sigma)$ too
$\left[S_{\text {is easy to }}^{S D}(A) \subseteq S D(B)\right.$ abenevel $\left.A \subseteq B\right]$ is easy to check from dine deft.
- $L_{1}=\bigcup_{\substack{\alpha, \beta \\ \alpha h(c) \beta \in M}}\left(h^{-1}(\alpha) \cap A^{*}\right) \cdot C \cdot\left(h^{-1}(\beta) \cap A^{*}\right)$

$$
h^{-1}(\alpha) \cap A^{*}, h^{-1}(\beta) \cap A^{*} \text { are in } S D(A)
$$

and hence in $S D(\Sigma)$.
$\{c\}$ is in $S D(\Sigma)$.
So $L_{1} \in S D(\Sigma)$

- $L_{2}=\bigcup_{\substack{\alpha, \beta, \gamma \\ \alpha \beta \gamma \in x}}\left(h^{-1}(\alpha) \cap A^{*}\right) \cdot\left(h^{-1}(\beta) \cap c \Delta\right)$.

Where $A=\left(A^{*} c\right)^{*}$
Clearly $h^{-1}(\alpha) \cap A^{*}, h^{-1}(\gamma) \cap A^{*}$ are in $S D(\Sigma)$ vern arguments as above.
What about $h^{+}(\beta) \cap c \Delta$:
The wilke trick adapted to the language of monoids by Dietert/carsin.

Let $g: \Delta \rightarrow M_{\sim}^{*}$ treat as apphabel

$$
g\left(x_{1} c x_{2} c \ldots x_{k} c\right)=\alpha\left(x_{1}\right) \alpha\left(x_{2} \ldots h\left(x_{r}\right)\right.
$$

as a word

Let $K_{\beta} \subseteq M^{*}$ be defied as follows

$$
\left\{m_{1} m_{2} \ldots m_{k} \mid h(i) m_{1} h(c) m_{2} \ldots m_{k} h(c)=\beta\right\}
$$

clearly,

$$
\vec{h}(\beta) \cap c \Delta=c \cdot g^{-1}\left(k_{\beta}\right)
$$

claim: $g^{-1}(k)$ is in $S D(\Sigma)$ whenever K is in $S D(M)$. (For any K)
Proof: By indy. on the expression for

- $g^{-1}(\phi)=\phi$
- $g^{-1}(\{m\})=\left(h^{-1}(m) \cap A^{*}\right) \cdot C$ $\in S D\left(2^{*}\right)$
- $g^{-1}\left(L_{1} \cup L_{2}\right)=g^{-1}\left(L_{1}\right) \cup g^{-1}\left(L_{2}\right)$
- $g^{-1}\left(L_{1} \cdot L_{2}\right)=g^{-1}\left(L_{1}\right) \cdot g^{-1}\left(L_{2}\right)$
- $g^{-1}\binom{L^{*}}{\tau}=\left(g_{\uparrow}^{-1}(L)\right)^{*}$
a prepencode of bounded delay

Suffices to show This la pponcye is a
prefix code of burgled delays

Let L be a prefire coo win delay d. Consider $g^{-1}(L)$.
(1) Suppose $u \in g^{-1}(L), u v \in g^{-1}(L)$.

$$
\begin{aligned}
& u=x_{1} c x_{2} c \ldots x_{k} c \in g^{-1}(L) \\
& u v=x_{1} c x_{2} c \ldots x_{r} c y_{1} c y_{2} c \ldots y_{m} c \in g^{-1}(L) \\
& \therefore \quad h\left(x_{1}\right) h\left(x_{2}\right) \ldots h\left(x_{k}\right) \in L \\
& \Rightarrow \quad h\left(x_{1}\right) h\left(x_{2}\right) \ldots h\left(x_{k}\right) h\left(y_{1}\right) \ldots h\left(y_{m}\right) \in L \\
& \Rightarrow \quad h\left(y_{1}\right) \ldots h\left(y_{m}\right)=\varepsilon\left(\begin{array}{c}
00 \\
0 \\
\Rightarrow \quad \text { is a pred x } \\
\Rightarrow \quad \\
\quad m=0 \quad(\text { remember, if } \\
\quad \\
\quad h(\varepsilon)=1
\end{array} \quad\right.
\end{aligned}
$$

Thus, $v=\varepsilon$ and so $g^{-1}(L)$ is a prefix Code.
(2) Suppose $u v \omega \in\left(g^{-1}(L)\right)^{*}, v \in\left(g^{-1}(L)\right)^{d+1}$ (where d is the delay of the prefix code L. The reason for the +1 will be explained below)

$g(u \vee \omega)$ may not factor as $g(u) g(v) g(v)$.

By adding 1, we $\frac{\text { may }}{\text { omit }}$ the segment upi the first and apply g "homomorphically" \& still get into L^{d} as needed.

$$
g\left(u u^{\prime} v^{\prime} w\right)=g\left(u u^{\prime}\right) \cdot g\left(v^{\prime}\right) \cdot g(w) \in L^{*}
$$

But $g\left(v^{\prime}\right) \in L^{d}$

$$
\begin{aligned}
\therefore & g\left(u u^{\prime}\right) g\left(v^{\prime}\right) \in L^{*} \\
\Rightarrow & g\left(u u^{\prime} v^{\prime}\right) \in L^{*} \\
& =g(u v) \in L^{*} \\
\therefore & u v \in\left(g^{-1}(L)\right)^{*}\left(=g^{-1}\left(c^{*}\right)\right)
\end{aligned}
$$

Thus $g^{-1}(k)$ is in $S D(\Sigma)$ whenever $k \in S(M)$.

Thus to Complete the proem, it suffices to show that K_{β} is in $S D(M)$. Here we we the "localization" Construction.

Localization: Let $(M, 1)$ be a monoid. Then $\left(c M \cap M_{c}, 0, c\right)$ is a monoid, know as M localized at c, where

$$
\log _{c}(M) \quad x<\circ c y \triangleq x \leqslant y
$$

claim: - is well.defined on $C M \cap M C, \varepsilon$ LO (M) is a monord.

Proof: (1):

$$
\because \quad x c=c x^{\prime}
$$

and $c y=y^{\prime} c$
$x c y$ is also in $C M \cap M_{C}$
(2)

$$
\begin{aligned}
x \subset \circ y c & =x c_{0} c y^{\prime} \\
& =x \subset y^{\prime} \\
& =(x y) c
\end{aligned}
$$

Thus 0 is an associative operation wT c as identing.

Clam: $\operatorname{LOC}_{C}(M)$ derides M.
Proof. Let $M_{c}=\{m \mid m c \in c M\}$

- M_{C} is a submoina of M.
clearly $1 \in M_{c}$

Also, if $\quad x c=c y$

$$
x^{\prime} c=c y^{\prime}
$$

Then $x x^{\prime} c=x c y^{\prime}=c y y^{\prime}$
so $x x^{\prime} \in M_{c}$.

$$
h: M_{c} \rightarrow \operatorname{LOC}_{c}(M)
$$

$x \longmapsto x c$ is a morphism.
Pol:

$$
\begin{aligned}
1 \xrightarrow{h} & c \\
x y \stackrel{h}{\longmapsto} & x y c \\
& =x c y^{\prime}, \text { where } y c=c y^{\prime} \\
& =(x c)_{0}\left(c y^{\prime}\right) \\
& =(x c) \circ(y c) \\
& =h(x) \cdot h(y)
\end{aligned}
$$

h is surjective.
Let $m \in c M \cap M_{c}$

$$
\begin{aligned}
& m=c x=y c \\
\therefore \quad & y \in M_{c} \text { and } \quad h(y)=m .
\end{aligned}
$$

Thus $\operatorname{LoC}_{C}(M)$ derides M.
observaten:
(1) $1 \in \operatorname{LOC}_{C}(M)$ iff $C=1$
when M is aperiodic
(2) If e is an idempotent Then $L O C_{e}(M)$ is a submonoid of M.

Proof:
(1)

$$
\begin{aligned}
& \left.1 \in L_{C} C M\right) \\
& \Rightarrow 1 \in C M \cap M_{C} \\
& \Rightarrow 1 \in C M \\
& \Rightarrow 1=C x
\end{aligned}
$$

If M is aperiods $c=x=1$.
(2)

$$
\begin{aligned}
& x \in 0 \quad 0 y=x e y \\
& x e \cdot y=x e y
\end{aligned}
$$

Thus LOC. (M) aperidic and a Strotly Smaller denser of M whenever M is aperiodic and $C \neq 1$. This allows as to estribush orer desined result $V_{\text {a }}$ induccton of the sye of the montid.

Lemina: K_{β} is recognized by $L O C_{h(c)}(M)$.
Proof: Let

$$
\begin{aligned}
& \sigma: M^{*} \rightarrow L O C_{h(c)}(M) \\
& \sigma(m)=h(c) m h(c)
\end{aligned}
$$

Then

$$
\begin{aligned}
\sigma^{-1}(\beta) & \left.=\underset{h(c) m_{1} h(c) m_{2} \ldots h(c)=\beta}{\left\{m_{1} m_{2} \ldots m_{n} \mid\right.}\right\} \\
& =K_{\beta} .
\end{aligned}
$$

What if $\beta=1$?
Then, $h^{-1}(\beta)=B^{*}$ for Some B.

$$
\therefore B^{*} \cap \Delta=\varnothing \text { if } c \notin B
$$ which is in $S D(\Sigma)$

(a) $B^{*} \cap \Delta=B^{*} C$ if $C \in B$
which is in $S D(Z)$ as ω od
OTherwise $L O C_{h(c)}(M)$ is a Imalla monad and $\&$

$$
h^{-1}(\beta) \cap \Delta=g^{-1}\left(k_{\beta}\right)
$$

But k_{p} is recognized by a smaller aperiodic montid $\&$ b $k \beta \in S D(M)$. We already slowed Dat for any $K \in S D(M)$, $g^{-1}(k) \in S D(z)$ and This Completes the proof

The converse is abs true.
Lemma: Let $L \in S D(z)$. Then L is an aperiodic language.
Proof. $\varnothing,\{a\}$ are aperiodic.
Aperiodic languages are closed under U, concat. Let $L \in S D(\Sigma)$ be a prefice code of delay d, and let L be aperiodic.
Then, $J_{n}, x y^{n} z \in L$ iff $x y^{n+1} z \in L$ $\forall x, y, z$.
We show that there is $m \rightarrow x y^{m} z \in L^{*}$ If $x y^{m+1} z \in L^{*}, \forall x, y, z$.

First we show \Rightarrow :
Let

$$
x y^{m} z=v_{1} \omega_{2} \ldots v_{k}
$$

We shall ovine at the appropriate value for m by considerery two lases.

Case 1: Suppose one of the 0_{i}^{\prime} 's includes n full copies of y.

$$
\begin{gathered}
\therefore v_{i}=x^{\prime} y^{n} z^{\prime} \in L \\
\Rightarrow v_{i}^{\prime}=x^{\prime} y^{n+1} z^{\prime} \in L \\
\Rightarrow \quad v_{1} v_{2} \ldots v_{i-1} v_{i}^{\prime} v_{i+1} \ldots v_{k}=x y^{m+1} z \in L^{*}
\end{gathered}
$$

Case 2: Suppose all Q_{i} 's contain atomost $n-1$ full copies of φ.

Let $v_{i} v_{i+1} \ldots v_{i+b-1}$ be any segment of lenph b.
Then, $b(n-1)+b+1$ is an upper bound on the number of y's with any overlap with this segment. (at most. n-1 contained entirely and Each boundary may divide a y.)
in each

Consider the smallest segment $v_{i}, v_{i+1} \cdots v_{i+b-1}$ That fillyontaons the first l y's in $x y^{m} z$.

Also $v_{i+1} \ldots v_{i+b-2}$ is entirely contained with in the gl . (ie) $b-2$ of them).

$$
\begin{array}{cc}
b(n-1)+b \geqslant l & {\left[\begin{array}{c}
\text { The left toemedoy } \\
\text { does not select } \\
\text { any y' so ne } \\
\text { drop ne }+1
\end{array}\right]} \\
b n \geqslant l & \\
b \geqslant l / n &
\end{array}
$$

Picking $\quad l \geqslant(d+2) \cdot n$

$$
b \geqslant \frac{(d+2) n}{r}=d+2
$$

So at least d oi's are Contained entirely in the first y^{l} when $l \geqslant n(d+2)$.
Thus talion $m \geq n(d+2)+1$

$$
x y^{m} z=x y^{n(d+2)} \cdot y z
$$

and applying the above argument to no frost $m-1$ y's.

$$
x y^{m} y z=x x_{1}^{\prime} u_{2}^{\prime} u_{3} y z
$$

By the atone, $u_{2} \in L^{r}$ for $r>d$. So we may rewrite thus as

$$
x y^{m} y z=x u_{1} u_{2} u_{3} y z
$$

with $r_{2} \in L^{d}$.
Applying the bounded s delay requirement

$$
\begin{equation*}
x u_{1} u_{2} \in L^{*}, \quad u_{3} y z \in L^{*} . \tag{1}
\end{equation*}
$$

Also, since $u_{1} u_{2} u_{3} y=y u_{1} \varphi_{2} u_{3}$ we have

$$
x y u_{1} u_{2} \in L^{*}, \quad u_{3} z \in L^{*}
$$

Combing the left poet of (2) \& right port of (1) we get

$$
\begin{aligned}
& x y u_{1} u_{2} u_{3} y z \in L^{*} \\
& \therefore \quad x y^{m+1} z \in L^{*}
\end{aligned}
$$

Combining tine two lases we see mat $x y^{m} z \in L^{*} \Rightarrow x y^{m+1} z \in L^{*}$ whenever $m \geqslant n(d+2)+1$.

Converse: we need to show hat for any sufficiently large $m, x y^{m+1} z \in L^{*} \Rightarrow x y_{z}^{m} \in L^{*}$. The argument above is essentially reversible.
Case 1: If any v_{i} contains y^{n+1} entirely

$$
\begin{aligned}
u_{i} & =x^{\prime} y^{n+1} z^{\prime} \\
\text { let } v_{i}^{\prime} & =x^{\prime} y^{n} z^{\prime}
\end{aligned}
$$

So $u_{1} \ldots v_{i-1} v_{i}^{\prime} v_{i+1} \ldots v_{k}=x y^{m-1} z \in L^{*}$

Case 2: Suppose each Q_{i} Contains at most n y 's in full. Then repeating the above Case 2, with

$$
m \geqslant(n+1)(d+1)+1
$$

we get

$$
x y^{m} y_{z}=x u_{1} u_{2} u_{3} y z
$$

with $r_{2} \in L^{d}$.
Applying the bounded s delay requirement

$$
\begin{equation*}
x u_{1} u_{2} \in L^{*}, \quad u_{3} y z \in L^{*} \tag{1}
\end{equation*}
$$

Also, bonce $u_{1} u_{2} u_{3} y=y u_{1} \varphi_{2} u_{3}$ we have

$$
x y u_{1} u_{2} \in L^{*}, \quad u_{3} z \in L^{*}
$$

Now coondong the lest g) (1) \& regent of (2) we get

$$
x u_{1} u_{2} u_{3} z \in L^{*}
$$

(ie) $x y^{m-1} z \in L^{*}$ as require.

Pickers an $m \geqslant(d+2)(n+1)+1$ means boo directions hold. Thus,

$$
x y^{m} z \in L^{*} \quad \text { Hf } \quad x y^{m+1} z \in L^{x}
$$

Thus every langnose in $S D(\Sigma)$ is aperiodic.

Having inflicted This some what painful Calculation on the reader, we now show how to avoid it altogether by a reduction from SD(Σ) to stor free expressions ones Σ

Lemma: Every language in SD(S) has a star. free expression over Σ.
Proof: By ind .n on The SD expression. $\{\varepsilon\},\{a\}, \varnothing$ are stal-free and stan-frae erporestions include t, it suffices to Prone the following claim.

Claim: Let P be a prefix code of bounded delay d that has a star-free expression. Then P^{*} has a star-free expression.
Proof: consider any word we $\overline{p^{*}}$. $\omega=u v$ where $u \in P^{*}$ and v contains no prefix in $P,|\theta| \geqslant 1$.
$\{v \mid v$ has no prefix in $P\}$

$$
=\overline{P \Sigma^{*}} .
$$

Thus

$$
\begin{align*}
\overline{P x} & =P^{*} \cdot \overline{P \Sigma^{x}} \\
& =P \overline{\Sigma^{x}} \cup P \cdot \overline{P \Sigma^{x}} \cup P^{2} \cdot \overline{P \Sigma^{x}} \cdot \cup P^{i} \cdot \overline{P \Sigma^{x}} \cup \cdots \tag{1}
\end{align*}
$$

Now:

$$
\begin{equation*}
p^{d+i} \overline{P \Sigma^{*}} \subseteq \Sigma^{*} p^{d} \overline{P \Sigma^{*}} \tag{2}
\end{equation*}
$$

Interestingly $\Sigma^{*} P^{d} \overline{P \Sigma^{*}} \subseteq \overline{P^{*}}$ Because $\omega \in P^{*}, \omega \in \Sigma^{*} P^{d} \overline{P \Sigma^{*}}$
means

$$
w=x y z \in p^{*}
$$

with $x \in \Sigma^{*}, y \in P^{d}, z \in \overline{P \Sigma^{*}}$
But by bounded Synch delay requirement

$$
x y \in p^{*}
$$

An by unique parsability of pref x codes,

$$
x y \in P^{*}, z \in \overline{P \Sigma^{x}}
$$

\Rightarrow may $\notin P^{*}$. A contradictor
Thus (3) holds.
Using (2), (3), we can recite (1) has

$$
\overline{P^{*}}=\overline{P \Sigma^{x}} \cup P P \overline{2^{*}} \ldots \cup P^{d} \overline{P 2^{*}} \cup \Sigma^{*} P^{d} \overline{P \Sigma^{x}}
$$

This completes The pros.

