
The Theory of Message Sequence Charts – II

K Narayan Kumar

Chennai Mathematical Institute
http://www.cmi.ac.in/~kumar

TIFR, Mumbai, 01 May, 2009

http://www.cmi.ac.in/~kumar


Summary

◮ MSCs describe runs or behaviours of message passing
systems.



Summary

◮ MSCs describe runs or behaviours of message passing
systems.

◮ MSGs, a visual formalism to describe languages of MSCs.



Summary

◮ MSCs describe runs or behaviours of message passing
systems.

◮ MSGs, a visual formalism to describe languages of MSCs.

◮ MSGs : regularity is not decidable, but boundedness is.



Summary

◮ MSCs describe runs or behaviours of message passing
systems.

◮ MSGs, a visual formalism to describe languages of MSCs.

◮ MSGs : regularity is not decidable, but boundedness is.

◮ MPAs : An operational model, distributed, ...



Summary

◮ MSCs describe runs or behaviours of message passing
systems.

◮ MSGs, a visual formalism to describe languages of MSCs.

◮ MSGs : regularity is not decidable, but boundedness is.

◮ MPAs : An operational model, distributed, ...

◮ Verifying implementability for MSGs is undecidable.



The Model-checking problem

◮ Positive Model-checking Given a specification language S and
an implementation L decide if L ⊆ S .



The Model-checking problem

◮ Positive Model-checking Given a specification language S and
an implementation L decide if L ⊆ S .

Are all the positive instances exhibited?



The Model-checking problem

◮ Positive Model-checking Given a specification language S and
an implementation L decide if L ⊆ S .

Are all the positive instances exhibited?

◮ Negative Model-checking Given a specification
language S and an implementation L decide whether S∩L = ∅.



The Model-checking problem

◮ Positive Model-checking Given a specification language S and
an implementation L decide if L ⊆ S .

Are all the positive instances exhibited?

◮ Negative Model-checking Given a specification
language S and an implementation L decide whether S∩L = ∅.

Are all the negative instances avoided?



The Model-checking problem ...



The Model-checking problem ...

◮ If S and L are given as locally synchronized MSGs, both the
model checking problems are decidable.



The Model-checking problem ...

◮ If S and L are given as locally synchronized MSGs, both the
model checking problems are decidable.

◮ If S is given by a locally synchronized MSG and L is given by
any MSG, both the model checking problems are decidable.



The Model-checking problem ...

◮ If S and L are given as locally synchronized MSGs, both the
model checking problems are decidable.

◮ If S is given by a locally synchronized MSG and L is given by
any MSG, both the model checking problems are decidable.

1. Replace each node in the MSG with a linearization.



The Model-checking problem ...

◮ If S and L are given as locally synchronized MSGs, both the
model checking problems are decidable.

◮ If S is given by a locally synchronized MSG and L is given by
any MSG, both the model checking problems are decidable.

1. Replace each node in the MSG with a linearization.
2. Let X be the regular language accepted by the resulting finite

automaton.



The Model-checking problem ...

◮ If S and L are given as locally synchronized MSGs, both the
model checking problems are decidable.

◮ If S is given by a locally synchronized MSG and L is given by
any MSG, both the model checking problems are decidable.

1. Replace each node in the MSG with a linearization.
2. Let X be the regular language accepted by the resulting finite

automaton.
3. L ⊆ S if and only if X ⊆ S and L ∩ S = ∅ if and only if

X ∩ S = ∅.



The Model-checking problem ...

◮ If S and L are given as locally synchronized MSGs, both the
model checking problems are decidable.

◮ If S is given by a locally synchronized MSG and L is given by
any MSG, both the model checking problems are decidable.

1. Replace each node in the MSG with a linearization.
2. Let X be the regular language accepted by the resulting finite

automaton.
3. L ⊆ S if and only if X ⊆ S and L ∩ S = ∅ if and only if

X ∩ S = ∅.

◮ These results can be generalized further ...



Model-checking ...

Sufficient conditions for the decidability of model-checking:



Model-checking ...

Sufficient conditions for the decidability of model-checking:

◮ The system L has a regular set of representatives.

A regular language R such that the set of MSCs

generated by the words in R is L.



Model-checking ...

Sufficient conditions for the decidability of model-checking:

◮ The system L has a regular set of representatives.

A regular language R such that the set of MSCs

generated by the words in R is L.

◮ Given B , we can effectively construct LinB(S) consisiting of
all the B bounded linearizations of MSCs in S .



Globally Cooperative MSGs



Globally Cooperative MSGs

◮ An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.



Globally Cooperative MSGs

◮ An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.

◮ An MSG is globally cooperative, if every loop in the MSG
generates a globally cooperative MSC.



Globally Cooperative MSGs

◮ An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.

◮ An MSG is globally cooperative, if every loop in the MSG
generates a globally cooperative MSC.

Rules out independent iterations without insisting on regularity.



Globally Cooperative MSGs

◮ An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.

◮ An MSG is globally cooperative, if every loop in the MSG
generates a globally cooperative MSC.

Rules out independent iterations without insisting on regularity.

Theorem: Given B , the set of B bounded linearizations of a
GC-MSG is a regular language.



Globally Cooperative MSGs

◮ An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.

◮ An MSG is globally cooperative, if every loop in the MSG
generates a globally cooperative MSC.

Rules out independent iterations without insisting on regularity.

Theorem: Given B , the set of B bounded linearizations of a
GC-MSG is a regular language.

[One of the many results best proved via a translation to
Mazurkiewicz traces.]



Globally Cooperative MSGs

◮ An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.

◮ An MSG is globally cooperative, if every loop in the MSG
generates a globally cooperative MSC.

Rules out independent iterations without insisting on regularity.

Theorem: Given B , the set of B bounded linearizations of a
GC-MSG is a regular language.

[One of the many results best proved via a translation to
Mazurkiewicz traces.]

Corollary: Systems given as MSGs can be model-checked w.r.t.
specifications presented as GC-MSGs.



Implementing Regular MSC languages

◮ Allow global accepting states.



Implementing Regular MSC languages

◮ Allow global accepting states.

◮ Allow tagging of messages with additional content.



Implementing Regular MSC languages

◮ Allow global accepting states.

◮ Allow tagging of messages with additional content.

◮ No additional messages.



Implementing Regular MSC languages

◮ Allow global accepting states.

◮ Allow tagging of messages with additional content.

◮ No additional messages.

p q r s

M1

(m,1)

-
m

-

p q r s

M2

-
m

-
(m,2)

p q r s

M

-
m

-
m

-
m



Implementing Regular MSC languages

◮ Allow global accepting states.

◮ Allow tagging of messages with additional content.

◮ No additional messages.

p q r s

M1

(m,1)

-
m

-

p q r s

M2

-
m

-
(m,2)

p q r s

M

-
m

-
m

-
m

◮ By tagging auxiliary information to m, p informs s whether it
has sent a message to q



Implementing Regular MSC languages

◮ Allow global accepting states.

◮ Allow tagging of messages with additional content.

◮ No additional messages.

p q r s

M1

(m,1)

-
m

-

p q r s

M2

-
m

-
(m,2)

p q r s

M

-
m

-
m

-
m

◮ By tagging auxiliary information to m, p informs s whether it
has sent a message to q

◮ This rules out the implied scenario M



Distributed Synthesis



Distributed Synthesis

Theorem: An MSC language L is regular if and only if there is an
an MPA A, with a finite auxiliary message alphabet ∆, that
accepts L.



Distributed Synthesis

Theorem: An MSC language L is regular if and only if there is an
an MPA A, with a finite auxiliary message alphabet ∆, that
accepts L.

◮ As a matter of fact one can construct a deterministic MPA
accepting A.



Distributed Synthesis

Theorem: An MSC language L is regular if and only if there is an
an MPA A, with a finite auxiliary message alphabet ∆, that
accepts L.

◮ As a matter of fact one can construct a deterministic MPA
accepting A.

◮ One proof is to translate MSC languages to trace languages,
use Zielonka’s theorem and then describe a deterministic
simulation of the resulting Asynchronous automaton using
MPAs.



Distributed Synthesis

Theorem: An MSC language L is regular if and only if there is an
an MPA A, with a finite auxiliary message alphabet ∆, that
accepts L.

◮ As a matter of fact one can construct a deterministic MPA
accepting A.

◮ One proof is to translate MSC languages to trace languages,
use Zielonka’s theorem and then describe a deterministic
simulation of the resulting Asynchronous automaton using
MPAs.

◮ Explicitely construct a deterministic MPA from a FA accepting
the linearizations of L.



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.

◮ Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.

◮ Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).

◮ Putting together partial information



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.

◮ Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).

◮ Putting together partial information
1. Process 1 keeps the effect of the MSC in its past.



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.

◮ Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).

◮ Putting together partial information
1. Process 1 keeps the effect of the MSC in its past.
2. Process 2 keeps the effect of the partial MSC consisting those

events seen by 2 but not 1.



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.

◮ Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).

◮ Putting together partial information
1. Process 1 keeps the effect of the MSC in its past.
2. Process 2 keeps the effect of the partial MSC consisting those

events seen by 2 but not 1.
3. Process 3 keeps the effect of the partial MSC consisting of

events seen by 3 but not by 2 and 1.



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.

◮ Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).

◮ Putting together partial information
1. Process 1 keeps the effect of the MSC in its past.
2. Process 2 keeps the effect of the partial MSC consisting those

events seen by 2 but not 1.
3. Process 3 keeps the effect of the partial MSC consisting of

events seen by 3 but not by 2 and 1.
4. ...



Synthesis ...

◮ Let A be finite automaton accepting the linearizations of L.

◮ How does the MPA maintain the state of this automaton A as
it reads an MSC?

◮ No process sees the entire past. Each process has information
only on part of the MSC.

◮ Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).

◮ Putting together partial information
1. Process 1 keeps the effect of the MSC in its past.
2. Process 2 keeps the effect of the partial MSC consisting those

events seen by 2 but not 1.
3. Process 3 keeps the effect of the partial MSC consisting of

events seen by 3 but not by 2 and 1.
4. ...

◮ A sophisticated local timestamping algorithm is needed to
make all this work.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y
◮ x <m y



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y
◮ x <m y

◮ Quantification and boolean connectives.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y
◮ x <m y

◮ Quantification and boolean connectives.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y
◮ x <m y

◮ Quantification and boolean connectives.

◮ The first order variables take values over the events in the
given MSC.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y
◮ x <m y

◮ Quantification and boolean connectives.

◮ The first order variables take values over the events in the
given MSC.

◮ The second order variables take subsets of events as values.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y
◮ x <m y

◮ Quantification and boolean connectives.

◮ The first order variables take values over the events in the
given MSC.

◮ The second order variables take subsets of events as values.

◮ ≤ is interpreted by the ordering on the MSC.



Monadic Second Order Logic

The Monadic Second Order logic over MSCs.

◮ x , y , . . . an infinite collection of first-order variables.

◮ X ,Y , . . . an infinite collection of second-order set variables.
◮ Atomic Formulas

◮ λ(x) where λ is an action
◮ x ∈ X
◮ x ≤ y
◮ x <m y

◮ Quantification and boolean connectives.

◮ The first order variables take values over the events in the
given MSC.

◮ The second order variables take subsets of events as values.

◮ ≤ is interpreted by the ordering on the MSC.

◮ <m denotes the message ordering and cannot be defined using
≤



MSO ...

∀x. ∀y. (p!q(x)∧p!q(y)∧(x < y)) =⇒ ∃z.(x <m z)∧(z ≤ y).



MSO ...

∀x. ∀y. (p!q(x)∧p!q(y)∧(x < y)) =⇒ ∃z.(x <m z)∧(z ≤ y).

◮ p sends to q only after receiving an (indirect)
acknowedgement for the previous send.



MSO ...

∀x. ∀y. (p!q(x)∧p!q(y)∧(x < y)) =⇒ ∃z.(x <m z)∧(z ≤ y).

◮ p sends to q only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.



MSO ...

∀x. ∀y. (p!q(x)∧p!q(y)∧(x < y)) =⇒ ∃z.(x <m z)∧(z ≤ y).

◮ p sends to q only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.

◮ One can express B-boundedness for any B .



MSO ...

∀x. ∀y. (p!q(x)∧p!q(y)∧(x < y)) =⇒ ∃z.(x <m z)∧(z ≤ y).

◮ p sends to q only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.

◮ One can express B-boundedness for any B .



MSO ...

∀x. ∀y. (p!q(x)∧p!q(y)∧(x < y)) =⇒ ∃z.(x <m z)∧(z ≤ y).

◮ p sends to q only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.

◮ One can express B-boundedness for any B .

Theorem: An MSC language L is regular if and only if there is a
formula ϕ in MSO and a constant B such that

L = L(ϕ) ∩ {M | M is universally B-bounded}



MSO ...

The proof uses a technique developed by W. Thomas.



MSO ...

The proof uses a technique developed by W. Thomas.

◮ In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.



MSO ...

The proof uses a technique developed by W. Thomas.

◮ In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.

◮ In the other direction, interpret the MSO over MSCs formula
on words. Given ϕ construct a MSO over words formula that
is true of a word w only if



MSO ...

The proof uses a technique developed by W. Thomas.

◮ In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.

◮ In the other direction, interpret the MSO over MSCs formula
on words. Given ϕ construct a MSO over words formula that
is true of a word w only if

1. w is a linearization of an B-bounded MSC.



MSO ...

The proof uses a technique developed by W. Thomas.

◮ In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.

◮ In the other direction, interpret the MSO over MSCs formula
on words. Given ϕ construct a MSO over words formula that
is true of a word w only if

1. w is a linearization of an B-bounded MSC.
2. The MSC Mw satisfies ϕ. This involves showing that ≤, <m

are definable over w .



MSO ...

The proof uses a technique developed by W. Thomas.

◮ In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.

◮ In the other direction, interpret the MSO over MSCs formula
on words. Given ϕ construct a MSO over words formula that
is true of a word w only if

1. w is a linearization of an B-bounded MSC.
2. The MSC Mw satisfies ϕ. This involves showing that ≤, <m

are definable over w .
3. Mw is universally B-bounded.



MSO ...

The proof uses a technique developed by W. Thomas.

◮ In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.

◮ In the other direction, interpret the MSO over MSCs formula
on words. Given ϕ construct a MSO over words formula that
is true of a word w only if

1. w is a linearization of an B-bounded MSC.
2. The MSC Mw satisfies ϕ. This involves showing that ≤, <m

are definable over w .
3. Mw is universally B-bounded.

Observe that 1, 2 ensure that the set of B-bounded linearizations
of L(ϕ) is always a regular language.



MSO ...

The proof uses a technique developed by W. Thomas.

◮ In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.

◮ In the other direction, interpret the MSO over MSCs formula
on words. Given ϕ construct a MSO over words formula that
is true of a word w only if

1. w is a linearization of an B-bounded MSC.
2. The MSC Mw satisfies ϕ. This involves showing that ≤, <m

are definable over w .
3. Mw is universally B-bounded.

Observe that 1, 2 ensure that the set of B-bounded linearizations
of L(ϕ) is always a regular language.

Theorem: Model-checking MSGs w.r.t. MSO is decidable.



MSO ...



MSO ...

The same observation also leads to the decidability of satisfiability
for MSO.

Theorem: Satisfiability is decidable for MSO over the class of
universally (existentially) B-bounded models.



MSO ...

The same observation also leads to the decidability of satisfiability
for MSO.

Theorem: Satisfiability is decidable for MSO over the class of
universally (existentially) B-bounded models.

Further, MSO is strictly more expressive than MPAS w.r.t. general
MSCs.



MSO ...

The same observation also leads to the decidability of satisfiability
for MSO.

Theorem: Satisfiability is decidable for MSO over the class of
universally (existentially) B-bounded models.

Further, MSO is strictly more expressive than MPAS w.r.t. general
MSCs.

Theorem: The quantifier alternation hierarchy for MSO over
MSCs is strict. In particular EMSO is strictly weaker than MSO.



Existentially bounded languages



Existentially bounded languages

◮ The model checking problem for MSGs is decidable because
the language of an MSG always has a regular set of
representatives.



Existentially bounded languages

◮ The model checking problem for MSGs is decidable because
the language of an MSG always has a regular set of
representatives.

◮ If an MSC language has a regular set of representatives then it
is existentially bounded.



Existentially bounded languages

◮ The model checking problem for MSGs is decidable because
the language of an MSG always has a regular set of
representatives.

◮ If an MSC language has a regular set of representatives then it
is existentially bounded.

Theorem: Let L be an existentially B-bounded language. Then
the following statements are equivalent:

1. B-bounded linearizations of L form a regular set of
representatives for L



Existentially bounded languages

◮ The model checking problem for MSGs is decidable because
the language of an MSG always has a regular set of
representatives.

◮ If an MSC language has a regular set of representatives then it
is existentially bounded.

Theorem: Let L be an existentially B-bounded language. Then
the following statements are equivalent:

1. B-bounded linearizations of L form a regular set of
representatives for L

2. L is MPA recognisable (with auxiliary messages).



Existentially bounded languages

◮ The model checking problem for MSGs is decidable because
the language of an MSG always has a regular set of
representatives.

◮ If an MSC language has a regular set of representatives then it
is existentially bounded.

Theorem: Let L be an existentially B-bounded language. Then
the following statements are equivalent:

1. B-bounded linearizations of L form a regular set of
representatives for L

2. L is MPA recognisable (with auxiliary messages).

3. L is the MSO definable.

However, deterministic MPAs do not suffice.



Adding time to MSCs



Adding time to MSCs

◮ Time constrained MSCs

◮ MSCs with timing constraints between events



Adding time to MSCs

◮ Time constrained MSCs

◮ MSCs with timing constraints between events

◮ Time constrained Message Sequence Graphs

◮ Generate infinite families of time constrained MSCs



MSCs with time constraints

User ATM Server

u1

u2

(0,4]

a1

a2

a3

a4

s1

s2
(0,2]

card

card-data

card-OK

pin-request



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u

◮ Intervals may be open, closed, half-open



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u

◮ Intervals may be open, closed, half-open

◮ Simplifying assumptions



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u

◮ Intervals may be open, closed, half-open

◮ Simplifying assumptions

◮ Interval constraints are local to a process . . .



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u

◮ Intervals may be open, closed, half-open

◮ Simplifying assumptions

◮ Interval constraints are local to a process . . .

◮ Both e and e
′ lie on same process line



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u

◮ Intervals may be open, closed, half-open

◮ Simplifying assumptions

◮ Interval constraints are local to a process . . .

◮ Both e and e
′ lie on same process line

◮ . . . or across a single message



Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u

◮ Intervals may be open, closed, half-open

◮ Simplifying assumptions

◮ Interval constraints are local to a process . . .

◮ Both e and e
′ lie on same process line

◮ . . . or across a single message

◮ e is p!q(m) and e
′ is corresponding receive q?p(m)



A timed behaviour

User ATM Server

(u1, 0)

(u2, 3.9)

(a1, 0)

(a2, 1)

(a3, 3.3)

(a4, 3.9)

(s1, 1)

(s2, 2.3)

card

card-data

card-OK

pin-request



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time

◮ Order of timestamps respects partial order on events



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time

◮ Order of timestamps respects partial order on events

◮ Linearizations of timed MSCs are timed words



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time

◮ Order of timestamps respects partial order on events

◮ Linearizations of timed MSCs are timed words

◮ Again, a single linearization suffices to reconstruct a timed
MSC



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time

◮ Order of timestamps respects partial order on events

◮ Linearizations of timed MSCs are timed words

◮ Again, a single linearization suffices to reconstruct a timed
MSC

◮ A timed MSC covers a TC-MSC if for each constraint
(e, e′) 7→ [l , u], l ≤ τ(e′) − τ(e) ≤ u



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time

◮ Order of timestamps respects partial order on events

◮ Linearizations of timed MSCs are timed words

◮ Again, a single linearization suffices to reconstruct a timed
MSC

◮ A timed MSC covers a TC-MSC if for each constraint
(e, e′) 7→ [l , u], l ≤ τ(e′) − τ(e) ≤ u

◮ Replace ≤ by <, as appropriate, for open, half-open intervals



Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time

◮ Order of timestamps respects partial order on events

◮ Linearizations of timed MSCs are timed words

◮ Again, a single linearization suffices to reconstruct a timed
MSC

◮ A timed MSC covers a TC-MSC if for each constraint
(e, e′) 7→ [l , u], l ≤ τ(e′) − τ(e) ≤ u

◮ Replace ≤ by <, as appropriate, for open, half-open intervals

◮ TC-MSC T ⇒ L(T ), set of timed MSCs that cover T



TC-MSCs and Timed MSCs



TC-MSCs and Timed MSCs

◮ The set of timed MSCs covering a TC-MSC may be empty.



TC-MSCs and Timed MSCs

◮ The set of timed MSCs covering a TC-MSC may be empty.

r s
m1 [0,3]

m2

m3

[0,2] [3,4]



TC-MSCs and Timed MSCs

◮ The set of timed MSCs covering a TC-MSC may be empty.
◮ A TC-MSC is said to be realizable if it is covered by atleast

one timed MSC.

r s
m1 [0,3]

m2

m3

[0,2] [3,4]



Time Constrained Message Sequence Graphs

◮ States labelled by time constrained MSCs

◮ Local constraints for each process along edges

◮ Legal paths in the automaton generate time constrained MSCs

⇓

r sm1

[0,3]

r sm2

m3

r sm2

([0,2],[1,1]) ((2,3],[1,1])



Time Constrained Message Sequence Graphs

◮ States labelled by time constrained MSCs

◮ Local constraints for each process along edges

◮ Legal paths in the automaton generate time constrained MSCs

⇓

r sm1

[0,3]

r sm2

m3

r sm2

([0,2],[1,1]) ((2,3],[1,1])



Time Constrained Message Sequence Graphs

◮ States labelled by time constrained MSCs

◮ Local constraints for each process along edges

◮ Legal paths in the automaton generate time constrained MSCs

⇓

r sm1

[0,3]

r sm2

m3

r sm2

([0,2],[1,1]) ((2,3],[1,1])

r sm1 [0,3]

m2

m3

[0,2] [1,1]



Time Constrained Message Sequence Graphs

◮ States labelled by time constrained MSCs

◮ Local constraints for each process along edges

◮ Legal paths in the automaton generate time constrained MSCs

⇓

r sm1

[0,3]

r sm2

m3

r sm2

([0,2],[1,1]) ((2,3],[1,1])

r sm1 [0,3]

m2

m3

[0,2] [1,1]

r s
m1 [0,3]

m2

m1 [0,3]

m2

m3

(2,3]

[0,2]

[1,1]

[1,1]



Reachability



Reachability

Given a TC-MSG G and a state q in G , does there exist a path
q0q1 . . . qk = q from an initial state q0 such that the TC-MSG
generated by this path is realizable ?



Reachability

Given a TC-MSG G and a state q in G , does there exist a path
q0q1 . . . qk = q from an initial state q0 such that the TC-MSG
generated by this path is realizable ?

(The control state reachability problem for TC-MSGs.)



Reachability

Given a TC-MSG G and a state q in G , does there exist a path
q0q1 . . . qk = q from an initial state q0 such that the TC-MSG
generated by this path is realizable ?

(The control state reachability problem for TC-MSGs.)

This problem is trivial for ordinary MSGs.



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1

1

1



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1

1

4



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1

1

4

1

1



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1

1

4

1

1

3

1



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1

1

4

1

1

3

1

1

1



Reachability ...

p q
0

p q

1, 4

1, 1 p q

3, 1

1, 1 p q
1

1, 1

p

q

1

1

1

4

1

1

3

1

1

1

1



Reachability ...

p q
0

p q

1, a + 1

1, 1 p q

b + 1, 1

1, 1 p q
1

1, 1



Reachability ...

p q
0

p q

1, a + 1

1, 1 p q

b + 1, 1

1, 1 p q
1

1, 1

◮ The first loop is to be executed k times and the second one l

times such that a.k − b.l = 1.



Reachability ...

p q
0

p q

1, a + 1

1, 1 p q

b + 1, 1

1, 1 p q
1

1, 1

◮ The first loop is to be executed k times and the second one l

times such that a.k − b.l = 1.

◮ Simple paths may not be realizable while those with loops
may be.



Boundedness for Timed MSCs

◮ A timed MSC is universally B bounded if all its timed
linearizations are B bounded.



Boundedness for Timed MSCs

◮ A timed MSC is universally B bounded if all its timed
linearizations are B bounded.

◮ A timed MSC is existentially B bounded if it has at least one
timed linearization that is B bounded.



Boundedness for Timed MSCs

◮ A timed MSC is universally B bounded if all its timed
linearizations are B bounded.

◮ A timed MSC is existentially B bounded if it has at least one
timed linearization that is B bounded.

◮ A TC-MSC is (universally/existentially) B bounded if all its
timed realizations are (universally/existentially) B bounded.



Boundedness for Timed MSCs

◮ A timed MSC is universally B bounded if all its timed
linearizations are B bounded.

◮ A timed MSC is existentially B bounded if it has at least one
timed linearization that is B bounded.

◮ A TC-MSC is (universally/existentially) B bounded if all its
timed realizations are (universally/existentially) B bounded.

◮ A TC-MSG is (universally/existentially) bounded if there is a
B such that all the TC-MSCs realizing it are
(universally/existentially) B bounded.



Boundedness ...

Time constraints may ensure boundedness.



Boundedness ...

Time constraints may ensure boundedness.

P C

[2, 5] [2, 3]



Boundedness ...

Time constraints may ensure boundedness.

P C

[2, 5] [2, 3]

p

q



Boundedness ...

Time constraints may ensure boundedness.



Boundedness ...

Time constraints may ensure boundedness.

p q r

> 2

3



Boundedness ...

Time constraints may ensure boundedness.

p q r

> 2

3

p

q

r

- - -



Boundedness ...

Time constraints may ensure boundedness.

p q r

> 2

3

p

q

r



Boundedness ...

Time contraints may rule out existential boundedness.

P C

[0,∞] ([0, 2], [3, 4])



Boundedness ...

Time contraints may rule out existential boundedness.

P C

[0,∞] ([0, 2], [3, 4])

p

q



Boundedness ...

Time contraints may rule out existential boundedness.

P C

[0,∞] ([0, 2], [3, 4])

p

q



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.

◮ The problem remains undecidable even if all constraints are
open intervals.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.

◮ The problem remains undecidable even if all constraints are
open intervals.

◮ The problem remains undecidable even if all across node
constraints are on a single process p.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.

◮ The problem remains undecidable even if all constraints are
open intervals.

◮ The problem remains undecidable even if all across node
constraints are on a single process p.

◮ The reachability problem for locally synchronized TC-MSGs is
decidable.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.

◮ The problem remains undecidable even if all constraints are
open intervals.

◮ The problem remains undecidable even if all across node
constraints are on a single process p.

◮ The reachability problem for locally synchronized TC-MSGs is
decidable.

Thank you.



Edge Constraint free TC-MSGs

Consider TC-MSGs where there are no time constraints associated
with transitions between nodes.



Edge Constraint free TC-MSGs

Consider TC-MSGs where there are no time constraints associated
with transitions between nodes.

◮ The control state reachability problem is decidable. A path is
realizable if and only if each node in the path is realizable.



Edge Constraint free TC-MSGs

Consider TC-MSGs where there are no time constraints associated
with transitions between nodes.

◮ The control state reachability problem is decidable. A path is
realizable if and only if each node in the path is realizable.

◮ The boundedness problem is still open. Time constraints can
enforce boundedness.


