The Theory of Message Sequence Charts — |l

K Narayan Kumar

Chennai Mathematical Institute
http://www.cmi.ac.in/~kumar

TIFR, Mumbai, 01 May, 2009


http://www.cmi.ac.in/~kumar

Summary

» MSCs describe runs or behaviours of message passing
systems.



Summary

» MSCs describe runs or behaviours of message passing
systems.

» MSGs, a visual formalism to describe languages of MSCs.



Summary

» MSCs describe runs or behaviours of message passing
systems.

» MSGs, a visual formalism to describe languages of MSCs.

» MSGs : regularity is not decidable, but boundedness is.



Summary

» MSCs describe runs or behaviours of message passing
systems.

» MSGs, a visual formalism to describe languages of MSCs.
» MSGs : regularity is not decidable, but boundedness is.

» MPAs : An operational model, distributed, ...



Summary

v

MSCs describe runs or behaviours of message passing
systems.

» MSGs, a visual formalism to describe languages of MSCs.

v

MSGs : regularity is not decidable, but boundedness is.

v

MPAs : An operational model, distributed, ...

v

Verifying implementability for MSGs is undecidable.
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» Positive Model-checking Given a specification language S and
an implementation L decide if L C S.

Are all the positive instances exhibited?

» Negative Model-checking Given a specification
language S and an implementation L decide whether SN L = ().

Are all the negative instances avoided?
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The Model-checking problem ...

» If S and L are given as locally synchronized MSGs, both the
model checking problems are decidable.

» If S is given by a locally synchronized MSG and L is given by
any MSG, both the model checking problems are decidable.

1. Replace each node in the MSG with a linearization.

2. Let X be the regular language accepted by the resulting finite
automaton.

3. LCSifandonlyif X CSand LNS =0 if and only if
XNnSs=40.

> These results can be generalized further ...
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Sufficient conditions for the decidability of model-checking:

» The system L has a regular set of representatives.

A regular language R such that the set of MSCs
generated by the words in R is L.

> Given B, we can effectively construct Lin”(S) consisiting of
all the B bounded linearizations of MSCs in S.
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Globally Cooperative MSGs

» An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.

» An MSG is globally cooperative, if every loop in the MSG
generates a globally cooperative MSC.
Rules out independent iterations without insisting on regularity.

Theorem: Given B, the set of B bounded linearizations of a
GC-MSG is a regular language.

[One of the many results best proved via a translation to
Mazurkiewicz traces.|

Corollary:  Systems given as MSGs can be model-checked w.r.t.
specifications presented as GC-MSGs.
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Implementing Regular MSC languages

» Allow global accepting states.

» Allow tagging of messages with additional content.

» No additional messages.

m m m m

Y
Y

Y

(m,1) (m,2) m

M My M

» By tagging auxiliary information to m, p informs s whether it
has sent a message to g

» This rules out the implied scenario M
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Distributed Synthesis

Theorem: An MSC language L is regular if and only if there is an
an MPA A, with a finite auxiliary message alphabet A, that
accepts L.

» As a matter of fact one can construct a deterministic MPA
accepting A.

» One proof is to translate MSC languages to trace languages,
use Zielonka's theorem and then describe a deterministic

simulation of the resulting Asynchronous automaton using
MPAs.

» Explicitely construct a deterministic MPA from a FA accepting
the linearizations of L.
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Synthesis ...

» Let A be finite automaton accepting the linearizations of L.

» How does the MPA maintain the state of this automaton A as
it reads an MSC?

» No process sees the entire past. Each process has information
only on part of the MSC.

» Instead of maintining a word or an MSC keep the function on
the states of A defined by this word (or MSC).

» Putting together partial information
1. Process 1 keeps the effect of the MSC in its past.
2. Process 2 keeps the effect of the partial MSC consisting those
events seen by 2 but not 1.
3. Process 3 keeps the effect of the partial MSC consisting of
events seen by 3 but not by 2 and 1.
4. ..

» A sophisticated local timestamping algorithm is needed to
make all this work.
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Monadic Second Order Logic

The Monadic Second Order logic over MSCs.
» x,y....an infinite collection of first-order variables.
» X.Y....an infinite collection of second-order set variables.

» Atomic Formulas
» A(x) where X is an action
» xe X
> x < y
> X <mYy
» Quantification and boolean connectives.

» The first order variables take values over the events in the
given MSC.

» The second order variables take subsets of events as values.
» < is interpreted by the ordering on the MSC.

» <,, denotes the message ordering and cannot be defined using
<



MSO ...

Vx. Vy. (pla(x)Apla(y)A(x <y)) = Fz.(x <m 2)A(z < y).



MSO ...

Vx. Vy. (pla(x)Apla(y)A(x <y)) = Fz.(x <m 2)A(z < y).

» p sends to g only after receiving an (indirect)
acknowedgement for the previous send.



MSO ...

Vx. Vy. (pla(x)Apla(y)A(x <y)) = Fz.(x <m 2)A(z < y).

» p sends to g only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.



MSO ...

Vx. Vy. (pla(x)Apla(y)A(x <y)) = Fz.(x <m 2)A(z < y).

» p sends to g only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.

» One can express B-boundedness for any B.



MSO ...

Vx. Vy. (pla(x)Apla(y)A(x <y)) = Fz.(x <m 2)A(z < y).

» p sends to g only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.

» One can express B-boundedness for any B.



MSO ...

Vx. Vy. (pla(x)Apla(y)A(x <y)) = Fz.(x <m 2)A(z < y).

» p sends to g only after receiving an (indirect)
acknowedgement for the previous send.

The channel from p to q is universally 1-bounded.

» One can express B-boundedness for any B.

Theorem: An MSC language L is regular if and only if there is a
formula ¢ in MSO and a constant B such that

L=L(¢) N {M | M is universally B-bounded}
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The proof uses a technique developed by W. Thomas.

» In one direction interpret the MSO over words formula
describing linearizations of L on MSCs.

» In the other direction, interpret the MSO over MSCs formula
on words. Given ¢ construct a MSO over words formula that
is true of a word w only if

1. w is a linearization of an B-bounded MSC.
2. The MSC M,, satisfies ¢. This involves showing that <, <,

are definable over w.
3. M, is universally B-bounded.

Observe that 1.2 ensure that the set of B-bounded linearizations
of L(i) is always a regular language.

Theorem: Model-checking MSGs w.r.t. MSO is decidable.



o>



MSO ...

The same observation also leads to the decidability of satisfiability
for MSO.

Theorem: Satisfiability is decidable for MSO over the class of
universally (existentially) B-bounded models.



MSO ...

The same observation also leads to the decidability of satisfiability
for MSO.

Theorem: Satisfiability is decidable for MSO over the class of
universally (existentially) B-bounded models.

Further, MSQO is strictly more expressive than MPAS w.r.t. general
MSCs.



MSO ...

The same observation also leads to the decidability of satisfiability
for MSO.

Theorem: Satisfiability is decidable for MSO over the class of
universally (existentially) B-bounded models.

Further, MSQO is strictly more expressive than MPAS w.r.t. general
MSCs.

Theorem: The quantifier alternation hierarchy for MSO over
MSCs is strict. In particular EMSO is strictly weaker than MSO.
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Existentially bounded languages

» The model checking problem for MSGs is decidable because
the language of an MSG always has a regular set of
representatives.

» If an MSC language has a regular set of representatives then it
is existentially bounded.

Theorem: Let L be an existentially B-bounded language. Then
the following statements are equivalent:

1. B-bounded linearizations of L form a regular set of
representatives for L

2. L is MPA recognisable (with auxiliary messages).

3. L is the MSO definable.
However, deterministic MPAs do not suffice.



o>



Adding time to MSCs

» Time constrained MSCs

» MSCs with timing constraints between events



Adding time to MSCs

» Time constrained MSCs
» MSCs with timing constraints between events
» Time constrained Message Sequence Graphs

» Generate infinite families of time constrained MSCs



MSCs with time constraints

User ATM Server
uy a1
ar S1
as S2
uy e d4
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Time Constrained MSCs

» Associate time interval constraints with pairs of events

> If (e, e') > [/, u], then the time between occurrence of e and
¢’ must be between / and v

» Intervals may be open, closed, half-open
» Simplifying assumptions
» Interval constraints are local to a process ...
» Both e and €’ lie on same process line
> ...or across a single message

» eis plg(m) and €’ is corresponding receive q?p(m)



A timed behaviour

User ATM Server
(v1,0) card (a1,0)
(a2,1) card-data -
(a3,3.3) card-OK (s2,23)
i t
(u2,39) pin-reques (a4,3.9)
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Add timestamps to events on MSC, 7 : £ — R

v

All timestamps refer to same global time

v

Order of timestamps respects partial order on events

Linearizations of timed MSCs are timed words

v

v

Again, a single linearization suffices to reconstruct a timed
MSC

A timed MSC covers a TC-MSC if for each constraint
(e,e)—[lu], I <7(e)—71(e) <u

v

» Replace < by <, as appropriate, for open, half-open intervals

TC-MSC 7 = L(T), set of timed MSCs that cover T

v
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TC-MSCs and Timed MSCs

> The set of timed MSCs covering a TC-MSC may be empty.
» A TC-MSC is said to be realizable if it is covered by atleast
one timed MSC.
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Time Constrained Message Sequence Graphs

» States labelled by time constrained MSCs
» Local constraints for each process along edges

> Legal paths in the automaton generate time constrained MSCs
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Reachability

Given a TC-MSG G and a state g in G, does there exist a path
goq1 - - - gx = g from an initial state go such that the TC-MSG
generated by this path is realizable ?

(The control state reachability problem for TC-MSGs.)

This problem is trivial for ordinary MSGs.
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Reachability ...

» The first loop is to be executed k times and the second one /
times such that a.k — b./ = 1.

» Simple paths may not be realizable while those with loops
may be.
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Boundedness for Timed MSCs

» A timed MSC is universally B bounded if all its timed
linearizations are B bounded.

» A timed MSC is existentially B bounded if it has at least one
timed linearization that is B bounded.

» A TC-MSC is (universally/existentially) B bounded if all its
timed realizations are (universally/existentially) B bounded.

» A TC-MSG is (universally/existentially) bounded if there is a
B such that all the TC-MSCs realizing it are
(universally/existentially) B bounded.
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Time constraints may ensure boundedness.

[2 C
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Time constraints may ensure boundedness.

p q r
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Boundedness ...

Time contraints may rule out existential boundedness.




The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.

» The problem remains undecidable even if all constraints are
open intervals.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.
» The problem remains undecidable even if all constraints are
open intervals.

» The problem remains undecidable even if all across node
constraints are on a single process p.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.
» The problem remains undecidable even if all constraints are
open intervals.

» The problem remains undecidable even if all across node
constraints are on a single process p.

» The reachability problem for locally synchronized TC-MSGs is
decidable.



The Results

Theorem: The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.
» The problem remains undecidable even if all constraints are
open intervals.

» The problem remains undecidable even if all across node
constraints are on a single process p.

» The reachability problem for locally synchronized TC-MSGs is
decidable.

Thank you.
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Edge Constraint free TC-MSGs

Consider TC-MSGs where there are no time constraints associated
with transitions between nodes.

» The control state reachability problem is decidable. A path is
realizable if and only if each node in the path is realizable.

» The boundedness problem is still open. Time constraints can
enforce boundedness.



