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Overview

Message Sequence Charts

◮ Visual formalism for specifying scenarios.

◮ Part of the UML Standard

◮ Used quite extensively, for instance in the telecom industry.

◮ Formalize these pictures as ...

◮ Formulate natural (and relevant) questions ...
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Properties of Linearizations

Let w be a linearization of an MSC. Then,

◮ A message is received only after it is sent.

∀x ≤ w.∀p,q. #p!qx ≥ #q?px

◮ All sent messages are received.

∀p,q. #p!qw = #q?pw

As a matter of fact, under the FIFO assumption, any word
satisfying these two properties is the linearization of a unique MSC.
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Languages of MSCs

◮ A language of MSCs is a set of MSCs (over a fixed set of
processes and message alphabet).

◮ MSCs are labelled partial orders, and an MSC can be
reconstructed from any of its linearizations.

◮ An MSC language L can also be thought of as the word
language of the linearizations of the MSCs in L.

How do we describe MSC languages?
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Concatenation of MSCs

A1

p q r

A2

p q r

A1 ◦ A2

p q r

Every event from A2 in any process p occurs after all the events
from A1 in the process p have already occurred.

p!r p!q q?p q!r r?q p!q q?p r?p

is a linearization of A1 ◦ A2.
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Message Sequence Graphs

◮ MSGs are part of the UML definition and are used in practice

◮ They are used to specify the desired (or undesired behaviours)
of a system.

◮ They are global descriptions and do not give any guarantee
about implementability.
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Boundedness

A linearization of an MSC is B-bounded if no channel has more
than B messages at any point.

p q r

The linearization

p!q q?p p!r p!q q?p q!r r?q p!q q?p r?p

is 1-bounded while the linearization

p!q p!r p!q p!q q?p q?p p!r q?p r?q r?p

is 3-bounded.
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Boundedness ...

An MSC is existentially B-bounded if one of its linearizations is
B-bounded.

The execution of the MSC can be scheduled in such a

way that buffers are all B-bounded.

An MSC is universally B-bounded if all of its linearizations are
B-bounded.

p q r

An existentially 1-bounded and universally 3-bounded MSC.
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Boundedness ...

An MSG is existentially bounded if there exists a B such that every
MSC it generates is existentially B-bounded.

q0

An MSG is universally bounded if there exists a B such that every
MSC it generates is B-bounded.

q0
m

m′

q1
m q2

m′

⇓
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Deciding Boundedness

Can we check whether the language of an MSG is implementable
with bounded buffers?

◮ Every MSG is existentially B-bounded for some B .

◮ Checking whether an MSG is existentially B-bounded for a
given B is decidable.

◮ Checking whether an MSG is universally bounded (B-bounded
for a given B) is decidable.
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Communication graph of an MSC

Nodes are the processes. An edge from p to q if there is a message
from p to q.

p q r p q r

An MSG is locally strongly connected if and only if the MSC
generated by any loop has a communication graph that is the
disjoint union of SCCs.
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SCCs and boundedness

◮ Suppose p and q lie in the same SCC in the communication
graph of M and further suppose that this SCC has k processes

◮ In Mk , the first q event guaranteed to be below the maximum
event of p.

◮ In Mk+1, the first q?p event corresponding to the first p!q
event (if any) is guaranteed to be below the maximum event
of p.

The first message from p to q is acknowledged

within Mk+1.

◮ The channel from p to q is bounded by the size of Mk+1.
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Regularity of linearizations

When do we say that a language of MSCs is regular?

1. Finite state implementations.

2. Can be analysed. Reachability, model-checking, ...

3. Robust characterizations via logics, ...

A language of MSCs is said to be regular if its set of linearizations
forms a regular (word) language.

Other definitions are possible ...
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Boundedness and Regularity

Every regular language of MSCs is universally bounded.

The number of different buffer configurations is bounded by the
number of states of any FA accepting the linearizations.

Let A be a finite automaton for the linearizations with s

as the initial state. If w and v lead to the same state q

from s and u is word that runs from q to some final state

then ...

What about the converse?
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Iteration of concurrent events

⇒

p q r sm

m

p q r s

m

m

The only constraint on relating the p!q(m) events and the r !s(m)
is that they must be equal in number.

Thus even bounded MSGs can exhibit nonregular behaviour.
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Regularity ...

Can we check whether a MSG describes a regular language or not?

Answer: NO.

The proof follows from a similar result for Mazurkiewicz Traces

due to Sakarovich.

What about sufficient conditions for regularity?
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Locally synchronized MSGs

An MSC is said to be locally synchronized if its communication
graph has a single nontrivial SCC.

An MSG is said to be locally synchronized if every closed walk in
the MSG generates a locally synchronized MSC.

Theorem: Every locally synchronized MSG generates a regular
MSC language.
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Locally synchronized MSGs ...

◮ Every linearization of the MSCs generated must be exhibited.

e4 e3

e1 e2

e6 e5

v0

v1 v2

e5(e1e2e3e4)
∗e6

◮ How many and which nodes of the path in the MSG do we
need to carry with us to generate these sequentializations ?

◮ Nodes have to inserted in the middle, deleted from the middle
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Locally synchronized MSGs and regularity

There are regular MSC languages that are not generated by MSGs.

◮ The language of an MSG is constructed from a finite set of
basic building blocks (atoms).

◮ There are regular MSC languages which need infinitely many
basic blocks. (eg.)

p!r p!q q?p (q!r r?q r!q q?r))∗ r?p

Theorem: Every finitely generated MSC regular language is the
language of a locally synchronized MSG.
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Message-passing Automata

1. An implementation model for MSCs. A bunch of finite
automata communicating via buffered channels.

2. A distributed model of computation.

An Example: The producer–consumer system.

p q

p!q(m) q?p(m)
p q

-
-
-

m

m

m
...

-m
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s1

s2

s3

t1

t2 t3

p!q(m)
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MPAs can accept languages that cannot be generated by MSGs.



MSGs to MPAs

When are MSG languages implementable using MPAs?



MSGs to MPAs

When are MSG languages implementable using MPAs?

◮ MPA languages are product languages. (i.e.) if M is such that
for all p ∈ P there is an Mp ∈ L such that M ↓ P = Mp ↓ P

then M ∈ L.



MSGs to MPAs

When are MSG languages implementable using MPAs?

◮ MPA languages are product languages. (i.e.) if M is such that
for all p ∈ P there is an Mp ∈ L such that M ↓ P = Mp ↓ P

then M ∈ L.

◮ An M of the form exhibited above, is said to be implied by L.



MSGs to MPAs

When are MSG languages implementable using MPAs?

◮ MPA languages are product languages. (i.e.) if M is such that
for all p ∈ P there is an Mp ∈ L such that M ↓ P = Mp ↓ P

then M ∈ L.

◮ An M of the form exhibited above, is said to be implied by L.

◮ An MSG language is an MPA language if and only if every
MSC implied by its language also belongs to its language (it is
implied closed).
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p q r s

M2

-m

-m

p q r s

M

-m -m

-m

◮ p and q believe M is M1

◮ r and s believe M is M2

◮ M is in the implied closure of {M1,M2}.
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Theorem: Checking whether the language of an MSG is implied
closed is undecidable. It is undecidable even for locally
synchronized MSGs.

A weaker notion of implementability yields interesting positive
results.
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Decision problems for MPAs

◮ Checking emptiness for MPAs is undecidable.

◮ Checking whether the language of an MPA is B-bounded is
undecidable.

◮ Checking whether the language of an MPA is regular is
undecidable.
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The Model-checking problem

◮ Positive Model-checking Given a specification language S and
an implementation L decide if S ⊆ L.

Are all the positive instances exhibited?

◮ Negative Model-checking Given a specification
language S and an implementation L decide whether S∩L = ∅.

Are all the negative instances avoided?
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Model-checking ...

Sufficient conditions for the decidability of model-checking:

◮ The system S has a regular set of representatives.

A regular language R such that the set of MSCs

generated by the words in R is L.

◮ Given B , we can effectively construct LinB(L) consisiting of
all the B bounded linearizations of MSCs in L.
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Globally Cooperative MSGs

◮ An MSC is globally cooperative, if the symmetric closure of its
communication graph has a single nontrivial SCC.

◮ An MSG is globally cooperative, if every loop in the MSG
generates a globally cooperative MSC.

Rules out independent iterations without insisting on regularity.

Theorem: Given B , the set of B bounded linearizations of a
GC-MSG is a regular language.

[One of the many results best proved via a translation to
Mazurkiewicz traces.]
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Summary

◮ MSCs describe runs or behaviours of message passing
systems.

◮ MSGs, a visual formalism to describe languages of MSCs.

◮ MSGs : regularity is not decidable, but boundedness is.

◮ MPAs : An operational model, distributed, ...

◮ Verifying implementability for MSGs is undecidable.

◮ Model checking MSGs w.r.t. regular specifications is
decidable.

◮ Model checking MSGs w.r.t. GC-MSG specifications is
decidable.



In the next lecture...

◮ A distributed synthesis theorem w.r.t. a weaker notion of
implementability.

◮ Generalizing the decidability of model-checking beyond
GC-MSGs.

◮ Generalizing the distributed synthesis theorem.

◮ Monadic Second order Logic (MSO) over MSCs and its
relationship to regularity and MPAs.

◮ Extending MSCs with time.


