Local Testing of Message Sequence Charts is Difficult

K Narayan Kumar

Chennai Mathematical Institute http://www.cmi.ac.in/~kumar

(Joint work with P. Bhateja, P. Gastin and M. Mukund)

ENS de Cachan 29 May 2007

< <p>—

A.

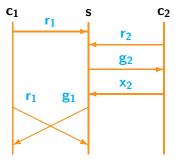
Message sequence charts (MSC)

- Telecommunications
- Describes a pattern of interaction (a Scenario)
- Attractive visual formalism
- Messages sent between communicating agents
- UML
 - Sequence diagrams
 - Interaction between objects e.g., method invocations etc

AQ (A

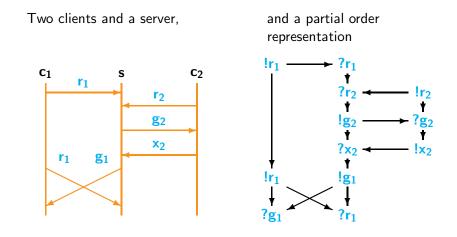
Message sequence charts: Partial Orders

Two clients and a server



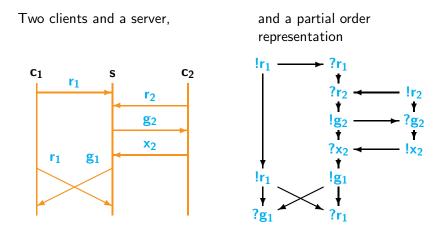
5990

Message sequence charts: Partial Orders



5900

Message sequence charts: Partial Orders



All channels are assumed to be FIFO.

MSC can be regenerated from any one sequentialization.

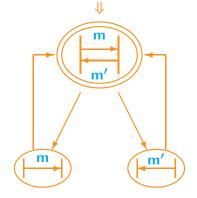
DQ CV

Collections of MSCs

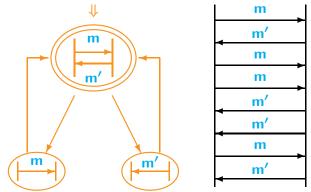
- Often need to specify a collection of scenarios
- Finite collection can be exhaustively enumerated
- Infinite collection needs a generating mechanism

- A finite state automaton
- Each state is labelled by a MSC
- Each (legal) path in the automaton generates a MSC

- A finite state automaton
- Each state is labelled by a MSC
- Each (legal) path in the automaton generates a MSC

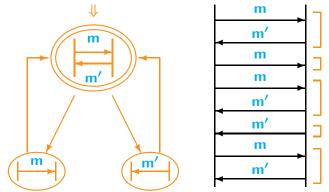


- A finite state automaton
- Each state is labelled by a MSC
- Each (legal) path in the automaton generates a MSC



5900

- A finite state automaton
- Each state is labelled by a MSC
- Each (legal) path in the automaton generates a MSC



5900

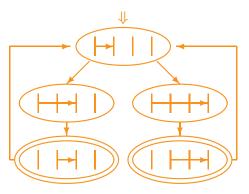
• First MSC finishes before second starts : synchronous

5990

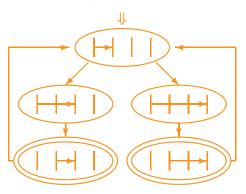
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC

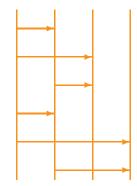
A Q Q

- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC



- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC



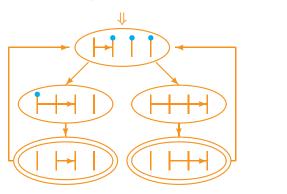


A Q Q

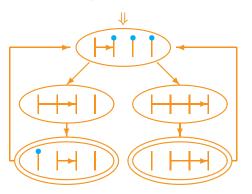
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC

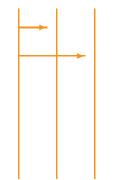


- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC

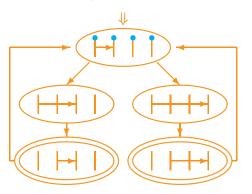


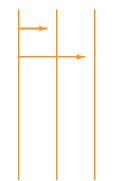
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC



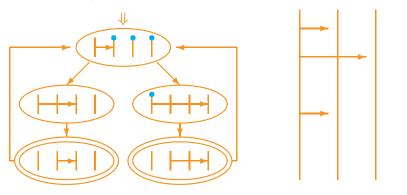


- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC

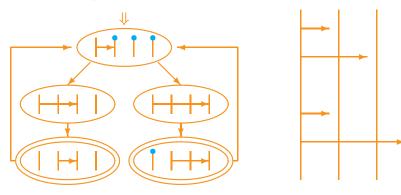




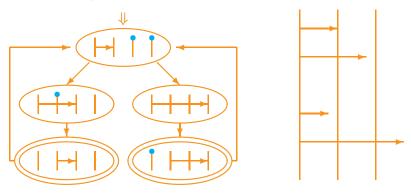
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC



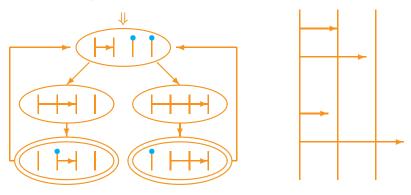
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC



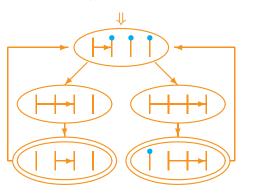
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC

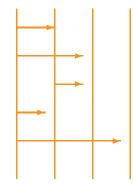


- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC

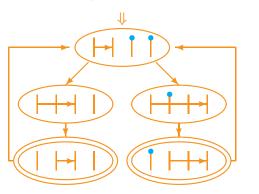


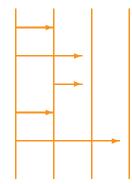
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC



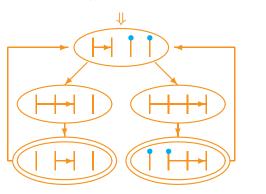


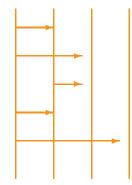
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC



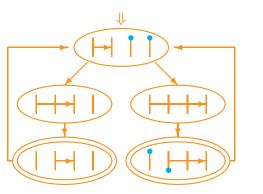


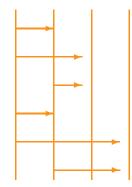
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC





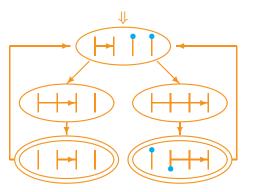
- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
 - Some processes may proceed to second MSC before others complete actions of first MSC

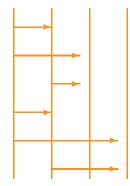




A Q Q

- First MSC finishes before second starts : synchronous
- Join MSCs along each process line : asynchronous
- "Executing" HMSC may require unbounded history





A Q Q

Regular MSC languages

• An MSC is (uniquely) determined by its linearizations

5990

Regular MSC languages

- An MSC is (uniquely) determined by its linearizations
 - Set of strings over send actions p!q(m) and receive actions p?q(m)

Regular MSC languages

- An MSC is (uniquely) determined by its linearizations
 - Set of strings over send actions p!q(m) and receive actions p?q(m)
- Regular collection of MSCs [△]= linearizations form a regular language

A Q Q

HMSCs and regularity

• HMSC specifications may not be regular

æ

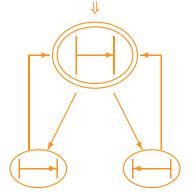
5990

∍

=

HMSCs and regularity

- HMSC specifications may not be regular
- Problem 1 Unbounded buffers



HMSCs and regularity

- HMSC specifications may not be regular
- Problem 1 Unbounded buffers
- Problem 2 Global synchronization yields context-free behaviours

 Sufficient structural conditions on HMSCs to guarantee regularity ... [AY99,MP99]

Locally Synchronized HMSCs

Locally synchronized HMSCs

• Construct communication graph for a MSC $p \rightarrow q$ iff p sends a message to q

Locally synchronized HMSCs

- Construct communication graph for a MSC $p \rightarrow q \text{ iff } p \text{ sends a message to } q$
- For each loop, communication graph is one strongly connected component plus isolated vertices

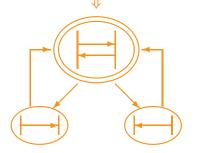
A Q Q

Locally synchronized HMSCs

- Construct communication graph for a MSC $p \rightarrow q$ iff p sends a message to q
- For each loop, communication graph is one strongly connected component plus isolated vertices
- In each loop, every message is "acknowledged"

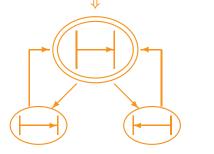
Locally synchronized HMSCs

- Construct communication graph for a MSC $p \rightarrow q$ iff p sends a message to q
- For each loop, communication graph is one strongly connected component plus isolated vertices
- In each loop, every message is "acknowledged"



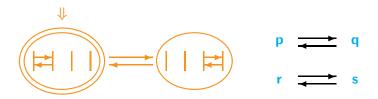
Locally synchronized HMSCs

- Construct communication graph for a MSC $p \rightarrow q$ iff p sends a message to q
- For each loop, communication graph is one strongly connected component plus isolated vertices
- In each loop, every message is "acknowledged"



Locally synchronized HMSCs

- Construct communication graph for a MSC $p \rightarrow q$ iff p sends a message to q
- For each loop, communication graph is one strongly connected component plus isolated vertices
- In each loop, every message is "acknowledged"



Given a HMSC specification and a implementation can we check whether the implementation is correct using local observations?

5990

∍

Given a HMSC specification and a implementation can we check whether the implementation is correct using local observations?

• For each process there is an observer who records the sequences of events.

Given a HMSC specification and a implementation can we check whether the implementation is correct using local observations?

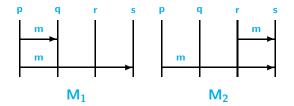
- For each process there is an observer who records the sequences of events.
- If each observer records a possible scenario in the language of the HMSC then the implementation is deemed to be correct.

A Q Q

Given a HMSC specification and a implementation can we check whether the implementation is correct using local observations?

- For each process there is an observer who records the sequences of events.
- If each observer records a possible scenario in the language of the HMSC then the implementation is deemed to be correct.

Will local testing suffice to check (regular) HMSC languages?



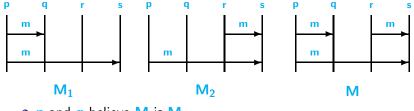
< 🗆

P

÷

Э

Ē

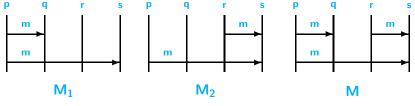


- p and q believe M is M_1
- r and s believe M is M₂

P

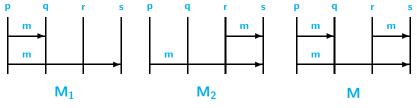
5900

∍



- p and q believe M is M₁
- r and s believe M is M₂
- MSC M is implied by L if for each process p, the p-projection of M matches the p-projection of some MSC in L

AQ (A

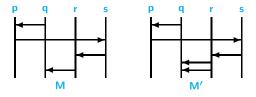


- p and q believe M is M₁
- r and s believe M is M₂
- MSC M is implied by L if for each process p, the p-projection of M matches the p-projection of some MSC in L
- An MSC language is weakly realizable if it is closed with respect to implied MSCs

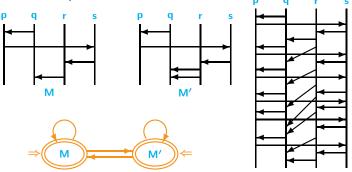
• Even for regular MSC languages, checking weak realizability is undecidable! [AEY, ICALP '01]

- Even for regular MSC languages, checking weak realizability is undecidable! [AEY, ICALP '01]
- Even if the original language has bounded channels, its weak closure may not

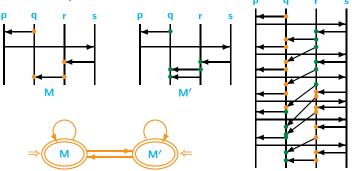
- Even for regular MSC languages, checking weak realizability is undecidable! [AEY, ICALP '01]
- Even if the original language has bounded channels, its weak closure may not



- Even for regular MSC languages, checking weak realizability is undecidable! [AEY, ICALP '01]
- Even if the original language has bounded channels, its weak closure may not

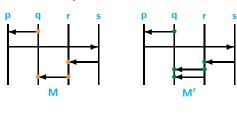


- Even for regular MSC languages, checking weak realizability is undecidable! [AEY, ICALP '01]
- Even if the original language has bounded channels, its weak closure may not

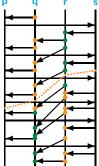


DQ CV

- Even for regular MSC languages, checking weak realizability is undecidable! [AEY, ICALP '01]
- Even if the original language has bounded channels, its weak closure may not



Confusing $M^{2k}M'^k$ and M'^kM^{2k} generates upto k messages in $p \rightarrow s$ channel



A Q Q

• Local observers record the behaviour of each process.

æ

프 > + 프

5990

Ē

- Local observers record the behaviour of each process.
- Each observer verifies that the local behaviour is consistent with some permitted behaviour of the system.

- Local observers record the behaviour of each process.
- Each observer verifies that the local behaviour is consistent with some permitted behaviour of the system.
- Will this guarantee that the global behaviour is permitted?

A Q Q

- Local observers record the behaviour of each process.
- Each observer verifies that the local behaviour is consistent with some permitted behaviour of the system.
- Will this guarantee that the global behaviour is permitted?
 - Not Always. If and only if the system has no implied scenarios.

A Q Q

- Local observers record the behaviour of each process.
- Each observer verifies that the local behaviour is consistent with some permitted behaviour of the system.
- Will this guarantee that the global behaviour is permitted?
 - Not Always. If and only if the system has no implied scenarios.
- Local testability is equivalent to absence of implied scenarios.

- Local observers record the behaviour of each process.
- Each observer verifies that the local behaviour is consistent with some permitted behaviour of the system.
- Will this guarantee that the global behaviour is permitted?
 - Not Always. If and only if the system has no implied scenarios.
- Local testability is equivalent to absence of implied scenarios.
 - Local Testability is not decidable.

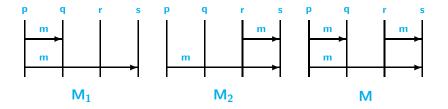
What if we have observers that record the behaviours of sets of processes?

æ

5990

∍

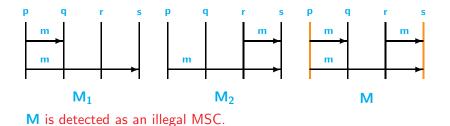
What if we have observers that record the behaviours of sets of processes?



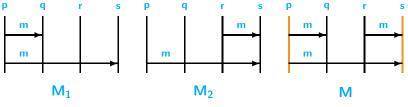
5900

∍

What if we have observers that record the behaviours of sets of processes?



What if we have observers that record the behaviours of sets of processes?



M is detected as an illegal MSC.

Observers recording multiple processes can detect more violations.

- Fix a set of Observers 1, 2, ... r.
- Observer i records the events on the processes in the set P_i .

DQ CV

• Fix a set of Observers 1, 2, ... r.

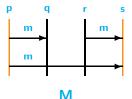
• Observer i records the events on the processes in the set P_i.

Given a HMSC G can we decide whether its language is testable by the observers $(\mathsf{P}_i)_{1\leq i\leq r}?$

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.

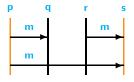
DQ CV

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.



DQ CV

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.



Μ

The $\{p, s\}$ -observation of M is (p!q(m)p!s(m),s?r(m)s?p(m)).

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.

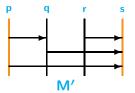
• We write M_{P} for the P-observation of M.

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.

- We write M_{P} for the P-observation of M.
- We can also formulate P-observation as a partial order, where the causality between processes is induced by messages both sent and received by processes in P.

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.

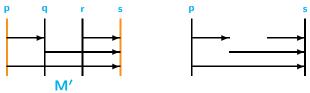
- We write M_{P} for the P-observation of M.
- We can also formulate P-observation as a partial order, where the causality between processes is induced by messages both sent and received by processes in P.



The {p, s}-observation of M' is (p!q()p!s(),s?r()s?q()s?p())

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.

- We write M_{P} for the P-observation of M.
- We can also formulate P-observation as a partial order, where the causality between processes is induced by messages both sent and received by processes in P.



The {p, s}-observation of M' is (p!q()p!s(),s?r()s?q()s?p())

P-Observations

Let M be an MSC. A P-observation of M w.r.t. a set of processes P is the tuple of words consisting of the projection of M on each process in P.

- We write M_{P} for the P-observation of M.
- We can also formulate P-observation as a partial order, where the causality between processes is induced by messages both sent and received by processes in P.
- For a language L, the P-observation of L is given by $L{\upharpoonright_P} = \{M{\upharpoonright_P} \mid M \in L\}$

SQ C

 Record all P-observations where P is any set of processes of size k.

< <p>—

d

()

5900

₹

- Record all P-observations where P is any set of processes of size k.
- The k-closure of a language L is the set.

 $k\text{-closure}(L) = \{M \mid \forall P : |P| = k. \exists M' \in L. M \upharpoonright_{P} = M' \upharpoonright_{P}\}$

5990

∍

(日) (王)

- Record all P-observations where P is any set of processes of size k.
- The k-closure of a language L is the set.

 $k\text{-closure}(L) = \{M \mid \forall P : |P| = k. \exists M' \in L. M_{P} = M'_{P}\}$

 A k-implied scenario M for a language L is a MSC that is in the k-closure of L but not in L.

- Record all P-observations where P is any set of processes of size k.
- The k-closure of a language L is the set.

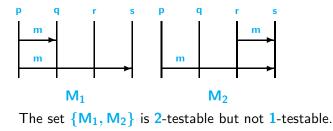
 $k\text{-closure}(L) = \{M \mid \forall P : |P| = k. \exists M' \in L. M_{P} = M'_{P}\}$

- A k-implied scenario M for a language L is a MSC that is in the k-closure of L but not in L.
- A language is **k**-testable if it equals its **k**-closure.

- Record all P-observations where P is any set of processes of size k.
- The k-closure of a language L is the set.

 $k-closure(L) = \{M \mid \forall P: |P|=k. \exists M' \in L. M \upharpoonright_{P} = M' \upharpoonright_{P} \}$

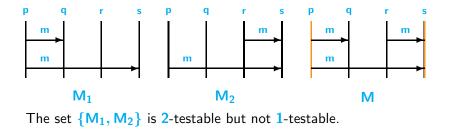
- A k-implied scenario M for a language L is a MSC that is in the k-closure of L but not in L.
- A language is k-testable if it equals its k-closure. Weak Realizability is 1-testability



P

5990

€



P

5990

∍

K Narayan Kumar Local Testing of Message Sequence Charts is Difficult

< ロ > < 四 > < 三 > < 三 >

€

 For all n and k < n there are collections of MSCs over n processes that are not k-testable.

æ

5990

∍

1

< ⊒ >

- For all n and k < n there are collections of MSCs over n processes that are not k-testable.
- 1-testability is undecidable for 4 or more processes. [AY99].

- For all n and k < n there are collections of MSCs over n processes that are not k-testable.
- 1-testability is undecidable for 4 or more processes. [AY99].
- n-testability is decidable.

- For all n and k < n there are collections of MSCs over n processes that are not k-testable.
- 1-testability is undecidable for 4 or more processes. [AY99].
- n-testability is decidable.
 - What about k-testability for 1 < k < n?

- For all n and k < n there are collections of MSCs over n processes that are not k-testable.
- 1-testability is undecidable for 4 or more processes. [AY99].
- n-testability is decidable.
 - What about k-testability for 1 < k < n?
 - What is the smallest $k \leq n$ such that k-testability is decidable?

A Q Q

- For all n and k < n there are collections of MSCs over n processes that are not k-testable.
- 1-testability is undecidable for 4 or more processes. [AY99].
- n-testability is decidable.
 - What about k-testability for 1 < k < n?

k-testability is undecidable for all $1 \le k < n$ and all n > 1.

• What is the smallest $k \leq n$ such that k-testability is decidable? $\label{eq:k} k = n$

A Q Q

We reduce the MPCP (Modified PCP) from Hopcroft and Ullman to **k**-testability.

æ

5990

∍

We reduce the MPCP (Modified PCP) from Hopcroft and Ullman to **k**-testability.

MPCP: Given a sequence $(v_1, w_1), (v_2, w_2) \dots (v_r, w_r)$ of words (over some finite alphabet Σ) is there a sequence of integers $1, i_2, i_3 \dots i_m$ such that

$$\mathbf{v}_1\mathbf{v}_{i_2}\ldots\mathbf{v}_{i_m} = \mathbf{w}_1\mathbf{w}_{i_2}\ldots\mathbf{w}_{i_m}?$$

We reduce the MPCP (Modified PCP) from Hopcroft and Ullman to **k**-testability.

MPCP: Given a sequence $(v_1, w_1), (v_2, w_2) \dots (v_r, w_r)$ of words (over some finite alphabet Σ) is there a sequence of integers $1, i_2, i_3 \dots i_m$ such that

$$\mathbf{v}_1\mathbf{v}_{i_2}\ldots\mathbf{v}_{i_m} = \mathbf{w}_1\mathbf{w}_{i_2}\ldots\mathbf{w}_{i_m}?$$

We may assume that

- the given instance has a solution if and only if, in addition to the above, for each I < m, w₁w_{i₂}...w_{i₁} is a proper prefix of v₁v_{i₂}...v_{i₁}.
- $|v_1| > |w_1| + 1.$

SQ C

We reduce the MPCP (Modified PCP) from Hopcroft and Ullman to **k**-testability.

MPCP: Given a sequence $(v_1, w_1), (v_2, w_2) \dots (v_r, w_r)$ of words (over some finite alphabet Σ) is there a sequence of integers $1, i_2, i_3 \dots i_m$ such that

$$\mathbf{v}_1\mathbf{v}_{i_2}\ldots\mathbf{v}_{i_m} = \mathbf{w}_1\mathbf{w}_{i_2}\ldots\mathbf{w}_{i_m}?$$

We may assume that

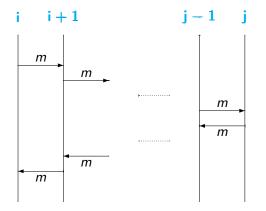
- the given instance has a solution if and only if, in addition to the above, for each I < m, $w_1 w_{i_2} \dots w_{i_l}$ is a proper prefix of $v_1 v_{i_2} \dots v_{i_l}$.
- **2** $|\mathbf{v}_1| > |\mathbf{w}_1| + 1.$

The MPCP problem is undecidable.

SQ C

Undecidability

For each pair of processes i, j with i < j the MSC N_{ii}^m is as follows:



æ

5990

∍

For each pair (v_i, w_i) we define three MSCs associated with the pair.

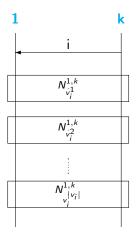
æ

5990

Э

€

The MSC M_{vi}



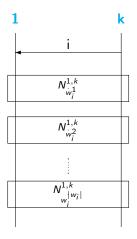
< 🗆 🕨

< 🗗 🕨

(★ 문) ★ 문)

€

The MSC M_{wi}

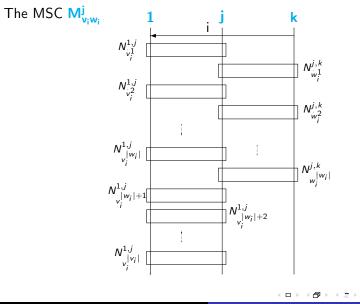


< 🗆 🕨

< 🗗 🕨

~ 문어 주문어

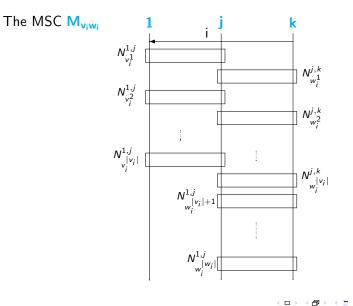
€



K Narayan Kumar Local Testing of Message Sequence Charts is Difficult

€

1



€

Э

Let

$$\begin{array}{rcl} L_{v} & = & M_{v_{1}} \cdot \{M_{v_{i}} \mid 1 \leq i \leq r\}^{*} \\ L_{w} & = & M_{w_{1}} \cdot \{M_{w_{i}} \mid 1 \leq i \leq r\}^{*} \\ L_{vw}^{j} & = & M_{v_{1}w_{1}}^{j} \cdot \{M_{v_{i}w_{i}}^{j} \mid 1 \leq i \leq r\}^{*} \end{array}$$

and

$$L_{\Delta} \ = \ L_{v} \cup L_{w} \cup \bigcup_{1 < j < k} L_{vw}^{j}$$

Then, L_{Δ} has a (k - 1)-implied scenario if and only if the given instance of MPCP has a solution.

A.

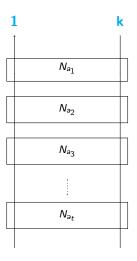
5990

∍

1

< ≞ >

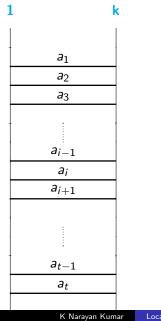
Suppose $a_1a_2 \dots a_t = v_1v_{i_2} \dots v_{i_m} = w_1w_{i_2} \dots w_{i_m}$



< 🗆 🕨

〈母〉 〈ヨ〉 〈ヨ〉

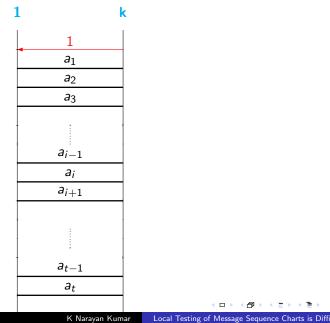
E



Local Testing of Message Sequence Charts is Difficult

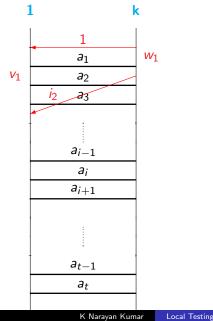
〈ロ〉 〈母〉 〈言〉 〈言〉

€



Local Testing of Message Sequence Charts is Difficult

€



Local Testing of Message Sequence Charts is Difficult

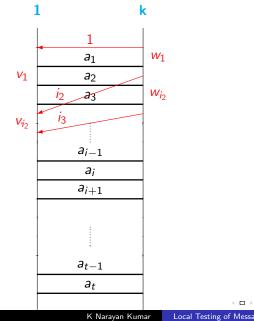
∂ >

< 문 → < 문 →

€

5990

< D >



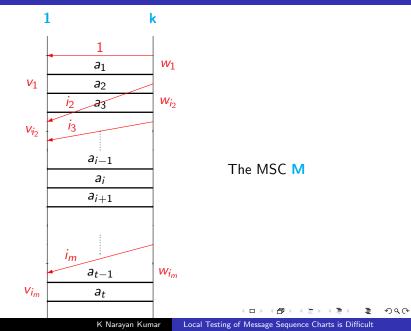
Local Testing of Message Sequence Charts is Difficult

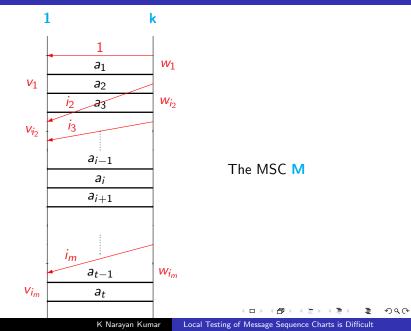
< 🗗 🕨

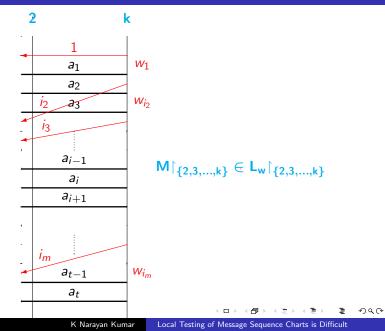
∢ ≣ ≯

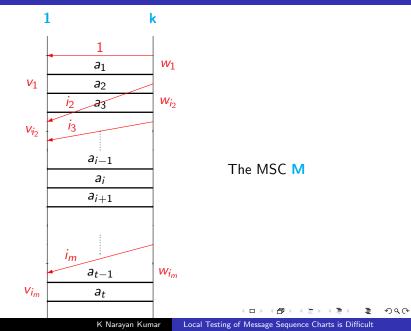
< 글 ≻

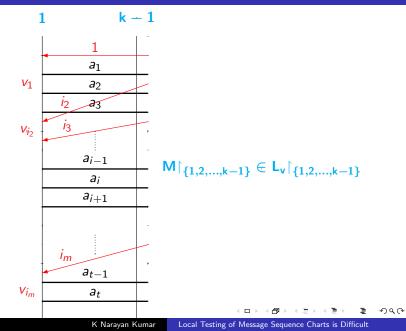
€

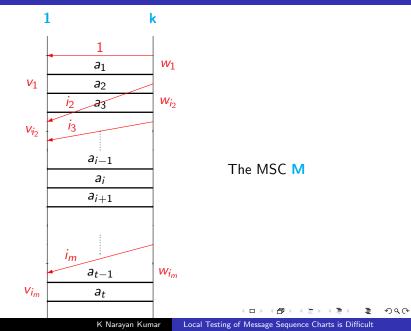


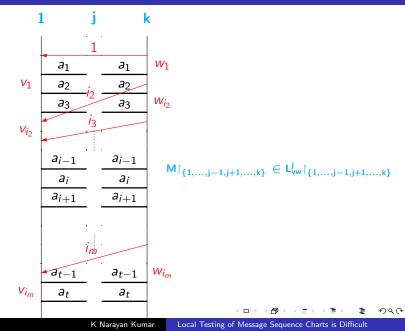


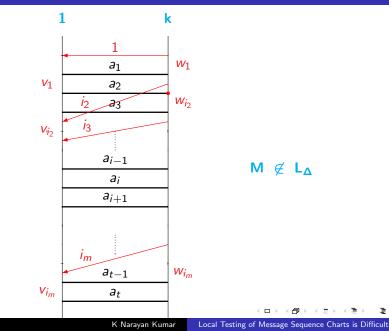












Let M be a (k - 1)-implied scenario.

< 🗆

A.

5990

€

()

K Narayan Kumar Local Testing of Message Sequence Charts is Difficult

イロト イ団ト イヨト イヨト

€

K Narayan Kumar Local Testing of Message Sequence Charts is Difficult

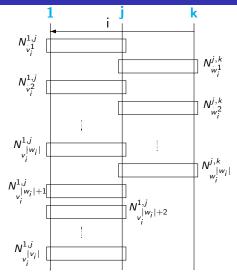
< 🗆

A 🕨

- 김 글 제 국 글 제

5900

€



< D >

< 🗗 🕨

3

-

€

< 🗆

A 🕨

- 김 글 제 국 글 제

5990

€

$\mathsf{Case 2:} \hspace{0.2cm} \forall j: 1 < j < k. \hspace{0.1cm} \mathsf{M}{\upharpoonright}_{j} \hspace{0.1cm} \in \hspace{0.1cm} \mathsf{L}_{\mathsf{v}}{\upharpoonright}_{j}$

K Narayan Kumar Local Testing of Message Sequence Charts is Difficult

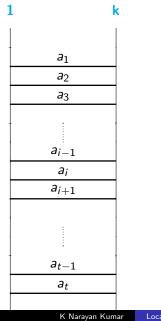
< 🗆

A 🕨

- 김 글 대 국 글 대

5990

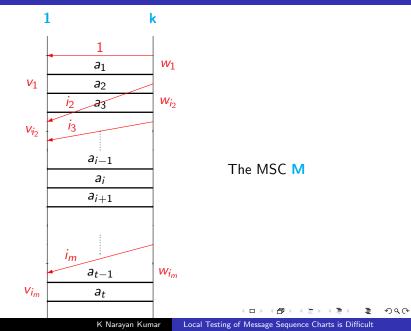
Ē



Local Testing of Message Sequence Charts is Difficult

〈ロ〉 〈母〉 〈言〉 〈言〉

€



Case 2: $\forall j : 1 < j < k. M \upharpoonright_j \in L_v \upharpoonright_j$

M codes a solution to the MPCP.

< <p>—

æ

5990

∍

1

For n = 2 processes, we can once again reduce MPCP (albeit via a different reduction) to 1-testability.

For n = 2 processes, we can once again reduce MPCP (albeit via a different reduction) to 1-testability.

(k - 1)-testability is undecidable for k > 1.

For n = 2 processes, we can once again reduce MPCP (albeit via a different reduction) to 1-testability.

(k-1)-testability is undecidable for k > 1.

By adding n - k inactive processes to this construction we obtain the undecidability of k-testability for all k < n and $n \ge 3$.

For n = 2 processes, we can once again reduce MPCP (albeit via a different reduction) to 1-testability.

(k-1)-testability is undecidable for k > 1.

By adding n - k inactive processes to this construction we obtain the undecidability of k-testability for all k < n and $n \ge 3$.

Do these results hold even when the message alphabet is singleton?

For n = 2 processes, we can once again reduce MPCP (albeit via a different reduction) to 1-testability.

(k-1)-testability is undecidable for k > 1.

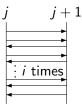
By adding n - k inactive processes to this construction we obtain the undecidability of k-testability for all k < n and $n \ge 3$.

Do these results hold even when the message alphabet is singleton?

k-testability is undecidable for 1 < k < n - 1 for all n > 3 even when the message alphabet is singleton.

Eliminating Messages

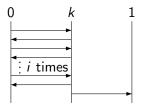
The message **i** from a process to it neighbour can be replaced by the following MSC:



5990

Eliminating Messages ...

The message i from k to 1 cannot be dealt with similarly. We must permit arbitrary delays in the delivery of this message.



• Each channel behaves as counter.

5990

∍

- Each channel behaves as counter.
- We may code the behaviours of such a HMSC as a Petri Net.

DQ CV

- Each channel behaves as counter.
- We may code the behaviours of such a HMSC as a Petri Net.
- Recall that the given HMSC is B-bounded.

A Q Q

- Each channel behaves as counter.
- We may code the behaviours of such a HMSC as a Petri Net.
- Recall that the given HMSC is B-bounded.
 - Check if the Net can reach a configuration where one of the channels has B + 1 messages and from where a final marking is reachable.

- Each channel behaves as counter.
- We may code the behaviours of such a HMSC as a Petri Net.
- Recall that the given HMSC is B-bounded.
 - Check if the Net can reach a configuration where one of the channels has B + 1 messages and from where a final marking is reachable.
 - If the answer to 1 is yes, then say No.

- Each channel behaves as counter.
- We may code the behaviours of such a HMSC as a Petri Net.
- Recall that the given HMSC is **B**-bounded.
 - Check if the Net can reach a configuration where one of the channels has B + 1 messages and from where a final marking is reachable.
 - If the answer to 1 is yes, then say No.
 - Else, check if the B-bounded language of the net has any words not in the language of the HMSC.

- Each channel behaves as counter.
- We may code the behaviours of such a HMSC as a Petri Net.
- Recall that the given HMSC is **B**-bounded.
 - Check if the Net can reach a configuration where one of the channels has B + 1 messages and from where a final marking is reachable.
 - If the answer to 1 is yes, then say No.
 - Else, check if the B-bounded language of the net has any words not in the language of the HMSC.

This is a special case of a result due to R. Morin ([M02]).

- Each channel behaves as counter.
- We may code the behaviours of such a HMSC as a Petri Net.
- Recall that the given HMSC is **B**-bounded.
 - Check if the Net can reach a configuration where one of the channels has B + 1 messages and from where a final marking is reachable.
 - If the answer to 1 is yes, then say No.
 - Else, check if the B-bounded language of the net has any words not in the language of the HMSC.

This is a special case of a result due to R. Morin ([M02]). This also gives an algorithm to check if the 1-closure of the HMSC is regular, since the infiniteness of the number of intermediate markings of a Net is a decidable problem.

 Convert scenarios into executable form — set of communicating finite state-machines

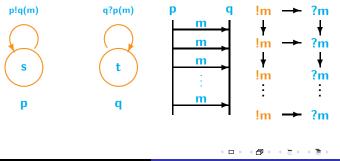
Message Passing Automata (MPA)

- Convert scenarios into executable form set of communicating finite state-machines Message Passing Automata (MPA)
- Execution model

- Convert scenarios into executable form set of communicating finite state-machines Message Passing Automata (MPA)
- Execution model
 - Each component is finite state

- Convert scenarios into executable form set of communicating finite state-machines Message Passing Automata (MPA)
- Execution model
 - Each component is finite state
 - Communication is via (fifo) channels

- Convert scenarios into executable form set of communicating finite state-machines Message Passing Automata (MPA)
- Execution model
 - Each component is finite state
 - Communication is via (fifo) channels



- Convert scenarios into executable form set of communicating finite state-machines Message Passing Automata (MPA)
- Execution model
 - Each component is finite state
 - Communication is via (fifo) channels
 - Globally finite state \Rightarrow channels are bounded

- Message Passing Automata with bounded channels generate only regular MSC languages
- What about the converse?

Theorem: [[HMNST, I&C '05],[MNS, Concur'00]] Every regular MSC language is recognized by a deterministic message passing automaton with bounded channels.

• Messages are tagged with extra information.

- Message Passing Automata with bounded channels generate only regular MSC languages
- What about the converse?

Theorem: [[HMNST, I&C '05],[MNS, Concur'00]] Every regular MSC language is recognized by a deterministic message passing automaton with bounded channels.

- Messages are tagged with extra information.
- Uses global accepting states.

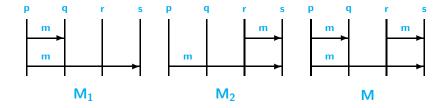
Adding Information to the Messages

æ

5990

€

Adding Information to the Messages



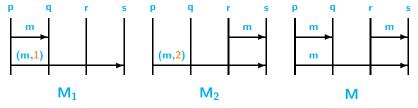
< 🗆

æ

5990

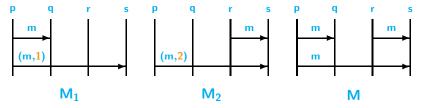
∍

Adding Information to the Messages



• By tagging auxiliary information to m, p informs s whether it has sent a message to q

Adding Information to the Messages



- By tagging auxiliary information to m, p informs s whether it has sent a message to q
- This rules out the implied scenario M

• Recall that a MSC is a partially ordered set of events

5990

Э

₹

- Recall that a MSC is a partially ordered set of events
- For a process **p** and a MSC **M**, **p**'s causal view of **M** is the set of all events in **M** that lie below some event of **p**

- Recall that a MSC is a partially ordered set of events
- For a process **p** and a MSC **M**, **p**'s causal view of **M** is the set of all events in **M** that lie below some event of **p**
- M is causally implied by L if each process p's causal view of M matches its causal view of some MSC in L

SQ C

- Recall that a MSC is a partially ordered set of events
- For a process **p** and a MSC **M**, **p**'s causal view of **M** is the set of all events in **M** that lie below some event of **p**
- M is causally implied by L if each process p's causal view of M matches its causal view of some MSC in L
- An MSC language is causally closed if it is closed with respect to causal implication

Theorem:[[AMNN FSTTCS'05]] The causal closure of a regular MSC language is always regular and can be effectively constructed.

SQ C

• Given an automaton for L, we may tag each message with auxiliary information

5990

∍

- Given an automaton for L, we may tag each message with auxiliary information
- Processes can use this auxiliary information to obtain information about the state of the rest of the system

- Given an automaton for L, we may tag each message with auxiliary information
- Processes can use this auxiliary information to obtain information about the state of the rest of the system
- The causal closure of a regular MSC language L is always regular

- Given an automaton for L, we may tag each message with auxiliary information
- Processes can use this auxiliary information to obtain information about the state of the rest of the system
- The causal closure of a regular MSC language L is always regular
- We can effectively construct a bounded message-passing automaton with local accepting states recognizing the causal closure.

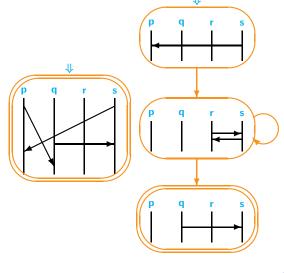
SQ C

HMSCs and causal closure

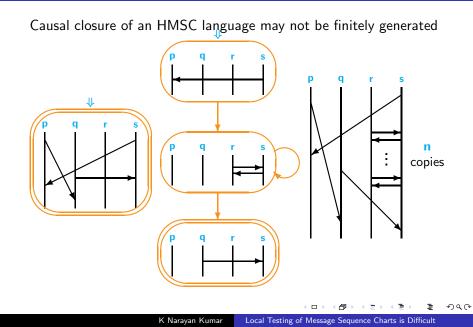
Causal closure of an HMSC language may not be finitely generated

HMSCs and causal closure

Causal closure of an HMSC language may not be finitely generated



HMSCs and causal closure



Summary and future work

- HMSCs a formalism for specifying collections of scenarios.
 - attractive visual formalism
 - Sufficient condition for regularity.

Summary and future work

- HMSCs a formalism for specifying collections of scenarios.
 - attractive visual formalism
 - Sufficient condition for regularity.
- Testability is undecidable in most situations.

Summary and future work

- HMSCs a formalism for specifying collections of scenarios.
 - attractive visual formalism
 - Sufficient condition for regularity.
- Testability is undecidable in most situations.
- Look for sufficient conditions that indicate violation of testability.