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Overview

Message Sequence Charts

◮ Visual formalism for specifying scenarios.

◮ Part of the UML Standard

◮ Has a rich and well understood theory.

◮ Timing constraints are natural for scenario specifications

◮ If acknowledgment is not received within a reasonable amount
of time, retransmit . . .

Can we extend the analysis techniques to the timed setting?

Unfortunately, most of the results are negative.
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MSCs as Partial Orders

Two clients and a server, and a partial order
representation
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◮ All channels are assumed to be FIFO.

◮ An MSC can be regenerated from any one sequentialization.
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A1

p q r

A2

p q r

A1 ◦ A2

p q r

p!r p!q q?p q!r r?q p!q q?p r?p

is a sequentialization of of A1 ◦ A2.
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Boundedness

A sequentialization of an MSC is B-bounded if no channel has
more than B messages at any point.

p q r

The linearization

p!q q?p p!r p!q q?p q!r r?q p!q q?p r?p

is 1-bounded while the linearization

p!q p!r p!q p!q q?p q?p p!r q?p r?q r?p

is 3-bounded.
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An existentially 1-bounded and universally 3-bounded MSC.
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Boundedness ...

An MSG is existentially bounded if there exists a B such that every
MSC it generates is existentially B-bounded.

q0

An MSG is universally bounded if there exists a B such that every
MSC it generates is B-bounded.
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Deciding Boundedness

◮ Every MSG is existentially B-bounded for some B .

◮ Checking whether an MSG is existentially B-bounded for a
given B is decidable.

◮ Checking whether an MSG is universally B-bounded for a
given B is decidable.

◮ Checking whether an MSG is bounded is decidable.
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Communication graph of an MSC

Nodes are the processes. An edge from p to q if there is a message
from p to q.

p q r p q r

An MSG is bounded if and only if every the MSC generated by
every loop has a communication graph that is a disjoint union of
SCCs.
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Adding time to scenarios

◮ Time constrained MSCs

◮ MSCs with timing constraints between events

◮ Time constrained Message Sequence Graphs

◮ Generate infinite families of time constrained MSCs
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Time Constrained MSCs

◮ Associate time interval constraints with pairs of events

◮ If (e, e′) 7→ [l , u], then the time between occurrence of e and
e′ must be between l and u

◮ Intervals may be open, closed, half-open

◮ Simplifying assumptions

◮ Interval constraints are local to a process . . .

◮ Both e and e
′ lie on same process line

◮ . . . or across a single message

◮ e is p!q(m) and e
′ is corresponding receive q?p(m)



A timed behaviour
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Timed MSCs

◮ Add timestamps to events on MSC, τ : E → R≥0

◮ All timestamps refer to same global time

◮ Order of timestamps respects partial order on events

◮ Linearizations of timed MSCs are timed words

◮ Again, a single linearization suffices to reconstruct a timed
MSC

◮ A timed MSC covers a TC-MSC if for each constraint
(e, e′) 7→ [l , u], l ≤ τ(e′) − τ(e) ≤ u

◮ Replace ≤ by <, as appropriate, for open, half-open intervals

◮ TC-MSC T ⇒ L(T ), set of timed MSCs that cover T
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TC-MSCs and Timed MSCs

◮ The set of timed MSCs covering a TC-MSC may be empty.
◮ A TC-MSC is said to be realizable if it is covered by atleast

one timed MSC.
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Time Constrained Message Sequence Graphs

◮ States labelled by time constrained MSCs

◮ Local constraints for each process along edges

◮ Legal paths in the automaton generate time constrained MSCs

⇓

r sm1

[0,3]

r sm2

m3

r sm2

([0,2],[1,1]) ((2,3],[1,1])

r sm1 [0,3]

m2

m3

[0,2] [1,1]

r s
m1 [0,3]

m2

m1 [0,3]

m2

m3

(2,3]
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[1,1]

[1,1]
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Reachability

Given a TC-MSG G and a state q in G , does there exist a path
q0q1 . . . qk = q from an initial state q0 such that the TC-MSG
generated by this path is realizable ?

(The control state reachability problem for TC-MSGs.)

This problem is trivial for ordinary MSGs.
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p q
0

p q

1, a + 1

1, 1 p q

b + 1, 1

1, 1 p q
1

1, 1

◮ The first loop is to be executed k times and the second one l

times such that a.k − b.l = 1.

◮ Simple paths may not be realizable while those with loops
may be.
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Boundedness for Timed MSCs

◮ A timed MSC is universally B bounded if all its timed
linearizations are B bounded.

◮ A timed MSC is existentially B bounded if it has at least one
timed linearization that is B bounded.

◮ A TC-MSC is (universally/existentially) B bounded if all its
timed realizations are (universally/existentially) B bounded.

◮ A TC-MSG is (universally/existentially) bounded if there is a
B such that all the TC-MSCs realizing it are
(universally/existentially) B bounded.
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Undecidability of Reachability

We show that 2 counter machines can be simulated using
TC-MSGs.

◮ Each instruction is coded by a node in the TC-MSG.

◮ Each counter c is maintained using 2 processes pc and qc .

◮ In any run ending at a particular node, the difference between
the time-stamp on the last qc event and the last pc event
records the value of c .

pc qc
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◮ Increment the counter c .

p q
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1
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c++
◮ Decrement the counter c .
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The Reduction ...

◮ The counter machine is assumed to be deterministic.

◮ It either has a finite run ending at the accept state or an
infinite run.

◮ The control state corresponding to the final state is reachable
if and only if the counter machine halts.

The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.
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Reachability to Boundedess

◮ Add two new processes r and s.

◮ Augment the TC-MSC labelling each node with the following
two messages

r s

(1, )

2
10

◮ Label all the nonhalting states as accepting.

◮ If the counter machine halts then the language is finite and
hence bounded.

◮ If the counter machine does not halt then the language is not
even existentially bounded.

Checking boundedness for TC-MSGs is undecidable
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Are point intervals necessary to obtain undecidability?

Reachability and Boundedness are undecidable even when all
interval constraints are restricted to be open intervals.

◮ Use four processes pl , ql , pu and qu for each counter.

◮ One pair maintains a lower bound on the value of the counter
while the other maintains an upper bound.

◮ The value pl − ql is used to ensure that the C−− operation is
permissible only if the counter is nonzero.

◮ The value of pu − qu is used to check for 0.
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Open Intervals ...

Initialize the counter to 0.

pl ql pu qu

> 1
< 2 < 1

> 2

Composition between Nodes

pl ql pu qu

(> 1, < 1) (< 1, > 1)
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The decrement instruction

pl ql pu qu

> 2
< 1 < 2

> 1



Open interval ...

Check for 0

pl ql pu qu

< 2

< 1
> 2
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What about the reachability problem for channel bounded
TC-MSGs?

The reachability problem for channel bounded TC-MSGs is also
undecidable.
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Single process as a time keeper

◮ Two processes are used to simulate a counter.

◮ Restrict constraints across nodes to only one fixed process
(across all transitions).

◮ A reasonable restriction.

A controller or scheduler process that dictates timing across
different phases of the protocol.

Even with the restriction that constraints across nodes are
permitted only on a fixed process, the reachability and
boundedness problems for TC-MSGs remain undecidable.
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More Undecidability – 3

Let p be the time-keeper. We use two processes q− and q+.

1. The time difference between the last events in p and q− is a
lower bound on the value of the clock.

2. The time difference between the last events in q+ and p is an
upper bound on the value of the clock.



More Undecidability - 3

Initialize

q−
c

p q+
c

2 2 2

Freeze

q−
c

p q+
c

2 2 2

0
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Increment

q−
c

p q+
c

1 2 3

0

Decrement

q−
c

p q+
c

3 2 1

0



More Undecidability – 3

Check for Zero

q−
c

p q+
c

2 2 2

0
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Locally synchronized MSGs

◮ Construct communication graph for an MSC
One node per process, edge p → q iff p sends a message to q

◮ For each loop, communication graph is one strongly
connected component plus isolated vertices

◮ In each loop, every message is “acknowledged”

m

m′

m m′

⇓

p q
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Locally Synchronized TC-MSGs

Every locally synchronized MSG generates a universally bounded
language.

◮ For locally synchronized TC-MSGs the boundedness problem
is trivially decidable.

◮ The reachability problem for locally synchronized TC-MSGs is
decidable.

◮ The untimed behaviour is regular.
◮ The number of active clocks is bounded.
◮ Associate clocks to event labels. A clock can be reset

everytime an associated event takes place.
◮ Works like an event-clock automaton (upto some extra

labelling).
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Conclusions and future directions

◮ Analyzing timed constrained MSGs is difficult.

◮ The culprit seems to be the use of a global time in the
semantics.

◮ Consider local time/clock drift/...

◮ Easier to formulate CFMs with local time.

◮ ... many undecidability results even with local time.

Thank you.
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Edge Constraint free TC-MSGs

Consider TC-MSGs where there are no time constraints associated
with transitions between nodes.

◮ The control state reachability problem is decidable. A path is
realizable if and only if each node in the path is realizable.

◮ The boundedness problem is still open. Time constraints can
enforce boundedness.


