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Concurrent Recursive Programs

Variables range over finite domains

Functions can be recursive

Multi-threaded  or 
Distributed



Modeling Recursion

func f1
{while <true>
{call f1 OR 

a OR 
exit;}

return;} 

a

b

c

a,c

b

Recursive Programs are 
Pushdown Systems



Modeling Recursion …
func f1

{while <true>
{call f1 OR 

a OR 
exit;}
return;} 

func f2
{while <true>
{call f2 OR 

a OR 
exit;}
return;} 

func f3
{while <true>
{call f3 OR 

a OR 
exit;}

return;} 
a

b

c

a,c

b

Multi-threaded Programs are 

Multi-Pushdown Systems



Concurrent Communicating Programs

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Queue 4

Queue 3

Queues to model 
communication channels



Unordered Channels

Queue 2

Process 1 Process 2

Bags to model unordered 

communication channels



Communicating Recursive Processes

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Queue 4

Queue 3

Stack 3
Stack 1

Stack 2



System: Concurrent Processes with Data-Structures



p q

r

• Processes

System: Concurrent Processes with Data-Structures



p q

r

• Processes
• Data structures

• Stacks: recursive programs

System: Concurrent Processes with Data-Structures



p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded

System: Concurrent Processes with Data-Structures



p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)

System: Concurrent Processes with Data-Structures



p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

System: Concurrent Processes with Data-Structures



p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

System: Concurrent Processes with Data-Structures



p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

Constructive writes

Destructive reads

System: Concurrent Processes with Data-Structures
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• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

System: Concurrent Processes with Data-Structures

Architecture
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• PDA: Pushdown automata
Recursive programs

Special cases

• MPDA: Multi-pushdown automata
Multi-threaded recursive programs

• MPA: Message passing automata
Communicating finite state machines

p

q2

r

q1
c1 c3

c2 c4

q

• PN: Petri Nets : Only bags

p q



Remote on-off  via 2 channels

p

q2

r

q1
c1 c3

c2 c4



System: Architecture + Boolean Programs

onoff
c1!ac1!b

c2!ac2!b

c1?ac1?b

c3!ac3!b

p

q2

r

q1
c1 c3

c2 c4



Operational semantics

Transition system TS

Configurations (infinite)

local states of processes

contents of data structures

Transitions

Induced by the boolean programs
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Linear Traces

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·
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Linear Traces

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Is every message transmitted to the 
bulb?
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(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Behaviours as Graphs
Message Sequence Charts

ITU Standard
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Graphs for Sequential Systems
q

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Nested Words

Alur, Madhusudan, 2009
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Concurrent Behaviour with Matching (CBM)

a a b c d

b a c d c

d1

d3

d4

d3 d2

A linear order (or path) for each process  
Edges labeled with data structures

p

q

Communication edges form a matching 
Edge labelled d relates the writer and reader of d
Edges follow the discipline of the data structure

LIFO/FIFO/Bag



Graphs vs Linear Traces

Linear Traces Graphs (CBMs)

• Interactions are obfuscated and 
very difficult to recover.

• Successor relation not meaningful
• Combinatorial explosion 

single distributed behavior results 
in a huge number of linear traces

• Interactions are visible
• no combinatorial explosion

Understanding Behaviors
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a a b c d

b a c d c
5 4

3

2

1

Semantics of  CPDS on CBMs

Accepting states to turn them 
into language acceptors
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Reachability



Reachability

Is the bad state reachable?



a a b c d

b a c d c
5 4

3

2

1

Semantics of  CPDS on CBMs



a a b c d

b a c d c
5 4

3

2

1

Semantics of  CPDS on CBMs

Reachability reduces to 

Language Emptiness



Specification over CBMs

ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
d y | x → y
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b
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ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
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| x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ
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q

a b

a
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Specification over CBMs 
Obey the latest order

r
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Specification over CBMs 
Obey the latest order

r

p



Specification over CBMs 
Obey the latest order

∀z (r(z) ∧ on(z)) ⇒ ∃y (p(y) ∧ y < z

∧ ∀x (x < z ∧ p(x) ⇒ x ≤ y)

∧ ∃x (x → y ∧ on(x)))

FO

r

p



Based on the word successor relation, and the word total order

LTL over words, MSO over words

Specification over Linear Traces
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Based on the word successor relation, and the word total order

LTL over words, MSO over words

Specification over Linear Traces
(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Process successor can be recovered

Data edges cannot in general

Obey the latest order

not expressible

in MSO over Linear Traces
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Graphs for Sequential Systems
q

Relate outer most call and 

returns

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

∀x, y

(

a(x − 1) ∧ x ◃ y ∧
¬∃z, z′ (z ◃ z′ ∧ z < x < z′)

)

⇒ a(y + 1)
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Relate outer most call and 
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Graphs for Sequential Systems
q

Relate outer most call and 

returns

Not expressible in MSO over Linear Traces

without nesting relation

even with visible alphabet

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b



Graphs vs Linear Traces

Linear Traces Graphs (CBMs)

• Too weak for many natural 
specifications

• Difficult to write/understand
• Requires syntactical or semantical 

restrictions to be meaningful

• Powerful specifications
• Easy to write/understand 
• meaningful, interactions built-

in

Expressiveness of Specifications
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Verification problems
Emptiness or Reachability for CPDS

Inclusion or Universality for CPDS

Satisfiability φ: Is there a CBM that satisfies φ?

Model Checking: S ⊨ φ: Does every CBM accepted by S 
satisfy φ?

Monadic second order logic

Propositional dynamic logics

Temporal logics 



Model Checking vs Reachability
Reachability reduces to model checking



Model Checking vs Reachability
Reachability reduces to model checking

S ⊨ φ
S¬φ

S ∩ S¬φ = ∅   

… when specifications can be translated to systems
… this is not possible in general for graphs

Model checking reduces to Reachability …



CPDS to MSO 
Theorem:
From any CPDS S  we can construct a MSO formula  φS   
such that a CBM satisfies φS  iff it is accepted by S.

i.e.   L(S) = L(φS)

Emptiness of CPDS reduces to satisfiability for MSO

           S accepts a CBM iff  φS  is satisfiable

Model Checking reduces to satisfiability for MSO.

                  S ⊨ φ   iff  ¬φ ⋀ φS   is not satisfiable

Similarly for language containment and universality
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Verification problems
Emptiness or Reachability for CPDS

Inclusion or Universality for CPDS

Satisfiability φ: Is there a CBM that satisfies φ?

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logicundecidable in general
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Under-approximate Verification

C: class of 
behaviors

Satisfiability problem:

Is φ satisfiable in C?  

φ: Specification
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Under-approximate Verification

C: class of 
behaviors

Emptiness or reachability problem:

Is there an accepting run of S 
on some behavior from C?  

S: CPDS
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Under-approximate Verification

C: class of 
behaviors

Model checking problem: S ⊨C φ

Do all behaviors from C 
accepted by S satisfy φ?

S: CPDS

φ: Specification



Emptiness or Reachability

Inclusion or Universality

Satisfiability φ

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Under-approximate Verification

undecidable 

Bounded data structures

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al., Saivasan et al.]

Mainly for 

reachability



Emptiness or Reachability

Inclusion or Universality

Satisfiability φ

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Under-approximate Verification

undecidable 

Bounded data structures

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al., Saivasan et al.]

Mainly for 

reachability

Reduction to MSO/
Automata over trees.



Bounded-phase to Tree-width
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Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan
University of Illinois at Urbana-Champaign, USA

madhu@illinois.edu

Gennaro Parlato
LIAFA, CNRS and University of Paris Diderot, France.

gennaro@liafa.jussieu.fr

Abstract
We propose a generalization of results on the decidability of empti-
ness for several restricted classes of sequential and distributed au-
tomata with auxiliary storage (stacks, queues) that have recently
been proved. Our generalization relies on reducing emptiness of
these automata to finite-state graph automata (without storage)
restricted to monadic second-order (MSO) definable graphs of
bounded tree-width, where the graph structure encodes the mech-
anism provided by the auxiliary storage. Our results outline a uni-
form mechanism to derive emptiness algorithms for automata, ex-
plaining and simplifying several existing results, as well as proving
new decidability results.

Categories and Subject Descriptors F.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.4 [Software Engi-
neering]: Software/Program Verification: Model checking; F.4.3
[Theory of Computation]: Formal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification

Keywords model checking, automata, decision procedures, bounded
tree-width

1. Introduction
Several classes of automata with auxiliary storage have been de-
fined over the years that have a decidable emptiness problem. Clas-
sic models like pushdown automata utilizing a stack have a decid-
able emptiness problem [14], and several new models like restricted
classes of multi-stack pushdown automata, automata with queues,
and automata with both stacks and queues, have been proved de-
cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often been
motivated for model-checking systems. Software models can be
captured using automata with auxiliary storage, as stacks can
model the control recursion in programs while queues model FIFO
communication between processes. In abstraction-based model-
checking, data domains get abstracted from programs, resulting in
automata models (e.g., the SLAM tool builds pushdown automata
models using predicate abstraction [7], and the GETAFIX tool
model-checks both single-stack and multi-stack automata mod-
els [18, 19]). The emptiness problem for these automata is the most
relevant problem as it directly corresponds to checking reachability
of an error state.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

However, the various identified decidable restrictions on these
automata are, for the most part, awkward in their definitions—
e.g. emptiness of multi-stack pushdown automata where pushes
to any stack is allowed at any time, but popping is restricted to
the first non-empty stack is decidable! [8]. Yet, relaxing these
definitions to more natural ones seems to either destroy decidability
or their power. It is hence natural to ask: why do these automata
have decidable emptiness problems? Is there a common underlying
principle that explains their decidability?

We propose, in this paper, a general criterion that uniformly
explains many such results— several restricted uses of auxiliary
storage are decidable because they can be simulated by graph
automata working on graphs that capture the storage as well as
their sequential or distributed nature, and are also of bounded tree-
width.

More precisely, we can show, using generalizations of known
results on the decidability of satisfiability of monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graph au-
tomata on MSO-definable graphs of bounded tree-width are decid-
able. Graph automata [24] are finite-state automata (without auxil-
iary storage) that accept or reject graphs using tilings of the graph
using states, where the restrictions on tiling determine the graphs
that get accepted. The general decidability of emptiness of graph
automata on MSO-definable graphs follows since the existence of
acceptable tilings is MSO-definable.

We proceed to show that several sequential/distributed automata
with an auxiliary storage (we consider stacks and queues only in
this paper), can be realized as graph automata working on single
or multiple directed paths augmented with special edges to capture
the mechanism of the storage. Intuitively, a symbol that gets stored
in a stack/queue and later gets retrieved can be simulated by a
graph automaton working on a graph where there is a special edge
between the point where the symbol gets stored to the point where
it gets retrieved. A graph automaton can retrieve the symbol at the
retrieval point by using an appropriate tiling of this special edge.

The idea of converting automata with storage to graph automata
without storage but working on specialized graphs is that it allows
us to examine the complexity of storage using the structure of
the graph that simulates it. We show that many automata with a
tractable emptiness problem can be converted to graph automata
working on MSO definable graphs of bounded tree-width, from
which decidability of their emptiness follows.

We prove the simulation of the following classes of automata
with auxiliary storage by graph automata working on MSO-
definable bounded tree-width graphs:

- Multi-stack pushdown automata with bounded context-switching:
This is the class of multi-stack automata where each computa-

tion of the automaton can be divided into k stages, where in each
stage the automaton touches only one stack (proved decidable first
in [22]). We show that they can be simulated by graph automata on
graphs of tree-width O(k).
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Tree-decompositions of  Graphs
* A tree whose nodes are labeled by sets of vertices (bags)

* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.

Size of the Decomposition = Size of largest bag - 1
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Classes with bounded tree-width

A class of graphs has tree-width 
bounded by k if every graph in the 
class has tree-width bounded by k.

A class of graphs has bounded tree-width if it has tree-width 
bounded by some k.
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An Example: Nested Words

The class of nested words has tree-width 
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 2 3 3 4 56 7 8 8 9 9 101 45 2 7 911 112
1111111111

11
10

106666 6

A bit more work gives a bound of 2
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Example: Bounded Context Runs
A CPDS with a single process and collection of Stacks
A context is a segment where only one stack is accessed.

A behaviour with 5 contexts

What is the tree-width of the set of nested words with at most k 
contexts?
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Tree-width of  Bounded Context Runs

1 4 5

2 3 6 7 8

9 10

1 4 5 5 141 9 10
99

9
9

2 2 3 3 6 6 7 2 8
777 7

1
3
5 8

Add 1,3,5,8 to all 
other bags as well.

The set of nested words with at most k contexts 
has tree-width <= 2+(k-1) = k+1
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Non-trivial arguments are necessary 



Why Tree-width?
 Theorem:
1. If the MSO(2) satisfiability problem for a class C of 

graphs is decidable then C has bounded tree-width.
2. For any k, checking MSO(2) satisfiability among the 

class of graphs with tree-width at most k is decidable.

(D. Seese) 



Why Tree-width?
 Theorem:
1. If the MSO(2) satisfiability problem for a class C of 

graphs is decidable then C has bounded tree-width.
2. For any k, checking MSO(2) satisfiability among the 

class of graphs with tree-width at most k is decidable.

(D. Seese) 

Corollary:
If C is any MSO(2) definable family of graphs then, for 
any k, checking MSO(2) satisfiability among graphs in C 
with tree-width at most k is decidable.
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Identify an MSO definable under-approximation class C of 
behaviours which guarantees a bound on the tree-width.  

                 eg. all behaviours with at most k context-switches

MSO satisfiability w.r.t. C is decidable via Seese’s Theorem.
                  eg. MSO satisfiability w.r.t k context-bounded CBMs

*  Model-checking restricted to the class C is decidable via
     Seese’s Theorem.
                  eg. model checking CPDS w.r.t. k context-bounded 
                        behaviours.

Emptiness, universality, containment is 
decidable w.r.t. k context-bounded behaviours.
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Automata for better complexity

Theorem:(MadhusudanParlato 2011)
Emptiness problem for  graph automata over any MSO 
definable class of  graphs of tree-width <= k is decidable 
in time exponential in k.

The formula for the class is fixed and so plays no role 
in the complexity.

 Convert the graph automaton running on CBMS into 
a tree automaton running on their tree-
decompositions.

                 

Yields the same complexity as handcrafted 

algorithms in almost all cases.
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Other Measures: Desiderata 

MSO definable under-approximation classes of behaviours 
with bounded measure.

                  eg. all behaviours with at most k context-switches

Decidable MSO satisfiability for such bounded classes 
    via  ?? Theorem.
                  eg. MSO satisfiability w.r.t k context-bounded CBMs

*  Model-checking  …                                       

With a translation to tree-automata to obtain 
efficient solutions.



Clique-width
An algebraic measure for graphs. 

An algebra to construct graphs, each expression has a size.

* Size of a graph is the size of the smallest expression 
generating it.

* MSO decidability for graphs with bounded measure.   

Translation to tree-automata : the expression 
trees can be used to interpret the graphs
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Co-graphs: An example

Family of graphs generated by the following algebra:

  G ::=   a ϵ ∑  |  G ⊕ G  | G ⊗ G 

a

Single vertex 
labelled a

a

b b

c

b

Disjoint union

a

b b

c

b

Disjoint union and 
connect all pairs
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We translate a formula Φ over graphs labelled with ∑ to  a formula 
Φtree over trees labelled with ∑ ∪ {⊕,⊗}.



MSO decidability for Co-graphs
* The collection of trees labelled by ∑ ∪ {⊕,⊗} that 

constitute valid co-graph expressions is a regular tree 
language.

 Expressible in MSO over trees (ϕco)

A formula Φ in MSO over graphs is satisfiable over co-graphs 
iff

the formula Φtree ⋀ ϕco is satisfiable over trees.

The MSO theory of co-graphs is decidable.


