
Tutorial

Graph Decompositions and the
Verification of Concurrent Recursive Programs I

K Narayan Kumar

Chennai Mathematical Institute, India.

IMS, Singapore, August 2016

Outline

Models

Behaviours

Specifications

Verification via graph decompositions

Conclusion

Concurrent Recursive Programs

Concurrent Recursive Programs

Variables range over finite domains

Concurrent Recursive Programs

Variables range over finite domains

Functions can be recursive

Concurrent Recursive Programs

Variables range over finite domains

Functions can be recursive

Multi-threaded or
Distributed

Modeling Recursion

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

a

b

c

a,c

b

Recursive Programs are
Pushdown Systems

Modeling Recursion …
func f1

{while <true>
{call f1 OR

a OR
exit;}
return;}

func f2
{while <true>
{call f2 OR

a OR
exit;}
return;}

func f3
{while <true>
{call f3 OR

a OR
exit;}

return;}
a

b

c

a,c

b

Multi-threaded Programs are

Multi-Pushdown Systems

Concurrent Communicating Programs

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Queue 4

Queue 3

Queues to model
communication channels

Unordered Channels

Queue 2

Process 1 Process 2

Bags to model unordered

communication channels

Communicating Recursive Processes

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Queue 4

Queue 3

Stack 3
Stack 1

Stack 2

System: Concurrent Processes with Data-Structures

p q

r

• Processes

System: Concurrent Processes with Data-Structures

p q

r

• Processes
• Data structures

• Stacks: recursive programs

System: Concurrent Processes with Data-Structures

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded

System: Concurrent Processes with Data-Structures

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)

System: Concurrent Processes with Data-Structures

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

System: Concurrent Processes with Data-Structures

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

System: Concurrent Processes with Data-Structures

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

Constructive writes

Destructive reads

System: Concurrent Processes with Data-Structures

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

System: Concurrent Processes with Data-Structures

Architecture

• PDA: Pushdown automata
Recursive programs

Special cases

q

• PDA: Pushdown automata
Recursive programs

Special cases

• MPDA: Multi-pushdown automata
Multi-threaded recursive programs

q

• PDA: Pushdown automata
Recursive programs

Special cases

• MPDA: Multi-pushdown automata
Multi-threaded recursive programs

• MPA: Message passing automata
Communicating finite state machines

p

q2

r

q1
c1 c3

c2 c4

q

• PDA: Pushdown automata
Recursive programs

Special cases

• MPDA: Multi-pushdown automata
Multi-threaded recursive programs

• MPA: Message passing automata
Communicating finite state machines

p

q2

r

q1
c1 c3

c2 c4

q

• PN: Petri Nets : Only bags

p q

Remote on-off via 2 channels

p

q2

r

q1
c1 c3

c2 c4

System: Architecture + Boolean Programs

onoff
c1!ac1!b

c2!ac2!b

c1?ac1?b

c3!ac3!b

p

q2

r

q1
c1 c3

c2 c4

Operational semantics

Transition system TS

Configurations (infinite)

local states of processes

contents of data structures

Transitions

Induced by the boolean programs

Outline

Models

Behaviours

Specifications

Verification via graph decompositions

Conclusion

Linear Traces

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Linear Traces

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Linear Traces

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Is every message transmitted to the
bulb?

Causal Response

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Causal Response

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Does it obey the latest order?

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Behaviours as Graphs

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Behaviours as Graphs
Message Sequence Charts

ITU Standard

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·
Does it obey the latest order?

Behaviours as Graphs…

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·
Does it obey the latest order?

Behaviours as Graphs…

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·
Does it obey the latest order?

Behaviours as Graphs…

Graphs for Sequential Systems
q

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Graphs for Sequential Systems
q

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Letter before outermost call is the

same as the letter after its return

Graphs for Sequential Systems
q

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Letter before outermost call is the

same as the letter after its return

Graphs for Sequential Systems
q

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Graphs for Sequential Systems
q

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Nested Words

Alur, Madhusudan, 2009

Concurrent Behaviour with Matching (CBM)

a a b c d

b a c d c

d1

d3

d4

d3 d2

Concurrent Behaviour with Matching (CBM)

a a b c d

b a c d c

d1

d3

d4

d3 d2

A linear order (or path) for each process
Edges labeled with data structures

p

q

Concurrent Behaviour with Matching (CBM)

a a b c d

b a c d c

d1

d3

d4

d3 d2

A linear order (or path) for each process
Edges labeled with data structures

p

q

Communication edges form a matching
Edge labelled d relates the writer and reader of d
Edges follow the discipline of the data structure

LIFO/FIFO/Bag

Graphs vs Linear Traces

Linear Traces Graphs (CBMs)

• Interactions are obfuscated and
very difficult to recover.

• Successor relation not meaningful
• Combinatorial explosion

single distributed behavior results
in a huge number of linear traces

• Interactions are visible
• no combinatorial explosion

Understanding Behaviors

Semantics of CPDS on CBMs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1 0

9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

Semantics of CPDS on CBMs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1

0
9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

a a b c d

b a c d c

d1

d3

d4

d3 d2

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1

0
9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

d1

d3

d4

d3 d2

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1

0
9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

d1

d3

d4

d3 d2

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1

0
9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

d1

d3

d4

d3 d2

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1

0
9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

Accepting states to turn them
into language acceptors

Outline

Models

Behaviours

Specifications

Verification via graph decompositions

Conclusion

Reachability

Reachability

Is the bad state reachable?

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on CBMs

Reachability reduces to

Language Emptiness

Specification over CBMs

ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
d y | x → y

| x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ

p

q

a b

a

b

a b a a a b

b a

a b b a a b a b a b b a

d2 d2 d2d3

d1

d1 d1

d4

d4

d4

d4

MSO: Monadic Second Order Logic

Specification over CBMs

ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
d y | x → y

| x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ

p

q

a b

a

b

a b a a a b

b a

a b b a a b a b a b b a

d2 d2 d2d3

d1

d1 d1

d4

d4

d4

d4

MSO: Monadic Second Order Logic

Specification over CBMs

ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
d y | x → y

| x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ

p

q

a b

a

b

a b a a a b

b a

a b b a a b a b a b b a

d2 d2 d2d3

d1

d1 d1

d4

d4

d4

d4

MSO: Monadic Second Order Logic

Specification over CBMs
Obey the latest order

r

p

Specification over CBMs
Obey the latest order

r

p

Specification over CBMs
Obey the latest order

∀z (r(z) ∧ on(z)) ⇒ ∃y (p(y) ∧ y < z

∧ ∀x (x < z ∧ p(x) ⇒ x ≤ y)

∧ ∃x (x → y ∧ on(x)))

FO

r

p

Based on the word successor relation, and the word total order

LTL over words, MSO over words

Specification over Linear Traces
(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Based on the word successor relation, and the word total order

LTL over words, MSO over words

Specification over Linear Traces
(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Process successor can be recovered

Data edges cannot in general

Based on the word successor relation, and the word total order

LTL over words, MSO over words

Specification over Linear Traces
(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Process successor can be recovered

Data edges cannot in general

Obey the latest order

not expressible

in MSO over Linear Traces

Graphs for Sequential Systems
q

Relate outer most call and

returns

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Graphs for Sequential Systems
q

Relate outer most call and

returns

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

∀x, y

(

a(x − 1) ∧ x ◃ y ∧
¬∃z, z′ (z ◃ z′ ∧ z < x < z′)

)

⇒ a(y + 1)

Graphs for Sequential Systems
q

Relate outer most call and

returns

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Graphs for Sequential Systems
q

Relate outer most call and

returns

Not expressible in MSO over Linear Traces

without nesting relation

even with visible alphabet

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Graphs vs Linear Traces

Linear Traces Graphs (CBMs)

• Too weak for many natural
specifications

• Difficult to write/understand
• Requires syntactical or semantical

restrictions to be meaningful

• Powerful specifications
• Easy to write/understand
• meaningful, interactions built-

in

Expressiveness of Specifications

Outline

Models

Behaviours

Specifications

Verification via graph decompositions

Conclusion

Verification problems
Emptiness or Reachability for CPDS

Inclusion or Universality for CPDS

Satisfiability φ: Is there a CBM that satisfies φ?

Model Checking: S ⊨ φ: Does every CBM accepted by S
satisfy φ?

Monadic second order logic

Propositional dynamic logics

Temporal logics

Model Checking vs Reachability
Reachability reduces to model checking

Model Checking vs Reachability
Reachability reduces to model checking

S ⊨ φ
S¬φ

S ∩ S¬φ = ∅

… when specifications can be translated to systems
… this is not possible in general for graphs

Model checking reduces to Reachability …

CPDS to MSO
Theorem:
From any CPDS S we can construct a MSO formula φS
such that a CBM satisfies φS iff it is accepted by S.

i.e. L(S) = L(φS)

Emptiness of CPDS reduces to satisfiability for MSO

 S accepts a CBM iff φS is satisfiable

Model Checking reduces to satisfiability for MSO.

 S ⊨ φ iff ¬φ ⋀ φS is not satisfiable

Similarly for language containment and universality

Verification problems
Emptiness or Reachability for CPDS

Inclusion or Universality for CPDS

Satisfiability φ: Is there a CBM that satisfies φ?

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Verification problems
Emptiness or Reachability for CPDS

Inclusion or Universality for CPDS

Satisfiability φ: Is there a CBM that satisfies φ?

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logicundecidable in general

Under-approximate Verification

C: class of
behaviors

Satisfiability problem:

φ: Specification

Under-approximate Verification

C: class of
behaviors

Satisfiability problem:

Is φ satisfiable in C?

φ: Specification

Under-approximate Verification

C: class of
behaviors

Emptiness or reachability problem:

S: CPDS

Under-approximate Verification

C: class of
behaviors

Emptiness or reachability problem:

Is there an accepting run of S
on some behavior from C?

S: CPDS

Under-approximate Verification

C: class of
behaviors

Model checking problem: S ⊨C φ

S: CPDS

φ: Specification

Under-approximate Verification

C: class of
behaviors

Model checking problem: S ⊨C φ

Do all behaviors from C
accepted by S satisfy φ?

S: CPDS

φ: Specification

Emptiness or Reachability

Inclusion or Universality

Satisfiability φ

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Under-approximate Verification

undecidable

Bounded data structures

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al., Saivasan et al.]

Mainly for

reachability

Emptiness or Reachability

Inclusion or Universality

Satisfiability φ

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Under-approximate Verification

undecidable

Bounded data structures

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al., Saivasan et al.]

Mainly for

reachability

Reduction to MSO/
Automata over trees.

Bounded-phase to Tree-width

Outline

Models

Behaviours

Specifications

Verification via graph decompositions

Conclusion

Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan
University of Illinois at Urbana-Champaign, USA

madhu@illinois.edu

Gennaro Parlato
LIAFA, CNRS and University of Paris Diderot, France.

gennaro@liafa.jussieu.fr

Abstract
We propose a generalization of results on the decidability of empti-
ness for several restricted classes of sequential and distributed au-
tomata with auxiliary storage (stacks, queues) that have recently
been proved. Our generalization relies on reducing emptiness of
these automata to finite-state graph automata (without storage)
restricted to monadic second-order (MSO) definable graphs of
bounded tree-width, where the graph structure encodes the mech-
anism provided by the auxiliary storage. Our results outline a uni-
form mechanism to derive emptiness algorithms for automata, ex-
plaining and simplifying several existing results, as well as proving
new decidability results.

Categories and Subject Descriptors F.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.4 [Software Engi-
neering]: Software/Program Verification: Model checking; F.4.3
[Theory of Computation]: Formal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification

Keywords model checking, automata, decision procedures, bounded
tree-width

1. Introduction
Several classes of automata with auxiliary storage have been de-
fined over the years that have a decidable emptiness problem. Clas-
sic models like pushdown automata utilizing a stack have a decid-
able emptiness problem [14], and several new models like restricted
classes of multi-stack pushdown automata, automata with queues,
and automata with both stacks and queues, have been proved de-
cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often been
motivated for model-checking systems. Software models can be
captured using automata with auxiliary storage, as stacks can
model the control recursion in programs while queues model FIFO
communication between processes. In abstraction-based model-
checking, data domains get abstracted from programs, resulting in
automata models (e.g., the SLAM tool builds pushdown automata
models using predicate abstraction [7], and the GETAFIX tool
model-checks both single-stack and multi-stack automata mod-
els [18, 19]). The emptiness problem for these automata is the most
relevant problem as it directly corresponds to checking reachability
of an error state.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

However, the various identified decidable restrictions on these
automata are, for the most part, awkward in their definitions—
e.g. emptiness of multi-stack pushdown automata where pushes
to any stack is allowed at any time, but popping is restricted to
the first non-empty stack is decidable! [8]. Yet, relaxing these
definitions to more natural ones seems to either destroy decidability
or their power. It is hence natural to ask: why do these automata
have decidable emptiness problems? Is there a common underlying
principle that explains their decidability?

We propose, in this paper, a general criterion that uniformly
explains many such results— several restricted uses of auxiliary
storage are decidable because they can be simulated by graph
automata working on graphs that capture the storage as well as
their sequential or distributed nature, and are also of bounded tree-
width.

More precisely, we can show, using generalizations of known
results on the decidability of satisfiability of monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graph au-
tomata on MSO-definable graphs of bounded tree-width are decid-
able. Graph automata [24] are finite-state automata (without auxil-
iary storage) that accept or reject graphs using tilings of the graph
using states, where the restrictions on tiling determine the graphs
that get accepted. The general decidability of emptiness of graph
automata on MSO-definable graphs follows since the existence of
acceptable tilings is MSO-definable.

We proceed to show that several sequential/distributed automata
with an auxiliary storage (we consider stacks and queues only in
this paper), can be realized as graph automata working on single
or multiple directed paths augmented with special edges to capture
the mechanism of the storage. Intuitively, a symbol that gets stored
in a stack/queue and later gets retrieved can be simulated by a
graph automaton working on a graph where there is a special edge
between the point where the symbol gets stored to the point where
it gets retrieved. A graph automaton can retrieve the symbol at the
retrieval point by using an appropriate tiling of this special edge.

The idea of converting automata with storage to graph automata
without storage but working on specialized graphs is that it allows
us to examine the complexity of storage using the structure of
the graph that simulates it. We show that many automata with a
tractable emptiness problem can be converted to graph automata
working on MSO definable graphs of bounded tree-width, from
which decidability of their emptiness follows.

We prove the simulation of the following classes of automata
with auxiliary storage by graph automata working on MSO-
definable bounded tree-width graphs:

- Multi-stack pushdown automata with bounded context-switching:
This is the class of multi-stack automata where each computa-

tion of the automaton can be divided into k stages, where in each
stage the automaton touches only one stack (proved decidable first
in [22]). We show that they can be simulated by graph automata on
graphs of tree-width O(k).

Tree-width of Graphs
* A measure of the connectivity of a graph.
* How close is the graph to being a tree?

St. Jude of CS

Tree-width of Graphs
* A measure of the connectivity of a graph.
* How close is the graph to being a tree?

A concept from Graph
theory that is very useful

computer science
St. Jude of CS

Tree-decompositions of Graphs
* A tree whose nodes are labeled by sets of vertices (bags)

* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.

Tree-decompositions of Graphs
* A tree whose nodes are labeled by sets of vertices (bags)

* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.

Tree-decompositions of Graphs
* A tree whose nodes are labeled by sets of vertices (bags)

* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.

Tree-decompositions of Graphs
* A tree whose nodes are labeled by sets of vertices (bags)

* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.

Tree-decompositions of Graphs
* A tree whose nodes are labeled by sets of vertices (bags)

* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.

Size of the Decomposition = Size of largest bag - 1

Tree-decompositions of Graphs

A tree-decomposition of size 2

Tree-width of Graphs

The smallest n such that the graph has
a decomposition of size n

Tree-width of Graphs

The smallest n such that the graph has
a decomposition of size n

A graph with tree-width 2

Classes with bounded tree-width

A class of graphs has tree-width
bounded by k if every graph in the
class has tree-width bounded by k.

A class of graphs has bounded tree-width if it has tree-width
bounded by some k.

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 2 3 3 4 56 7 8 8 9 9 101 45 2 7 911 112

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 2 3 3 4 56 7 8 8 9 9 101 45 2 7 911 112

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 2 3 3 4 56 7 8 8 9 9 101 45 2 7 911 112
1111111111

11

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 2 3 3 4 56 7 8 8 9 9 101 45 2 7 911 112
1111111111

11
10

10

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 2 3 3 4 56 7 8 8 9 9 101 45 2 7 911 112
1111111111

11
10

106666 6

An Example: Nested Words

The class of nested words has tree-width
bounded by 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 2 3 3 4 56 7 8 8 9 9 101 45 2 7 911 112
1111111111

11
10

106666 6

A bit more work gives a bound of 2

Example: Bounded Context Runs
A CPDS with a single process and collection of Stacks
A context is a segment where only one stack is accessed.

Example: Bounded Context Runs
A CPDS with a single process and collection of Stacks
A context is a segment where only one stack is accessed.

A behaviour with 5 contexts

Example: Bounded Context Runs
A CPDS with a single process and collection of Stacks
A context is a segment where only one stack is accessed.

A behaviour with 5 contexts

What is the tree-width of the set of nested words with at most k
contexts?

Tree-width of Bounded Context Runs

1 4 52 3 6 7 8 9 10

Tree-width of Bounded Context Runs

1 4 5

2 3 6 7 8

9 10

Tree-width of Bounded Context Runs

1 4 5

2 3 6 7 8

9 10

Tree-width of Bounded Context Runs

1 4 5

2 3 6 7 8

9 10

1 4 5 5 141 9 10
99

9
9

2 2 3 3 6 6 7 2 8
777 7

Tree-width of Bounded Context Runs

1 4 5

2 3 6 7 8

9 10

1 4 5 5 141 9 10
99

9
9

2 2 3 3 6 6 7 2 8
777 7

1
3
5 8

Add 1,3,5,8 to all
other bags as well.

Tree-width of Bounded Context Runs

1 4 5

2 3 6 7 8

9 10

1 4 5 5 141 9 10
99

9
9

2 2 3 3 6 6 7 2 8
777 7

1
3
5 8

Add 1,3,5,8 to all
other bags as well.

The set of nested words with at most k contexts
has tree-width <= 2+(k-1) = k+1

Tree-width bounds for other Under-approximations

Tree-width bounds for other Under-approximations

Non-trivial arguments are necessary

Why Tree-width?
 Theorem:
1. If the MSO(2) satisfiability problem for a class C of

graphs is decidable then C has bounded tree-width.
2. For any k, checking MSO(2) satisfiability among the

class of graphs with tree-width at most k is decidable.

(D. Seese)

Why Tree-width?
 Theorem:
1. If the MSO(2) satisfiability problem for a class C of

graphs is decidable then C has bounded tree-width.
2. For any k, checking MSO(2) satisfiability among the

class of graphs with tree-width at most k is decidable.

(D. Seese)

Corollary:
If C is any MSO(2) definable family of graphs then, for
any k, checking MSO(2) satisfiability among graphs in C
with tree-width at most k is decidable.

Applying Seese’s Theorem

Satisfiability of Φ over CBMs is equivalent to satisfiability of
Φ ⋀ ΦCBM over graphs.

There is a formula ΦCBM in MSO over graphs
which describes the class of CBMs.

Applying Seese’s Theorem

Satisfiability of Φ over CBMs is equivalent to satisfiability of
Φ ⋀ ΦCBM over graphs.

There is a formula ΦCBM in MSO over graphs
which describes the class of CBMs.

The MSO theory of nested words is decidable.

Applying Seese’s Theorem
Identify an MSO definable under-approximation class C of
behaviours which guarantees a bound on the tree-width.

 eg. all behaviours with at most k context-switches

MSO satisfiability w.r.t. C is decidable via Seese’s Theorem.
 eg. MSO satisfiability w.r.t k context-bounded CBMs

* Model-checking restricted to the class C is decidable via
 Seese’s Theorem.
 eg. model checking CPDS w.r.t. k context-bounded
 behaviours.

Applying Seese’s Theorem
Identify an MSO definable under-approximation class C of
behaviours which guarantees a bound on the tree-width.

 eg. all behaviours with at most k context-switches

MSO satisfiability w.r.t. C is decidable via Seese’s Theorem.
 eg. MSO satisfiability w.r.t k context-bounded CBMs

* Model-checking restricted to the class C is decidable via
 Seese’s Theorem.
 eg. model checking CPDS w.r.t. k context-bounded
 behaviours.

Emptiness, universality, containment is
decidable w.r.t. k context-bounded behaviours.

Automata for better complexity

Theorem:(MadhusudanParlato 2011)
Emptiness problem for graph automata over any MSO
definable class of graphs of tree-width <= k is decidable
in time exponential in k.

The formula for the class is fixed and so plays no role
in the complexity.

 Convert the graph automaton running on CBMS into
a tree automaton running on their tree-
decompositions.

Automata for better complexity

Theorem:(MadhusudanParlato 2011)
Emptiness problem for graph automata over any MSO
definable class of graphs of tree-width <= k is decidable
in time exponential in k.

The formula for the class is fixed and so plays no role
in the complexity.

 Convert the graph automaton running on CBMS into
a tree automaton running on their tree-
decompositions.

Yields the same complexity as handcrafted

algorithms in almost all cases.

encyclopedia of mathematics and its applications

Graph Structure and
Monadic Second-Order Logic

A Language-Theoretic Approach

BRUNO COURCELLE

Université de Bordeaux

JOOST ENGELFRIET

Universiteit Leiden

Other Measures: Desiderata

MSO definable under-approximation classes of behaviours
with bounded measure.

 eg. all behaviours with at most k context-switches

Decidable MSO satisfiability for such bounded classes
 via ?? Theorem.
 eg. MSO satisfiability w.r.t k context-bounded CBMs

* Model-checking …

With a translation to tree-automata to obtain
efficient solutions.

Clique-width
An algebraic measure for graphs.

An algebra to construct graphs, each expression has a size.

* Size of a graph is the size of the smallest expression
generating it.

* MSO decidability for graphs with bounded measure.

Translation to tree-automata : the expression
trees can be used to interpret the graphs

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

a

b b

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

c

b

a

b b

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

c

b

Disjoint union

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

a

b b

c

b

Disjoint union

a

b b

c

b

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

a

b b

c

b

Disjoint union

a

b b

c

b

Disjoint union and
connect all pairs

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Vertices of the graph
correspond to leaves
of the tree.

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Vertices of the graph
correspond to leaves
of the tree.

Edges are introduced by ⊗ nodes between leaves in its
two subtrees

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Vertices of the graph
correspond to leaves
of the tree.

Edges are introduced by ⊗ nodes between leaves in its
two subtrees

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Vertices of the graph
correspond to leaves
of the tree.

Edges are introduced by ⊗ nodes between leaves in its
two subtrees

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

x

x

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

x

x

X

X

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

x

x

X

X

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

x

yx

y

X

X

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

x

yx

y

X

X

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

x

yx

y

X

X

We translate a formula Φ over graphs labelled with ∑ to a formula
Φtree over trees labelled with ∑ ∪ {⊕,⊗}.

MSO decidability for Co-graphs
* The collection of trees labelled by ∑ ∪ {⊕,⊗} that

constitute valid co-graph expressions is a regular tree
language.

 Expressible in MSO over trees (ϕco)

A formula Φ in MSO over graphs is satisfiable over co-graphs
iff

the formula Φtree ⋀ ϕco is satisfiable over trees.

The MSO theory of co-graphs is decidable.

