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Concurrent Recursive Programs

Multi-threaded or
Distributed

Variables range over finite domains

Functions can be recursive



Modeling Recursion

func f1
{while <true>
{call f£f1 OR

a OR
exit;}
return; }




Modeling Recursion ...

func f£2
{while <true>
{call £f2 OR
a OR
exit;}
return; }

Multi-threaded Programs arc

Multi-Pushdown Systems
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Unordered Channels
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Bags to model unordered

communication channels




Communicating Recursive Processes
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System: Concurrent Processes with Data-Structures

* Processes /—‘
 Data structures P

* Stacks: recursive programs, multithreaded

* Queues: communication (FIFO)

* Bags: communication (unordered)
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Special cases

PDA: Pushdown automata
Recursive programs

MPDA: Multi-pushdown automata
Multi-threaded recursive programs

MPA: Message passing automata
Communicating finite state machines

PN: Petri Nets : Only bags




Remote on-off via 2 channels
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Operational semantics
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* "Iransition system TS
* Configurations (infinite)

* local states of processes

* contents of data structures
* Transitions

* Induced by the boolean programs
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Linear Iraces
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Causal Response
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Causal Response
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Behaviours as Graphs
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Behaviours as Graphs
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Behaviours as Graphs...
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Behaviours as Graphs...
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Behaviours as Graphs...
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Graphs for Sequential Systems

@4 .

albalcfaallblajcbftallalbfcblallablbtaalt|{T||{{b



Graphs for Sequential Systems

)

albalcfaallblajcbftallalbfcblal|ablbtaalt|{T|||{b



Graphs for Sequential Systems

)

albalcfaalfblajcbftallalbfcblal{ablbtaalt|{T|||{b



Graphs for Sequential Systems

@4 .

albalcfaallblajcbftallalbfcblallablbtaalt|{T}||{{b



Graphs for Sequential Systems
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Concurrent Behaviour with Matching (CBM)
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Concurrent Behaviour with Matching (CBM)

* A linear order (or path) for each process
* Edges labeled with data structures



Concurrent Behaviour with Matching (CBM)

* A linear order (or path) for each process
* Edges labeled with data structures
¥ Communication edges form a matching
* Edge labelled d relates the writer and reader of d

* Edges follow the discipline of the data structure
* LIFO/FIFO/Bag



Graphs vs Linear Iraces
Understanding Behaviors

Linear Traces Graphs (CBMs)

* Interactions are obfuscated and
very difficult to recover.

* Successor relation not meaningful

e Combinatorial explosion
single distributed behavior results
in a huge number of linear traces

* Interactions are visible
* no combinatorial explosion
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Semantics of CPDS on CBMs

® (—0>(l

b

rdo

5. ds S ds

*beraetoeyd

d4

C @




Semantics of CPDS on CBMs




Semantics of CPDS on CBMs

o Q—0>Q=0>pHh-o0>C—o> 0

0[9%60

\ /V




Semantics of CPDS on CBMs
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Semantics of CPDS on CBMs
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Semantics of CPDS on CBMs
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Specification over CBMs

MSO: Monadic Second Order Logic
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Specification over CBMs

MSO: Monadic Second Order Logic

@ ::= false
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Specification over GBMs
Obey the latest order
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Specification over GBMs
Obey the latest order
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Specification over GBMs
Obey the latest order

Vz (r(z) Aon(z)) = Jy (p(y) Ny < 2
FO AVz(z<zAplz)f=2

Adx(z — yAon(x)))




Specification over Linear lraces
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Specification over Linear lraces
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Speciﬁcation over Linear lraces
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Graphs for Sequential Systems
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Graphs for Sequential Systems
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Graphs for Sequential Systems
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Graphs vs Linear Iraces
Expressiveness of Specifications

Linear Traces

Graphs (CBMs)

* Too weak for many natural
specifications

 Difhicult to write/understand

* Requires syntactical or semantical
restrictions to be meaningful

* Powertul specifications
* Easy to write/understand

* meaningful, interactions built-
in
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Verification problems

* Emptiness or Reachability for CPDS
* Inclusion or Universality for CPDS
* Satisfiability ¢: Is there a CBM that satisfies ¢?

* Model Checking: S E ¢: Does every CBM accepted by S
satisty ¢?

* Monadic second order logic

* Propositional dynamic logics

* Temporal logics
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Model Checking vs Reachability

* Reachability reduces to model checking

* Model checking reduces to Reachability ...

... when specifications can be translated to systems

... this is NOt possible in general for graphs




CPDS to MSO

Theorem:
From any CPDS § we can construct a MSO formula ¢s
such that a CBM satisfies ¢s ift it is accepted by S.

i.e. L(S) = L(¢ps)

T ——— EEEE—

* Emptiness of CPDS reduces to satisfiability for MSO

S accepts a CBM ift ¢s is satisfiable

* Model Checking reduces to satisfiability for MSO.

SE® iff -¢ A ¢s is not satisfiable

* Similarly for language containment and universality



Verification problems

* Emptiness or Reachability for CPDS

* Inclusion or Universality for CPDS

* Satisfiability ¢: Is there a CBM that satisfies ¢?

* Model Checking: S = ¢
* Temporal logics
¥ Propositional dynamic logics

* Monadic second order logic



Verification problems

* Emptiness or Reachability for CPDS

* Inclusion or Universality for CPDS

* Satisfiability ¢: Is there a CBM that satisfies ¢?

* Model Checking: S =

* Temporal logics ﬁe(‘a.\
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Under-approximate Verification
Satisfiability problem:

C: class

behavio ecification

Is ¢ satisfiable in C?
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Under-approximate Verification

Emptiness or reachability problem:

C: class
behaviors

Is there an accepting run of S
on some behavior from C?
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Under-approximate Verification
Model checking problem: § Ec (I)

C: class

behavio: ecification

Do all behaviors trom C
accepted by S satisty ¢?
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Under-approv- ate Verification
3:1 Q\Y ‘EOY * Emptiness or Reachability
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* Bounded data structures
* Propositional dynamic logics

* Existentially bounded [Genest et al.} ¥ Monadic sccandl I 1l

* Acyclic Architectures {La Torre et al., Heufiner et al. Clemente et al.}

* Bounded context switching {Qadeer, Rehofl, [LaTorre et al 1, ...

* Bounded phase {LaTorre et al.} Reduction to MSO/

Automata over trees.

* Bounded scope {LaTorre et al.l

* Priority ordering {Atig et al., Saivasan et al.1



Bounded-phase to Tree-width
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Several future directions are interesting. First, the class

of multiple nested word languages with a bounded num-
ber of phases is of bounded tree-width (this is the prop-

erty that allows us to embed them in trees). It would be
interesting to characterize naturally the exact class of mul-
tiple nested words that have bounded tree-width. Secondly,
we believe that our results have applications to other areas

in verification, for instance in checking parallel programs
that communicate with each other using unbounded FIFO

queues, as multiple stacks can be used to simulate queues.
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Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan

University of Illinois at Urbana-Champaign, USA
madhu@illinois.edu

)stract

- propose a generalization of results on the decidability of empti-
s for several restricted classes of sequential and distributed au-
1ata with auxiliary storage (stacks, queues) that have recently
n proved. Our generalization relies on reducing emptiness of
se automata to finite-state graph automata (without storage)
ricted to monadic second-order (MSO) definable graphs of
mmded tree-width where the oranh structure encodes the mech-

Gennaro Parlato

LIAFA, CNRS and University of Paris Diderot, France.
gennaro@liafa.jussieu.fr

However, the various identified decidable restrictions on the
automata are, for the most part, awkward in their definitions
e.g. emptiness of multi-stack pushdown automata where pust
to any stack 1s allowed at any time, but popping is restricted
the first non-empty stack is decidable! [8]. Yet, relaxing the
definitions to more natural ones seems to either destroy decidabil
or their power. It is hence natural to ask: why do these autom:
have decidable emptiness problems? Is there a common underlyi
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Iree-width ot Graphs

* A measure of the connectivity of a graph.

* How close is the graph to being a tree?

A concept from Graph

theory that is very useful
computer science
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* A tree whose nodes are labeled by sets of vertices (bags)
* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.
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Iree-decompositions of Graphs

* A tree whose nodes are labeled by sets of vertices (bags)
* Every vertex appears in some bag.
* (u,v) is an edge then there is a bag containing u,v
* For any u the bags containing u form connected part of the tree.

Size of the Decomposition = Size of largest bag - 1



Iree-decompositions of Graphs

A tree-decomposition of size 2
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The smallest n such that the graph has

a decomposition of size n




Iree-width ot Graphs

The smallest n such that the graph has

a decomposition of size n

A graph with tree-width 2




(Classes with bounded tree-width

A class of graphs has tree-width
bounded by k if every graph in the

class has tree-width bounded by k.

A class of graphs has bounded tree-width if it has tree-width
bounded by some k.
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bounded by 3
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An Example: Nested Words

The class of nested words has tree-width

bounded by 3
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An Example: Nested Words

The class of nested words has tree-width

bounded by 3

/77;\\

1 ——)2—)3——)4 >—>»6 [=—> 8 —>9——>10

A bit more work gives a bound of 2
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* A CPDS with a single process and collection of Stacks

* A context is a segment where only one stack is accessed.
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Example: Bounded Context Runs

* A CPDS with a single process and collection of Stacks

* A context is a segment where only one stack is accessed.

-

e )y ) e

A behaviour with 5 contexts

What is the tree-width of the set of nested words with at most k
contexts’



1ree-width of Bounded Context Runs
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1ree-width of Bounded Context Runs

3 Add 1,3,5,8 to all
= m

I A —>»7—>s  other bags as well.

The set of nested words with at most k contexts
has tree-width <= 2+(k-1) = k+1




Tree-width bounds for other Under-approximations
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- Multi-stack pushdown automata with bounded context-switching:  This is the class of multi-stack
automata where each computation of the automaton can be divided into k stages, where in each stage the
automaton touches only one stack (proved decidable first in [14]). We show that they can be simulated by
graph automata on graphs of tree-width O(k).

- Multi-stack pushdown automata with bounded phases: These are automata that generalize the
bounded-context-switching ones: the computations must be dividable into k phases, for a fixed k, where
in each phase the automaton can push onto any stack, but can pop only from one stack (proved decidable
recently in [11]). We show that graph automata on graphs of tree-width O(2*) can simulate them.

- Ordered multi-stack pushdown automata:  The restriction here is that there a finite number of stacks
that are ordered, and at any time, the automaton can push onto any stack, but pop only from the first non-
empty stack. Note that the computation is not cut into phases, as in the above two restrictions. We show that

automata on graphs of tree-width O(n - 2") (where n is the number of stacks) can simulate them.

- Distributed queue automata on polyforest architectures: Distributed queue automata is a model
where finite-state processes at n sites work by communicating to each other using FIFO channels, modeled
as queues. It was shown recently, that when the architecture is a polyforest (i.e. the underlying undirected
graph is a forest), the emptiness problem is decidable (and for other architectures, it is undecidable) [12]. We




Iree-width bounds for other Under-approximations

0O = MadhuParlato.pdf (page 2 of 28)
Ovl Q | Q § (O 453 B=\8 §= Q Search

- Multi-stack pushdown automata with bounded context-switching:  This is the class of multi-stack
automata where each computation of the automaton can be divided into k stages, where in each stage the
automaton touches only one stack (proved decidable first in [14]). We show that they can be simulated by
graph automata on graphs of tree-width O(k).

- Multi-stack pushdown automata with bounded phases: These are automata that generalize the
bounded-context-switching ones: the computations must be dividable into k phases, for a fixed k, where
in each phase the automaton can push onto any stack, but can pop only from one stack (proved decidable
recently in [11]). We show that graph automata on graphs of tree-width O(2*) can simulate them.

- Ordered multi-stack pushdown automata:  The restriction here is that there a finite number of stacks
that are ordered, and at any time, the automaton can push onto any stack, but pop only from the first non-
empty stack. Note that the computation is not cut into phases, as in the above two restrictions. We show that

automata on graphs of tree-width O(n - 2") (where n is the number of stacks) can simulate them.

- Distributed queue automata on polyforest architectures: Distributed queue automata is a model
where finite-state processes at n sites work by communicating to each other using FIFO channels, models~
as queues. It was shown recently, that when the architecture is a polyforest (i.e. the underlvir~

graph is a forest), the emptiness problem is decidable (and for other architectures, it *~-
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If the MSO(2) satisfiability problem for a class C of

graphs is decidable then C has bounded tree-width.

2. For any k, checking MSO(2) satisfiability among the
class of graphs with tree-width at most k is decidable.
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Theorem:  (D. Seese)

If the MSO(2) satisfiability problem for a class C of

graphs is decidable then C has bounded tree-width.

2. For any k, checking MSO(2) satisfiability among the
class of graphs with tree-width at most k is decidable.

et

Corollary:

If C is any MSO(2) definable family of graphs then, for
any k, checking MSO(2) satisfiability among graphs in C
with tree-width at most k is decidable.
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® A Ocpm over graphs.



Applying Seese’s 1 heorem

There is a formula ®cgm in MSO over graphs

which describes the class of CBMs.

— —

* Satisfiability of @ over CBMs is equivalent to satisfiability of
® A Ocpm over graphs.

The MSO theory of nested words is decidable.
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eg. all behaviours with at most k context-switches

* MSO satisfiability wir.t. C is decidable via Seese’s Theorem.
eg. MSO satisfiability w.r.t k context-bounded CBMs

* Model-checking restricted to the class C is decidable via
Seese’s Theorem.
eg. model checking CPDS wr.t. k context-bounded
behaviours.



Applying Seese’s 1 heorem

* Identify an MSO definable under-approximation class C of
behaviours which guarantees a bound on the tree-width.
eg. all behaviours with at most k context-switches

* MSO satisfiability wir.t. C is decidable via Seese’s Theorem.
eg. MSO satisfiability wr.t k context-bounded CBMs

* Model-checking restricted to the class C is decidable via
Seese’s Theorem.
eg. model checking CPDS wr.t. k context-bounded
behaviours.

Emptiness, universality, containment is

decidable w.r.t. k context-bounded behaviours.




Automata for better complexity

Theorem:(MadhusudanParlato 2011)

Emptiness problem for graph automata over any MSO
definable class of graphs of tree-width <=k is decidable

in time exponential in k.

T —e o

¥ The formula for the class is fixed and so plays no role
in the complexity:.

¥ Convert the graph automaton running on CBMS into
a tree automaton running on their tree-
decompositions.



Automata for better complexity

Theorem:(MadhusudanParlato 2011)

Emptiness problem for graph automata over any MSO
definable class of graphs of tree-width <= k is decidable

in time exponential in k.

|

¥ The formula for the class is fixed and so plays no role
in the complexity:.
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Other Measures: Desiderata

¥ MSO definable under-approximation classes of behaviours
with bounded measure.
eg. all behaviours with at most k context-switches

¥ Decidable MSO satisfiability for such bounded classes
via ?? Theorem.

eg. MSO satisfiability w.r.t k context-bounded CBMs

* Model-checking ...

With a translation to tree-automata to obtain

efficient solutions.




Chique-width

* An algebraic measure for graphs.
* An algebra to construct graphs, each expression has a size.

* Size of a graph is the size of the smallest expression
generating it.

* MSO decidability for graphs with bounded measure.

Translation to tree-automata : the expression

trees can be used to interpret the graphs
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Co-graphs: An example

* Family of graphs generated by the following algebra:

G:= 2a€e2 1 GG IGRG

° o o L

Single vertex

labelled a — : Disjoint union and
Disjoint union ;
connect all pairs
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Co-graphs to Irees

Every co-graph has an expression generating it.

(b®b)®a)®((b®c)

Vertices of the graph
correspond to leaves
of the tree.

Edges are introduced by ® nodes between leaves in its
two subtrees
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Interpretation on Irees

(b®b)®a)® (b ® c)

&
®/ \®

Graph Tree

A

There is a vertex x There is a leaf x

There is a set of vertices X | There is a set of leaves X

a(x) a(x)

There is path from x toy
whose highest node is a ®

Ex,y)

We translate a formula @ over graphs labelled with X~ to a formula
®..cc over trees labelled with X U {®,&)}.



MBSO decidability for Co-graphs

* The collection of trees labelled by ~ U {®,®} that

constitute valid co-graph expressions is a regular tree

language.
Expressible in MSO over trees (¢co)

A formula @ in MSO over graphs is satisfiable over co-graphs
ift

- e e — ——— - ——

the formula Pee A Qoo is satisfiable over trees.

T —— T

The MSO theory of co-graphs is decidable.



