Representations of the symmetric group Homework 5 (Due on 20/02/2015 at 9:10 a.m.)

Instructions:

- Solutions must be complete and legible in order to earn maximum points.
- You may discuss and work together if necessary but you must write your own solutions.
- 1. Suppose χ is a non-zero, non-trivial character of G and that $\chi(g)$ is a non-negative real number for all $g \in G$. Prove that χ is reducible.
- 2. Suppose χ is an irreducible character of G. Suppose $z \in Z(G)$ and that z has order m. Prove that there exists an mth root of unity $\lambda \in \mathbb{C}$ such that for all $g \in G$,

$$\chi(zg) = \lambda \chi(g).$$

3. Let $G = S_4$.

- (a) Calculate the character table of A_4 giving proper reasoning for each step.
- (b) Restrict each irreducible representation of S_4 to A_4 and decompose it as a direct sum of irreducible representations of A_4 .
- (c) Induce each irreducible representation of A_4 to S_4 and decompose it as a direct sum of irreducible representations of S_4 .
- 4. Show that induction is transitive as follows: suppose we have groups $K \subseteq H \subseteq G$ and a representation ρ of K, then

$$\rho \uparrow^G_K \cong (\rho \uparrow^H_K) \uparrow^G_H.$$