Representations of the symmetric group Homework 4 (Due on 13/02/2015 at 9:10 a.m.)

Instructions:

- Solutions must be complete and legible in order to earn maximum points.
- You may discuss and work together if necessary but you must write your own solutions.
- 1. Let N be a normal subgroup of G and let $\rho: G/N \to GL(V)$ be a representation of G/N. We showed in class that this representation can be lifted to a representation of ψ of G. Prove that:
 - (a) If ρ is faithful then kernel of ψ is N.
 - (b) ρ is irreducible iff ψ is.
- 2. This example shows that the process in the above example can be reversed. Let $\psi : G \to \operatorname{GL}(V)$ be a representation of G and let N be a normal subgroup of G contained in the kernel of ψ . Define $\rho : G/N \to \operatorname{GL}(V)$ by $\rho(gN) = \psi(g)$.

Show that ρ is a well-defined representation of G/N. For what N will ρ be faithful?

- 3. Let $\rho: G \to \operatorname{GL}(V)$ be a representation of G and let N be the kernel of ρ .
 - (a) Suppose ρ has character χ and degree d. Prove that $g \in N$ iff $\chi(g) = d$.
 - (b) Let H be a subgroup of G and consider the corresponding coset representation of G. Show that in this case, $N = \bigcap_i g_i H g_i^{-1}$, where $\{g_i\}_{i=1}^k$ is a transversal for H in G.
- 4. Find the conditions under which each of the following representations are faithful: trivial, regular, coset, sign (for $G = S_n$), defining (for $G = S_n$) and degree 1 for C_n , the cyclic group of order n.

(The defining representation of S_n is the degree *n* permutation representation of S_n , arising from the permutation action on the coordinates of a point in \mathbb{C}^n .)