Representations of symmetric groups
 Homework
 (Due on 20/01/2015 at 2:00 p.m.)

Instructions:

- Solutions must be complete and legible in order to earn maximum points.
- You may discuss and work together if necessary but you must write your own solutions. Copied solutions (from each other or books or the internet) are easy to identify and easier to grade as they can only earn a zero.

1. Let $k=\mathbb{Z} / p \mathbb{Z}$. Consider the two dimensional representation of the cyclic group $G=\mathbb{Z} / p \mathbb{Z}$ over k defined as

$$
a \mapsto\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)
$$

where a is a generator of G. Find a subspace to show that Maschke's theorem does not hold.
2. Write out the matrices $\rho(g)$ for every $g \in G$ for the representation of the symmetric group S_{3} on \mathbb{C}^{3} given by permuting coordinates.
3. Suppose G is a finite group such that every irreducible $\mathbb{C}[G]$-module is 1-dimensional. Prove that G is abelian.

