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Abstract. In this article we give a description of Sliding process and Jeu De Taquin which gives
an alternate description of the Knuth equivalence of two skew tableaux.

1. Introduction

There are two fundamental operations on tableaux from which most of their combinatorial proper-
ties can be deduced: the Schensted bumping algorithm and the Schützenberger sliding algorithm.
When repeated, the Schensted algorithm leads to the Robinson Schensted Knuth correspondence
and the sliding algorithm leads to JEU DE TAQUIN. We aim to show that equivalence of two
tableaux (such that one is obtained from the other by some sequence of slides) is same as the
Knuth equivalence of those two tableaux.

2. Row Insertion and Column Insertion

In this section we will discuss the insertion process and the preliminary definitions and lemmas
associated to it.

Definition 2.1. Let µ ⊆ λ as Ferrers diagram. Then λ/µ is called the corresponding skew diagram
or skew shape. It is defined as follows : λ/µ = {c : c ∈ λ and c/∈ µ}. A skew diagram is normal if
µ = 0.

Definition 2.2. A partial tableau is an array with distinct entries whose rows and columns in-
crease. (So a partial tableau will be standard if its elements are precisely 1, 2, . . . , n.)

Definition 2.3. If λ is a diagram, then an inner corner of λ is a node (i, j) ∈ λ whose removal
leaves the Ferrers diagram of a partition.

Definition 2.4. If λ is a diagram, then an outer corner of λ is a node (i, j) /∈ λ whose addition
produces the Ferrers diagram of a partition.

Definition 2.5. Let P be a partial tableau. x is an element not in P . Row inserting x in P means

(1) Set R = 1st row of P .
(2) While x is less than some element of row R, do

(i) Let y be the smallest element of R greater than x and replace y by x in R (denoted by
R ← x).

(ii) Set x := y and R := the next row down
(3) Now x is greater than every element of R, so place x at the end of row R and stop.

Let the new tableau formed after row insertion of x in P be P ′. Then we write rx(P ) = P ′ .

Definition 2.6. Suppose that Q is a partial tableau of shape µ and that (i, j) is an outer corner
of µ. If k is greater than every element of Q, then to place k in Q at cell (i, j), merely set Qi,j :=
k. The restriction on k guarantees that the new array is still a partial tableau.

Definition 2.7. With every permutation π ∈ Sn, we can associate two tableaux P an Q called
the P tableau or the insertion tableau and Q tableau or the recording tableau respectively. Their
construction can be done in the following way :

Let π =

(
1 2 3 · · · n− 1 n
x1 x2 x3 · · · xn−1 xn

)
.
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We construct a sequence of tableau pairs :
( Po, Qo) == (0, 0), (P1, Q1), (P2, Q2), ..., (Pn, Qn) == (P,Q)
where xl, x2, ..., xn are inserted into the P ’s and 1, 2, ..., n are placed in the Q’s so that
shape Pk = shape Qk for all k
i.e. starting with the pair of empty tableaux (Po, Qo) and assuming that (Pk−1, Qk−1) is already
constructed, we define (Pk, Qk) as

Pk = rxk
(Pk−1)

Qk = tableau formed by the placement of k at box (i, j) of Qk−1 where (i, j) is also the box of Pk

where insertion has terminated.
P = Pn and Q = Qn

(Note: There is in fact a bijection between permutations in Sn and pairs of standard tableaux of
shape λ where λ is a partition of n. Hence given two standard tableaux P and Q , we can in fact
get back the permutation π associated to it)

Definition 2.8. Column insertion is same as row insertion. Just in place of rows we work with
columns. Column inserting x in a tableau P to obtain tableau P ′ is denoted as cx(P ) = P ′.

Lemma 2.9. Let P be a partial tableau. x is an element not in P . Suppose during the insertion
rx(P ) = P ′, the elements x′, x”, . . . are bumped off from boxes (1, j′), (2, j”), . . . respectively. Then

(1) x < x′ < x” < . . .
(2) j′ ≥ j” ≥ . . .
(3) P ′i,j ≤ Pi,j

Proposition 2.10. P is a partial tableau. x and y are distinct elements not in P . Then

cyrx(P ) = rxcy(P )

Theorem 2.11. If P (π) = P , then P (πr) = P t where t denotes transposition. (If π = x1x2 . . . xn
then πr is the reversal of π, i.e., πr = xnxn−1 . . . x1.)

Proof.

P (πr) = rx1 ...rxn−1rxn(φ) ⇒ P (πr) = rx1 ...rxn−1cxn(φ) (Initially tableaux is empty)

⇒ P (πr) = cxnrx1 ...rxn−1(φ) (by Proposition 2.10)

⇒ P (πr) = cxnrx1 ...cxn−1(φ)

...

⇒ P (πr) = cxncxn−1 ...cx1(φ) (By induction)

⇒ P (πr) = P t (By definition of column insertion)

�

Definition 2.12. Two permutations π and σ ∈ Sn are P-equivalent i.e. π
P∼= σ, if P(π) = P(σ).

For example. π =736254 and σ =732654 are P-equivalent.

3. Knuth Equivalence

In this section a description of Knuth relations is given and the theorems associated to it are
explained.

Definition 3.1. Suppose x < y < z. Then π ,σ ∈ Sn differ by a Knuth relation of the 1st kind

i.e. π
1∼= σ if

π = x1. . . . yxz . . . xn and σ = x1 . . . yzx . . . xn or vice versa.

They differ by a Knuth relation of 2nd kind i.e. π
2∼= σ if

π = x1 . . . xzy . . . xn and σ = x1 . . . zxy . . . xn or vice versa.
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Definition 3.2. Two permutations π ,σ ∈ Sn are Knuth equivalent i.e. π
K∼= σ , if there is a

sequence of permutations such that

π = π1
i∼= π2

j∼= · · ·
l∼= πk = σ where i, j, . . . l ∈ {1, 2}

for example. π = 736254 and σ = 732654 are Knuth-equivalent as they differ by a Knuth relation
of the 1st kind.

Definition 3.3. Let P be a tableau. Row word of P is a permutation

πP = RlRl−1...R1 where Ri (i = 1, 2, ...l) is the row of P .

Lemma 3.4. If P is a standard tableau, then insertion tableau of πP is P .

Theorem 3.5. If π , σ ∈ Sn, then

π
K∼= σ ⇐⇒ π

P∼= σ

Definition 3.6. Two skew partial tableaux P and Q are said to be Knuth equivalent

i.e. P
K∼= Q if πp

K∼= πQ.

4. Sliding and Jeu de Taquin

Definition 4.1. Let P be a partial tableau of shape λ/µ. A forward slide from box c is performed
as follows :

(1) Pick c to be an inner corner of µ
(2) While c is not an inner corner of λ, do
(i) If c = (i, j) then let c′ = box of min {Pi+1,j , Pi,j+1}
(ii) Slide Pc′ into box c and make c = c′

The resulting tableau is jc(P ).

A backward slide from box c on P is performed as follows :

(1) Pick c to be an outer corner of λ
(2) While c is not an outer corner of µ , do
(i) If c = (i, j) then let c′ = box of max {Pi−1,j , Pi,j−1}
(ii) Slide Pc′ into box c and make c = c’

The resulting tableau is jc(P ).

Note : Sliding is an invertible operation. If c is the box for forward slide on P and box vacated by
the slide is d, then a backward slide into d restores P .
i.e jdj

c(P ) = P .

Also, jcjd(P ) = P .

Let P =
6 8

2 4 5 9
1 3 7

Forward slide at c = (1, 3).

• 5 8
2 4 6 9

1 3 7
−→

4 5 8
2 • 6 9

1 3 7
−→

4 5 8
2 6 • 9

1 3 7
−→

4 5 8
2 6 9 •

1 3 7

This is jc(P )
Backward slide at d = (3, 5).

4 5 8
2 6 9 •

1 3 7
−→

4 5 8
2 6 • 9

1 3 7
−→

4 5 8
2 • 6 9

1 3 7
−→

• 5 8
2 4 6 9

1 3 7



4 ARPITA KAR(BSC-2ND YEAR)

This is jd(P ).

Clearly, jdj
c(P ) = P . Also, it can be shown that jcjd(P ) = P .

Definition 4.2. A sequence of cells (c1, c2, ...cn) is a slide sequence for a tableau P if we can legally
form P = P0, P1, P2...Pl where Pi is obtained from Pi−1 by performing a slide into cell ci.
Partial tableaux P and Q are equivalent i.e P ∼= Q if Q can be obtained from P by some sequence
of slides.

Lemma 4.3. Let a1 < a2 < ...an

(1) If x < a1, then a1a2...anx
K∼= a1xa2...an

(2) If x > an, then xa1a2...an
K∼= a1a2...an−1xan

Proposition 4.4. If P and Q are standard skew tableaux,

P ∼= Q =⇒ P
K∼= Q

.

Proof. By induction it suffices to prove the theorem when P and Q differ by one move( either a
forward slide or a backward slide). If the move is horizontal, then clearly πP = πQ. If the move is
vertical, then we can restrict to the case where P and Q have two rows. Let x be the element being
moved and that Rl and Sl ( respectively Rr and Sr ) are left ( respectively right ) portions of the
two rows. In P say x was in between Rl and Rr and sliding is done from box just below x. In Q,
x has slid down and a box between in Rl and Rr is empty.

Now induction is done on the number of elements in P (or Q). If both contain only x, we are done.
If not, suppose |Rr| > |Sr|. Let y be the rightmost element of Rr and let P ′ and Q′ be P and Q
respectively with y removed. By our assumption, P ′ and Q′ are still skew tableaux. So, applying
induction yields

πP = πP ′y
K∼= πQ′y = πQ

Similarly if |Sl| > |Rl|, we are done.

So we just need to consider the case when number of elements in Rr is equal to number of elements
in Sr and number of elements in Rl is same as number of elements in Sl. Say,

Rl = x1x2...xj

Rr = y1y2...yk

Sl = z1z2...zj

Sr = w1w2...wk

Either j > 0 or k > 0. Let us consider j > 0.

Since rows and columns of P increases, we have

πP = z1 . . . zjw1 . . . wkx1 . . . xjxy1 . . . yk
⇒ πP ∼= z1x1z2 . . . zjw1 . . . wkx2 . . . xjxy1 . . . yk (By part 1 of Lemma 4.3)
⇒ πP ∼= z1x1z2 . . . zjxw1 . . . wkx2 . . . xjy1 . . . yk (By induction)
⇒ πP ∼= z1z2 . . . zjxw1 . . . wkx1x2 . . . xjy1 . . . yk (By part 1 of Lemma 4.3)
⇒ πP ∼= πQ
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Illustration using an example : Let P =

4
2 5

3 6
7

We perform sliding on this skew tableau and convert it into a normal tableau Q. The conversion is
done as follows :-

• 4
2 5

3 6
7

−→

2 4
• 5

3 6
7

−→

2 4
• 5
3 6
7

2 4
3 5
• 6
7

−→

2 4
3 5
6 •
7

−→

2 • 4
3 5
6
7

−→ Q =

2 4
3 5
6
7

Thus, P ∼= Q.
Also, πP = (736254) and πQ = (763524)
Insertion tableau for πQ is Q itself. Also, it turns out that insertion tableau for πP is Q. Thus

πP
P∼= πQ. By Theorem 3.5, we get πP

K∼= πQ. i.e. P
K∼= Q.

Definition 4.5. Given a partial skew tableau P , we play Jeu de Taquin by choosing an arbitrary
slide sequence that brings P to normal shape and then applying the slides. Resulting tableau is j(P ).
In fact, j(P ) is independent of the slide sequence .

Theorem 4.6. If P is a partial skew tableau that is brought to a normal tableau P ′ by slides, then
P ′ is unique. In fact, P ′ is the insertion tableau for πP

Proof. By Proposition 4.4, πP
K∼= πP ′ .

So,by Theorem 3.5, πP and πP ′ have the same insertion tableau. Finally, Lemma 3.4 tells us that
insertion tableau for πP ′ is P’ itself.

�

Finally, we state the main theorem of this article.

Theorem 4.7. [Theorem 3.7.8 [1]] Let P and Q be partial skew tableaux. Then

P ∼= Q⇐⇒ P
K∼= Q.

Proof. The forward direction is already proved in Proposition 4.4. For the other implication, since

P
K∼= Q, their row words must have the same P tableaux ( From Theorem 3.5 ). So by the previous

theorem, j(P ) = j(Q) = P ′(say). Thus we take P to P ′ and then the inverse of the sequence taking
Q to P ′. Hence P ∼= Q. �

5. Conclusion

Thus we have given a characterisation of Knuth equivalence in terms of slides.
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