Representations of symmetric groups Lecture 6

In the last lecture we calculated the character table of S_3 . Let us analyze the irreducible representation corresponding to the last row.

Since S_3 is the group of permutations on 3 elements there is an action of S_3 on $V = \mathbb{C}^3$ which permutes coordinates. If $\{e_1, e_2, e_3\}$ is the standard basis, then $\rho_g(e_i) := e_{g(i)}$. Let $\rho : S_3 \to \operatorname{GL}(V)$ denote the corresponding representation.

It is easy to see the subspace $W = \text{span}(e_1+e_2+e_3)$ is a S_3 -invariant subspace of V. We know from general theory that there exists an S_3 -invariant complement W^{\perp} of W. This complement can be constructed by taking the kernel of the projection of V onto W. Then $W^{\perp} = \{(a, b, c) \mid a+b+c=0\}$.

Thus, $V = W \oplus W^{\perp}$. The representation W is infact isomorphic to the trivial representation. For $w = (w_1, w_2, w_3) \in W$ we have that $w_1 = w_2 = w_3$ so that $\rho_g^W(w) = w$ for every $w \in W$. Thus $\rho_r^W = e$.

Let $f_1 = (1, 1, 1)$ be a basis of W and let us choose a basis for W^{\perp} as, say $f_2 = (0, 1, -1), f_3 = (1, 0, -1)$. The $\{f_1, f_2, f_3\}$ forms a basis of V.

Claim: W^{\perp} is an irreducible representation of G.

If we can show that for some $g \in G$, the g-invariant subspaces of V are not preserved by some other element $h \in G$, then we are done, since this would show that there is no way to decompose V into G-invariant subspaces.

Let $g = (1 \ 3 \ 2) \in S_3$. W.r.t. the basis $\{f_2, f_3\}$ of W^{\perp} , $\rho_g^{W^{\perp}} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$. The eigenvalues

of $\rho_g^{W^{\perp}}$ are $\{\omega = \frac{-1+i\sqrt{3}}{2}, \overline{\omega} = \frac{-1+i\sqrt{3}}{2}\}$ and suppose the (linearly independent) eigenvectors are v_1 and v_2 . The eigenspaces U_1 and U_2 spanned by v_1 and v_2 respectively are g-invariant subspaces of W^{\perp} .

Let
$$h = (1 \ 2), \ \rho_h^{W^{\perp}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Then

$$\rho_g^{W^{\perp}}(\rho_h^{W^{\perp}v_1)} = \rho_{gh}^{W^{\perp}(v_1)}$$

$$= \rho_{hg^{-1}}^{W^{\perp}}(v_1) \text{ (since } gh = hg^{-1})$$

$$= \rho_h^{W^{\perp}}(\rho_{g^{-1}}^{W^{\perp}}v_1)$$

$$= \rho_h^{W^{\perp}}(\overline{\omega}v_1)$$

$$= \overline{\omega}(\rho_h^{W^{\perp}}v_1).$$

Thus $\rho_h^{W^{\perp}} v_1 \in U_2$. Thus $\rho_h^{W^{\perp}}$ interchanges the subspaces U_1 and U_2 . Therefore, there is no G-invariant subspace of W^{\perp} .

Thus, W^{\perp} is a 2-dim'l irreducible representation of S_3 . It is called the 'standard' or 'defining' representation of S_3 .

The triangle representation: S_3 acts on the vertices of an equilateral triangle in \mathbb{R}^2 by permuting its vertices, i.e. as isometries of \mathbb{R}^2 . Now $S_3 \subset \operatorname{GL}_2(\mathbb{R}) \subset \operatorname{GL}_2(C)$, thus we get a corresponding action of S_3 on \mathbb{C}^2 . This is a 2-dim'l representation called the triangle representation of S_3 on \mathbb{C}^2 . We will denote it by T.

The correspondence between elements of S_3 and isometries of the equilateral triangle are given as follows:

 $e \leftrightarrow id$, 2-cycles \leftrightarrow reflections, 3-cycles \leftrightarrow rotations.

Claim: T is an irreducible representation of S_3 .

Let A denote the matrix of rotation through 120° (this corresponds to the permutation $g = (1 \ 2 \ 3)$ in S_3). Then $A^3 = I$, which implies $A^2 + A + I = 0$ (since $A \neq I$). Let ω and $\overline{\omega}$ be the distinct eigenvalues of A and v_1, v_2 denote the corresponding eigenvectors. Now let B denote the reflection matrix corresponding to the permutation $(1 \ 2) \in S_3$. Check that B interchanges the eigenspaces of A (i.e. $Bv_1 \in \text{span}(v_2)$ and $Bv_2 \in \text{span}(v_1)$). Thus there are no S_3 -invariant subspaces of T and we are done.

By uniqueness, T is isomorphic to W_2 . For another proof, consider the action of S_3 on the triangle in W_2 having vertices (2, -1, -1), (-1, 2, -1), (-1, -1, 2).

$m_{1} = -1$	and corresponding ρ	C 1	• 1 •11	· · ·	c a
	ind corregnonding /	a tor bach	irroduciblo	ronrocontation	ot Sa
\mathbf{I} ADLE I. \mathbf{y} a	mu corresponding k	J_a ioi caun	meducine	representation	01D3

g	Trivial	Sign	Standard repr.		
	repr.	repr.	W_2	Т	
e	1	1	$\left(\begin{array}{cc}1&0\\0&1\end{array}\right)$	$\left(\begin{array}{rrr}1&0\\0&1\end{array}\right)$	
(1 2)	1	-1	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\left(\begin{array}{rrr}1&0\\0&-1\end{array}\right)$	
(1 3)	1	-1	$\left(\begin{array}{cc}1&0\\-1&-1\end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{array}\right)$	
(2 3)	1	-1	$\left(\begin{array}{cc} -1 & -1 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{array}\right)$	
$(1\ 2\ 3)$	1	1	$\left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{array}\right)$	
(1 3 2)	1	1	$\left(\begin{array}{cc} -1 & -1 \\ 1 & 0 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{array}\right)$	

6.1.	The standard	representation of	S_n .	The f	ollowing	lemma is	easy to	prove:

Lemma 6.1. For a representation V of a finite group G, let $V = V_1^{\oplus a_1} \oplus \cdots \oplus V_k^{\oplus a_k}$ be the decomposition of V into distinct irreducibles. Then

$$\dim \operatorname{Hom}_G(V, V) = \sum a_i^2.$$

Proof. Note that if U is an irreducible representation of G then

- $\operatorname{Hom}_G(U^{\oplus p}, U) = \operatorname{Hom}_G(U, U)^{\oplus p} \cong \mathbb{C}^p.$
- Hom_G $(U^{\oplus p}, U^{\oplus q}) \cong \mathbb{C}^{pq}$

 \Box The symmetric group $G = S_n$ acts on $V = \mathbb{C}^n$ by permuting coordinates giving rise to the permutation representation. Let $W_1 = \text{span}\{(1, 1, \dots, 1)\}$, then W_1 is a 1-dim'l G-invariant subspace of V. Let

$$W_2 = W_1^{\perp} = \{ (v_1, \dots, v_n) \in V \mid v_1 + \dots + v_n = 0 \}.$$

Then W_2 is also a *G*-invariant subspace of *V* of dimension n-1.

Claim: W_2 is irreducible.

Let $A = (a_{ij})$ be the matrix form of an element of $\operatorname{Hom}_G(V, V)$ w.r.t some basis of V. Then A is G-linear which means A commutes with each $\rho_g \in \operatorname{Hom}_G(V, V)$. Since V is the permutation representation, each ρ_g is a permutation matrix. Thus A permutes with all $(n-1) \times (n-1)$ permutation matrices. As a result, $a_{ii} = a_{jj}$ for all $i \neq j$ and $a_{ij} = a_{kl}$ for all $i \neq k, j \neq l$. This gives

$$A = \begin{pmatrix} a & b & \dots & b \\ b & a & \dots & b \\ b & b & \ddots & b \\ b & b & \dots & a \end{pmatrix} = aI + b \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 1 \\ 1 & 1 & \ddots & 1 \\ 1 & 1 & \dots & 0 \end{pmatrix}.$$

Thus we have found a basis for $\text{Hom}_G(V, V)$ implying that $\dim \text{Hom}_G(V, V) = 2$. It follows from Lemma 6.1 that V can have only two irreducible summands, each occuring with multiplicity 1. Thus W_2 is irreducible.

Thus for each S_n we have a (n-1)-dimensional irreducible representation, called the *standard* or *defining* representation of S_n . Just as in the case of S_3 , the standard representation of S_n can be realized geometrically as the action of S_n on the (n-1)-simplex in \mathbb{R}^n (by permuting vertices).

We can write a nice formula for the character of the standard representation. $V = W_1 \oplus W_2$ implies $\chi_V = \chi_{W_1} + \chi_{W_2}$ so that

$$\chi_{W_2}(g) = \chi_V(g) - \chi_{W_1}(g)$$

= # of fixed points of $g - 1$.

Example 6.2. Symmetric group S_4 : The first three rows in the character table are easy to write.

			$(1 \ 2 \ 3)$	$(1 \ 2 \ 3 \ 4)$	$(1 \ 2)(3 \ 4)$
V_0	1	1	1	1	1
V_1	1	-1	1	1	1
V_2	3	$ \begin{array}{c} 1 \\ -1 \\ 1 \end{array} $	0	-1	-1

In the next lecture we will calculate and analyze the 2 remaining rows of this table.