Representations of symmetric groups

Lecture 6

In the last lecture we calculated the character table of S_{3}. Let us analyze the irreducible representation corresponding to the last row.

Since S_{3} is the group of permutations on 3 elements there is an action of S_{3} on $V=\mathbb{C}^{3}$ which permutes coordinates. If $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis, then $\rho_{g}\left(e_{i}\right):=e_{g(i)}$. Let $\rho: S_{3} \rightarrow \mathrm{GL}(V)$ denote the corresponding representation.

It is easy to see the subspace $W=\operatorname{span}\left(e_{1}+e_{2}+e_{3}\right)$ is a S_{3}-invariant subspace of V. We know from general theory that there exists an S_{3}-invariant complement W^{\perp} of W. This complement can be constructed by taking the kernel of the projection of V onto W. Then $W^{\perp}=\{(a, b, c) \mid a+b+c=0\}$.

Thus, $V=W \oplus W^{\perp}$. The representation W is infact isomorphic to the trivial representation. For $w=\left(w_{1}, w_{2}, w_{3}\right) \in W$ we have that $w_{1}=w_{2}=w_{3}$ so that $\rho_{g}^{W}(w)=w$ for every $w \in W$. Thus $\rho_{r}^{W}=e$.

Let $f_{1}=(1,1,1)$ be a basis of W and let us choose a basis for W^{\perp} as, say $f_{2}=(0,1,-1), f_{3}=$ $(1,0,-1)$. The $\left\{f_{1}, f_{2}, f_{3}\right\}$ forms a basis of V.

Claim: W^{\perp} is an irreducible representation of G.
If we can show that for some $g \in G$, the g-invariant subspaces of V are not preserved by some other element $h \in G$, then we are done, since this would show that there is no way to decompose V into G-invariant subspaces.

Let $g=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \in S_{3}$. W.r.t. the basis $\left\{f_{2}, f_{3}\right\}$ of $W^{\perp}, \rho_{g}^{W^{\perp}}=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$. The eigenvalues of $\rho_{g}^{W^{\perp}}$ are $\left\{\omega=\frac{-1+i \sqrt{3}}{2}, \bar{\omega}=\frac{-1+i \sqrt{3}}{2}\right\}$ and suppose the (linearly independent) eigenvectors are v_{1} and v_{2}. The eigenspaces U_{1} and U_{2} spanned by v_{1} and v_{2} respectively are g-invariant subspaces of W^{\perp}.

$$
\begin{aligned}
& \text { Let } h=\left(\begin{array}{ll}
1 & 2
\end{array}\right), \rho_{h}^{W^{\perp}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) . \text { Then } \\
& \qquad \begin{aligned}
\rho_{g}^{W^{\perp}}\left(\rho_{h}^{\left.W^{\perp} v_{1}\right)}\right. & =\rho_{g h}^{W^{\perp}\left(v_{1}\right)} \\
& =\rho_{h g^{-1}}^{W^{\perp}}\left(v_{1}\right)\left(\text { since } g h=h g^{-1}\right) \\
& =\rho_{h}^{W^{\perp}}\left(\rho_{g^{-1}}^{W^{\perp}} v_{1}\right) \\
& =\rho_{h}^{W^{\perp}\left(\bar{\omega} v_{1}\right)} \\
& =\bar{\omega}\left(\rho_{h}^{W^{\perp}} v_{1}\right) .
\end{aligned}
\end{aligned}
$$

Thus $\rho_{h}^{W \perp} v_{1} \in U_{2}$. Thus $\rho_{h}^{W^{\perp}}$ interchanges the subspaces U_{1} and U_{2}. Therefore, there is no G-invariant subspace of W^{\perp}.

Thus, W^{\perp} is a 2-dim'l irreducible representation of S_{3}. It is called the 'standard' or 'defining' representation of S_{3}.

The triangle representation: S_{3} acts on the vertices of an equilateral triangle in \mathbb{R}^{2} by permuting its vertices, i.e. as isometries of \mathbb{R}^{2}. Now $S_{3} \subset \mathrm{GL}_{2}(\mathbb{R}) \subset \mathrm{GL}_{2}(C)$, thus we get a corresponding action of S_{3} on \mathbb{C}^{2}. This is a 2 -dim'l representation called the triangle representation of S_{3} on \mathbb{C}^{2}. We will denote it by T.

The correspondence between elements of S_{3} and isometries of the equilateral triangle are given as follows:

$$
e \leftrightarrow \text { id, } 2-\text { cycles } \leftrightarrow \text { reflections, } 3-\text { cycles } \leftrightarrow \text { rotations. }
$$

Claim: T is an irreducible representation of S_{3}.
Let A denote the matrix of rotation through 120° (this corresponds to the permutation $g=\left(\begin{array}{ll}1 & 3\end{array}\right)$ in S_{3}). Then $A^{3}=I$, which implies $A^{2}+A+I=0$ (since $\left.A \neq I\right)$. Let ω and $\bar{\omega}$ be the distinct eigenvalues of A and v_{1}, v_{2} denote the corresponding eigenvectors. Now let B denote the reflection matrix corresponding to the permutation (12) $\in S_{3}$. Check that B interchanges the eigenspaces
of A (i.e. $B v_{1} \in \operatorname{span}\left(v_{2}\right)$ and $B v_{2} \in \operatorname{span}\left(v_{1}\right)$). Thus there are no S_{3}-invariant subspaces of T and we are done.

By uniqueness, T is isomorphic to W_{2}. For another proof, consider the action of S_{3} on the triangle in W_{2} having vertices $(2,-1,-1),(-1,2,-1),(-1,-1,2)$.

TABLE 1. g and corresponding ρ_{g} for each irreducible representation of S_{3}

g	Trivial repr.	Signrepr.	Standard repr.	
			W_{2}	T
e	1	1	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(12)	1	-1	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
(13)	1	-1	$\left(\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & \sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)$
(2 3)	1	-1	$\left(\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ -\sqrt{3} / 2 & 1 / 2\end{array}\right)$
(123)	1	1	$\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right)$
(132)	1	1	$\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & \sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right)$

6.1. The standard representation of S_{n}. The following lemma is easy to prove:

Lemma 6.1. For a representation V of a finite group G, let $V=V_{1}^{\oplus a_{1}} \oplus \cdots \oplus V_{k}^{\oplus a_{k}}$ be the decomposition of V into distinct irreducibles. Then

$$
\operatorname{dimHom}_{G}(V, V)=\sum a_{i}^{2} .
$$

Proof. Note that if U is an irreducible representation of G then

- $\operatorname{Hom}_{G}\left(U^{\oplus p}, U\right)=\operatorname{Hom}_{G}(U, U)^{\oplus p} \cong \mathbb{C}^{p}$.
- $\operatorname{Hom}_{G}\left(U^{\oplus p}, U^{\oplus q}\right) \cong \mathbb{C}^{p q}$
\square The symmetric group $G=S_{n}$ acts on $V=\mathbb{C}^{n}$ by permuting coordinates giving rise to the permutation representation. Let $W_{1}=\operatorname{span}\{(1,1, \ldots, 1)\}$, then W_{1} is a 1 -dim'l G-invariant subspace of V. Let

$$
W_{2}=W_{1}^{\perp}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V \mid v_{1}+\cdots+v_{n}=0\right\} .
$$

Then W_{2} is also a G-invariant subspace of V of dimension $n-1$.
Claim: W_{2} is irreducible.
Let $A=\left(a_{i j}\right)$ be the matrix form of an element of $\operatorname{Hom}_{G}(V, V)$ w.r.t some basis of V. Then A is G-linear which means A commutes with each $\rho_{g} \in \operatorname{Hom}_{G}(V, V)$. Since V is the permutation representation, each ρ_{g} is a permutation matrix. Thus A permutes with all $(n-1) \times(n-1)$ permutation matrices. As a result, $a_{i i}=a_{j j}$ for all $i \neq j$ and $a_{i j}=a_{k l}$ for all $i \neq k, j \neq l$. This gives

$$
A=\left(\begin{array}{cccc}
a & b & \ldots & b \\
b & a & \ldots & b \\
b & b & \ddots & b \\
b & b & \ldots & a
\end{array}\right)=a I+b\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & \ldots & 1 \\
1 & 1 & \ddots & 1 \\
1 & 1 & \ldots & 0
\end{array}\right) .
$$

Thus we have found a basis for $\operatorname{Hom}_{G}(V, V)$ implying that $\operatorname{dimHom}_{G}(V, V)=2$. It follows from Lemma 6.1 that V can have only two irreducible summands, each occuring with multiplicity 1. Thus W_{2} is irreducible.

Thus for each S_{n} we have a ($n-1$)-dimensional irreducible representation, called the standard or defining representation of S_{n}. Just as in the case of S_{3}, the standard representation of S_{n} can be realized geometrically as the action of S_{n} on the $(n-1)$-simplex in \mathbb{R}^{n} (by permuting vertices).

We can write a nice formula for the character of the standard representation. $V=W_{1} \oplus W_{2}$ implies $\chi_{V}=\chi_{W_{1}}+\chi_{W_{2}}$ so that

$$
\begin{aligned}
\chi_{W_{2}}(g) & =\chi_{V}(g)-\chi_{W_{1}}(g) \\
& =\# \text { of fixed points of } g-1 .
\end{aligned}
$$

Example 6.2. Symmetric group S_{4} : The first three rows in the character table are easy to write.
$\left.\begin{array}{c|cccccc} & e & (12) & (123 & 3\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$

In the next lecture we will calculate and analyze the 2 remaining rows of this table.

