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Representations of symmetric groups

Lecture 6

In the last lecture we calculated the character table of S3. Let us analyze the irreducible represen-
tation corresponding to the last row.

Since S3 is the group of permutations on 3 elements there is an action of S3 on V = C3 which
permutes coordinates. If {e1, e2, e3} is the standard basis, then ρg(ei) := eg(i). Let ρ : S3 → GL(V )
denote the corresponding representation.

It is easy to see the subspaceW = span(e1+e2+e3) is a S3-invariant subspace of V . We know from
general theory that there exists an S3-invariant complement W⊥ of W . This complement can be
constructed by taking the kernel of the projection of V ontoW . ThenW⊥ = {(a, b, c) | a+b+c = 0}.

Thus, V = W ⊕W⊥. The representation W is infact isomorphic to the trivial representation.
For w = (w1, w2, w3) ∈W we have that w1 = w2 = w3 so that ρWg (w) = w for every w ∈W . Thus

ρWr = e.
Let f1 = (1, 1, 1) be a basis of W and let us choose a basis for W⊥ as, say f2 = (0, 1,−1), f3 =

(1, 0,−1). The {f1, f2, f3} forms a basis of V .
Claim: W⊥ is an irreducible representation of G.
If we can show that for some g ∈ G, the g-invariant subspaces of V are not preserved by some

other element h ∈ G, then we are done, since this would show that there is no way to decompose
V into G-invariant subspaces.

Let g = (1 3 2) ∈ S3. W.r.t. the basis {f2, f3} of W⊥, ρW
⊥

g =

(
−1 −1
1 0

)
. The eigenvalues

of ρW
⊥

g are {ω = −1+i
√
3

2 , ω = −1+i
√
3

2 } and suppose the (linearly independent) eigenvectors are v1
and v2. The eigenspaces U1 and U2 spanned by v1 and v2 respectively are g-invariant subspaces of
W⊥.

Let h = (1 2), ρW
⊥

h =

(
0 1
1 0

)
. Then

ρW
⊥

g (ρ
W⊥v1)
h = ρ

W⊥(v1)
gh

= ρW
⊥

hg−1(v1) (since gh = hg−1)

= ρW
⊥

h (ρW
⊥

g−1 v1)

= ρW
⊥

h (ωv1)

= ω(ρW
⊥

h v1).

Thus ρW
⊥

h v1 ∈ U2. Thus ρW
⊥

h interchanges the subspaces U1 and U2. Therefore, there is no

G-invariant subspace of W⊥.
Thus, W⊥ is a 2-dim’l irreducible representation of S3. It is called the ‘standard’ or ‘defining’

representation of S3.
The triangle representation: S3 acts on the vertices of an equilateral triangle in R2 by

permuting its vertices, i.e. as isometries of R2. Now S3 ⊂ GL2(R) ⊂ GL2(C), thus we get a
corresponding action of S3 on C2. This is a 2-dim’l representation called the triangle representation
of S3 on C2. We will denote it by T .

The correspondence between elements of S3 and isometries of the equilateral triangle are given
as follows:

e↔ id, 2−cycles↔ reflections, 3−cycles↔ rotations.

Claim: T is an irreducible representation of S3.
Let A denote the matrix of rotation through 120◦ (this corresponds to the permutation g = (1 2 3)

in S3). Then A3 = I, which implies A2 + A + I = 0 (since A 6= I). Let ω and ω be the distinct
eigenvalues of A and v1, v2 denote the corresponding eigenvectors. Now let B denote the reflection
matrix corresponding to the permutation (1 2) ∈ S3. Check that B interchanges the eigenspaces

1



2

of A (i.e. Bv1 ∈ span(v2) and Bv2 ∈ span(v1)). Thus there are no S3-invariant subspaces of T and
we are done.

By uniqueness, T is isomorphic to W2. For another proof, consider the action of S3 on the
triangle in W2 having vertices (2,−1,−1), (−1, 2,−1), (−1,−1, 2).

Table 1. g and corresponding ρg for each irreducible representation of S3

g Trivial Sign Standard repr.

repr. repr. W2 T

e 1 1

 1 0

0 1

  1 0

0 1


(1 2) 1 −1

 0 1

1 0

  1 0

0 −1


(1 3) 1 −1

 1 0

−1 −1

  −1/2
√

3/2
√

3/2 1/2


(2 3) 1 −1

 −1 −1

0 1

  −1/2 −
√

3/2

−
√

3/2 1/2


(1 2 3) 1 1

 0 1

−1 −1

  −1/2 −
√

3/2
√

3/2 −1/2


(1 3 2) 1 1

 −1 −1

1 0

  −1/2
√

3/2

−
√

3/2 −1/2


6.1. The standard representation of Sn. The following lemma is easy to prove:

Lemma 6.1. For a representation V of a finite group G, let V = V ⊕a11 ⊕ · · · ⊕ V ⊕akk be the
decomposition of V into distinct irreducibles. Then

dimHomG(V, V ) =
∑

a2i .

Proof. Note that if U is an irreducible representation of G then

• HomG(U⊕p, U) = HomG(U,U)⊕p ∼= Cp.
• HomG(U⊕p, U⊕q) ∼= Cpq

�The symmetric group G = Sn acts on V = Cn by permuting coordinates giving rise
to the permutation representation. Let W1 =span{(1, 1, . . . , 1)}, then W1 is a 1-dim’l G-invariant
subspace of V . Let

W2 = W⊥1 = {(v1, . . . , vn) ∈ V | v1 + · · ·+ vn = 0}.
Then W2 is also a G-invariant subspace of V of dimension n− 1.

Claim: W2 is irreducible.
Let A = (aij) be the matrix form of an element of HomG(V, V ) w.r.t some basis of V . Then

A is G-linear which means A commutes with each ρg ∈ HomG(V, V ). Since V is the permutation
representation, each ρg is a permutation matrix. Thus A permutes with all (n − 1) × (n − 1)
permutation matrices. As a result, aii = ajj for all i 6= j and aij = akl for all i 6= k, j 6= l. This
gives

A =


a b . . . b
b a . . . b

b b
. . . b

b b . . . a

 = aI + b


0 1 . . . 1
1 0 . . . 1

1 1
. . . 1

1 1 . . . 0

 .
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Thus we have found a basis for HomG(V, V ) implying that dimHomG(V, V ) = 2. It follows from
Lemma 6.1 that V can have only two irreducible summands, each occuring with multiplicity 1.
Thus W2 is irreducible.

Thus for each Sn we have a (n − 1)-dimensional irreducible representation, called the standard
or defining representation of Sn. Just as in the case of S3, the standard representation of Sn can
be realized geometrically as the action of Sn on the (n− 1)-simplex in Rn (by permuting vertices).

We can write a nice formula for the character of the standard representation. V = W1 ⊕W2

implies χV = χW1 + χW2 so that

χW2(g) = χV (g)− χW1(g)

= # of fixed points of g − 1.

Example 6.2. Symmetric group S4: The first three rows in the character table are easy to write.

e (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
V0 1 1 1 1 1
V1 1 −1 1 1 1
V2 3 1 0 −1 −1

In the next lecture we will calculate and analyze the 2 remaining rows of this table.


