Representations of symmetric groups

Lecture 5

Today we want to show that the number of irreducible representations of G is equal to the number of conjugacy classes of G.

For this, we need the following theorem which says that a linear combination $\sum \alpha(g) \rho_{g}$ of elements of $\operatorname{GL}(V)$ is G-linear for all V iff α is a class function on G. Using this result we will be able to show that the set of irreducible characters of G forms a basis of $C(G)$.

Theorem 5.1. Let $\alpha: G \rightarrow \mathbb{C}$ be any function on G and for any representation V of G let $\phi_{\alpha, V}=\sum \alpha(g) \rho_{g}$ be an element of $\mathrm{GL}(V)$. Then $\phi_{\alpha, V}$ is G-linear for all V if and only if α is a class function.

Proof. Suppose α is a class function. To prove that $\phi_{\alpha, V}$ is G-linear, we must show that $\phi_{\alpha, V} \circ \rho_{h}=$ $\rho_{h} \circ \phi_{\alpha, V}$ for all $h \in G$.

Consider

$$
\begin{aligned}
& \left(\phi_{\alpha, V} \circ \rho_{h}\right)(v)=\sum \alpha(g) \rho_{g} \rho_{h}(v) \\
& =\sum \alpha\left(h g h^{-1}\right) \rho_{h} \rho_{g} \rho_{h^{-1}} \rho_{h}(v) \\
& =\sum \alpha\left(h g h^{-1}\right) \rho_{h} \rho_{g}(v) \\
& =\rho_{h}\left(\sum \alpha\left(h g h^{-1}\right) \rho_{g}(v)\right) \\
& =\left(\rho_{h} \circ \phi_{\alpha, V}\right)(v)
\end{aligned}
$$

Thus $\phi_{\alpha, V}$ is G-linear for all V.
Conversely, suppose $\phi_{\alpha, V}$ is G-linear for all V and suppose α is not a class function. Then

$$
\left(\phi_{\alpha, V} \circ \rho_{h}\right)(v)=\sum \alpha(g) \rho_{g h}(v)
$$

while

$$
\begin{aligned}
\left(\rho_{h} \circ \phi_{\alpha, V}\right)(v) & =\rho_{h}\left(\sum \alpha(g) \rho_{g}(v)\right) \\
& =\sum \alpha(g) \rho_{h g}(v)
\end{aligned}
$$

so that $\phi_{\alpha, V} \circ \rho_{h} \neq \rho_{h} \circ \phi_{\alpha, V}$, a contradiction.
(In particular, let V be the regular representation of G and $v=e_{h^{-1}}$, then LHS $=\sum \alpha(g) \rho_{g h}\left(e_{h^{-1}}\right)=$ $\sum \alpha(g) e_{g}$ while RHS $\left.=\left(\rho_{h} \circ \phi_{\alpha, V}\right)(v)=\sum \alpha(g) e_{h g h^{-1}}\right)$.

Lemma 5.2. A representation V of G is irreducible if and only if V^{*} is irreducible.
Proof.

$$
\begin{aligned}
V \text { irreducible } & \Longleftrightarrow\left\langle\chi_{V}, \chi_{V}\right\rangle=1 \\
& \Longleftrightarrow \overline{\left\langle\chi_{V}, \chi_{V}\right\rangle}=1 \\
& \Longleftrightarrow\left\langle\overline{\chi_{V}}, \overline{\chi_{V}}\right\rangle=1 \\
& \Longleftrightarrow\left\langle\chi_{V^{*}}, \chi_{V^{*}}\right\rangle=1 \\
& \Longleftrightarrow V^{*} \text { irreducible. }
\end{aligned}
$$

Corollary 5.3. The set of irreducible representations forms an orthonormal basis of $C(G)$.
Proof. Let $\alpha \in C(G)$ and let $\left\langle\alpha, \chi_{V}\right\rangle=0$ for every irreducible representation V of G.
Claim: $\alpha=0$.

Consider $\phi_{\alpha, V}=\sum \alpha(g) \rho_{g}: V \rightarrow V$. By Schur's lemma, V irreducible implies that $\phi_{\alpha, V}=\lambda I$ for some $\lambda \in \mathbb{C}$. If $\operatorname{dim} V=n, \operatorname{Tr}\left(\phi_{\alpha, V}\right)=n \lambda$. Thus

$$
\begin{aligned}
\lambda & =\frac{1}{n} \operatorname{Tr}\left(\phi_{\alpha, V}\right) \\
& =\frac{1}{n} \sum \alpha(g) \operatorname{Tr}\left(\rho_{g}\right) \\
& =\frac{1}{n} \sum \alpha(g) \chi_{V}(g) \\
& =\frac{1}{n} \sum \overline{\overline{\alpha(g)}} \chi_{V^{*}}(g) \\
& =\frac{|G|}{n} \overline{\left\langle\alpha, \chi_{V^{*}}\right\rangle} \\
& =0\left(\text { since }\left\langle\alpha, \chi_{V}\right\rangle=0 \text { for all irreducible } V\right) .
\end{aligned}
$$

Thus, $\lambda=0$, so $\phi_{\alpha, V}=0$ which implies that $\sum \alpha(g) \rho_{g}=0$ for any representation V of G. In particular, this is true for the regular representation R of G. But in R, the elements $\left\{e_{g}\right\}_{g \in G}$ are linearly independent, i.e. the elements ρ_{g} are linearly independent as elements of $\operatorname{End}(R)$. Thus $\alpha(g)=0$ for all $g \in G$ implying $\alpha=0$.

Note that $C(G)$ has a basis of functions which are 1 on a given conjugacy class and 0 on the others. Hence $\operatorname{dim} C(G)$ equals the number of conjugacy classes of G. Putting everything together we have:

Corollary 5.4. The number of irreducible representations of G is equal to the number of conjugacy classes of G.

Proof. \# irreducible representations of $G=\operatorname{dim} C(G)=\#$ conjugacy classes of G.
5.1. The regular representation of G. Recall that for any finite group G, we can define the regular representation as the vector space R spanned by basis $\left\{e_{s}\right\}_{s \in G}$. The action of G on R is defined by $\rho_{t}\left(e_{s}\right)=e_{t s}$. Thus R is a special case of the permutation representation.

When is R irreducible? Problem 2 on HW 2 tells us that $\chi_{R}(g)=\#$ fixed points of g, so that

$$
\chi_{R}(g)= \begin{cases}|G| & g=e \\ 0 & g \neq e\end{cases}
$$

Thus R is irreducible iff $G=\{e\}$.
Suppose $R=V_{1}^{\oplus a_{1}} \oplus \cdots \oplus V_{k}^{\oplus a_{k}}$, then

$$
a_{i}=\left\langle\chi_{V_{i}}, \chi_{R}\right\rangle=\frac{1}{|G|} \sum \overline{\chi_{V_{i}}(g)} \chi_{R}(g)=\frac{1}{|G|} \chi_{V_{i}}(e)|G|=\operatorname{dim} V_{i} .
$$

This gives us the following consequences:
(1) Every irreducible representation of G appears as a summand of the regular representation of G. (In particular, this tells us again that there are only finitely many irreducible representations).
(2) Every irreducible representation appears in R with multiplicity equal to its dimension.
(3) We know that $|G|$ equals the degree of the regular representation. Thus we get

$$
\begin{equation*}
|G|=\operatorname{dim} R=\sum a_{i} \operatorname{dim} V_{i}=\sum \operatorname{dim} V_{i}^{2} \tag{5.1}
\end{equation*}
$$

(4) If $g \neq e$, then

$$
\begin{equation*}
\sum\left(\operatorname{dim} V_{i}\right) \chi_{V_{i}}(g)=\sum a_{i} \chi_{V_{i}}(g)=\chi_{R}(g)=0 \tag{5.2}
\end{equation*}
$$

Equations 5.1 and 5.2 are useful in calculating an unknown character if all but one characters is known.

5.2. List of properties of characters.

(1) χ_{V} is constant on the conjugacy classes of G.
(2) $\chi_{V}(1)=\operatorname{dim} V$.
(3) The irreducible characters of G form an orthonormal basis of $C(G)$ w.r.t the inner product

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{V}(g)} \chi_{W}(g) .
$$

(4) If $V=V_{1}^{\oplus a_{1}} \oplus \cdots \oplus V_{k}^{\oplus a_{k}}$ is the decomposition into distinct irresucibles V_{i}, then $a_{i}=$ $\left\langle\chi_{V}, \chi_{V_{i}}\right\rangle$.
(5) If R is the regular representation of G, then

$$
\chi_{R}(g)= \begin{cases}|G| & g=e \\ 0 & g \neq e\end{cases}
$$

(6) Every irreducible representation V_{i} shows up as a summand of R with multiplicity $\operatorname{dim} V_{i}$.
(7) $|G|=\sum\left(\operatorname{dim} V_{i}\right)^{2}=\sum\left(\chi_{V_{i}}(e)\right)^{2}$, where V_{i} are distinct irreducible representations of G. In particular, this implies that the sum of squares of elements in the first column of the character table add up to $|G|$. This is useful in finding the possible dimensions of irreducible representations of G.
(8) \# irreducible representations of G are equal to \# conjugacy classes of G. Thus, in the character table of G, the number of rows equals the number of columns.

5.3. Examples.

Example 5.5. Cyclic group C_{n} : Suppose $C_{n}=\left\{g, g^{2}, \ldots, g_{n-1}, g^{n}=e\right\}$. As in any abelian group, each element of C_{n} is a conjugacy class in itself. Thus C_{n} has n conjugacy classes. We have seen that any irreducible representation of C_{n} is 1-dim'l and corresponds to a nth root of unity. Let V_{k} be the irreducible representation corresponding to ω^{k}, where $\omega=e^{\frac{2 \pi i}{n}}$. Then $V_{0}, V_{1}, \ldots V_{n-1}$ are all the irreducible representations of C_{n}. The character table of C_{n} is as follows: In particular, let us

	e	g	\ldots	g^{k}	\ldots	g^{n-1}
V_{0}	1	1	\ldots	1	\ldots	1
V_{1}	1	ω	\ldots	ω^{k}	\ldots	ω^{n-1}
\vdots	\vdots	\vdots		\vdots		\vdots
V_{l}	1	ω^{l}	\ldots	$\omega^{l} k$	\ldots	$\omega^{l(n-1)}$
\vdots	\vdots	\vdots		\vdots		\vdots
V_{n-1}	1	ω^{n-1}	\ldots	$\omega^{(n-1) k}$	\ldots	$\omega^{(n-1)^{2}}$

look at C_{4}. The four fourth roots of unity are:

$$
\left.\begin{gathered}
\omega=e^{\frac{2 \pi i}{4}}=\cos \left(\frac{2 \pi}{4}\right)+i \sin \left(\frac{2 \pi}{4}\right)=i, \omega^{2}=-1, \omega^{3}=-i, \omega^{4}=1 . \\
\\
\hline V_{0} \\
\hline
\end{gathered} \right\rvert\, \begin{array}{ccccc}
& g & 1 & g^{2} & g^{3} \\
V_{1} & 1 & i & -1 & -i \\
V_{2} & 1 & -1 & 1 & -1 \\
V_{3} & 1 & -i & -1 & i
\end{array}
$$

Next, we look at the smallest non-abelian group.
Example 5.6. Symmetric group S_{3} : What are the 1-dim'l representations of S_{3} ? There are 2 candidates:

- the trivial representation $\rho_{g}^{1}=1$ for every $g \in S_{3}$;
- the 'sign representation' $\rho_{g}^{2}=\operatorname{sgn}(g)$ for every $g \in S_{3}$.

Let us write elements of S_{3} in cycle notation as:

$$
S_{3}=\left\{e=(1)(2)(3),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\}
$$

There are three conjugacy classes: $\{e\},\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\},\left\{\left(\begin{array}{lll}1 & 3 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\}$ (cycles of the same length are conjugate to each other).

With this information, it is already possible to calculate the character table of S_{3}. We know the first two rows:
$\left.\begin{array}{c|ccc} & e & (12) & (123\end{array}\right)$

The third row can be calculated using the properties of characters. We know that

$$
\left|S_{3}\right|=6=\text { sum of squares of elements of first column }=1+1+a^{2} .
$$

Thus, $a=\operatorname{dim} V_{2}=2$.
Further, $\sum\left(\operatorname{dim} V_{i}\right) \chi_{V_{i}}(g)=0$ implies:

- for the second column: $\operatorname{dim} V_{0}(1)+\operatorname{dim} V_{1}(-1)+\operatorname{dim} V_{2}(b)=0 \Longrightarrow 1-1+2 b=0 \Longrightarrow$ $b=0$.
- for the third column: $\operatorname{dim} V_{0}(1)+\operatorname{dim} V_{1}(1)+\operatorname{dim} V_{2}(c)=0 \Longrightarrow 1+1+2 c=0 \Longrightarrow c=-1$.

Thus the character table of S_{3} is:

	e	$\left(\begin{array}{llll}1 & 2\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	
V_{0}	1	1		1
V_{1}	1	-1		1
V_{2}	2	0		-1

