Representations of symmetric groups Lecture 5

Today we want to show that the number of irreducible representations of G is equal to the number of conjugacy classes of G.

For this, we need the following theorem which says that a linear combination $\sum \alpha(g)\rho_g$ of elements of GL(V) is *G*-linear for all *V* iff α is a class function on *G*. Using this result we will be able to show that the set of irreducible characters of *G* forms a basis of C(G).

Theorem 5.1. Let $\alpha : G \to \mathbb{C}$ be any function on G and for any representation V of G let $\phi_{\alpha,V} = \sum \alpha(g)\rho_g$ be an element of GL(V). Then $\phi_{\alpha,V}$ is G-linear for all V if and only if α is a class function.

Proof. Suppose α is a class function. To prove that $\phi_{\alpha,V}$ is *G*-linear, we must show that $\phi_{\alpha,V} \circ \rho_h = \rho_h \circ \phi_{\alpha,V}$ for all $h \in G$.

Consider

$$\begin{aligned} (\phi_{\alpha,V} \circ \rho_h)(v) &= \sum \alpha(g)\rho_g \rho_h(v) \\ &= \sum \alpha(hgh^{-1})\rho_h \rho_g \rho_{h^{-1}}\rho_h(v) \\ &= \sum \alpha(hgh^{-1})\rho_h \rho_g(v) \\ &= \rho_h(\sum \alpha(hgh^{-1})\rho_g(v)) \\ &= (\rho_h \circ \phi_{\alpha,V})(v) \end{aligned}$$

Thus $\phi_{\alpha,V}$ is G-linear for all V.

Conversely, suppose $\phi_{\alpha,V}$ is G-linear for all V and suppose α is not a class function. Then

$$(\phi_{\alpha,V} \circ \rho_h)(v) = \sum \alpha(g)\rho_{gh}(v)$$

while

$$(\rho_h \circ \phi_{\alpha,V})(v) = \rho_h(\sum \alpha(g)\rho_g(v))$$
$$= \sum \alpha(g)\rho_{hg}(v)$$

so that $\phi_{\alpha,V} \circ \rho_h \neq \rho_h \circ \phi_{\alpha,V}$, a contradiction.

(In particular, let V be the regular representation of G and $v = e_{h^{-1}}$, then LHS= $\sum \alpha(g)\rho_{gh}(e_{h^{-1}}) = \sum \alpha(g)e_g$ while RHS= $(\rho_h \circ \phi_{\alpha,V})(v) = \sum \alpha(g)e_{hgh^{-1}}$).

Lemma 5.2. A representation V of G is irreducible if and only if V^* is irreducible.

Proof.

$$\begin{array}{lll} V \text{ irreducible} & \Longleftrightarrow & \left\langle \chi_V, \chi_V \right\rangle = 1 \\ & \Leftrightarrow & \overline{\left\langle \chi_V, \chi_V \right\rangle} = 1 \\ & \Leftrightarrow & \left\langle \overline{\chi_V}, \overline{\chi_V} \right\rangle = 1 \\ & \Leftrightarrow & \left\langle \chi_{V^*}, \chi_{V^*} \right\rangle = 1 \\ & \Leftrightarrow & V^* \text{ irreducible.} \end{array}$$

Corollary 5.3. The set of irreducible representations forms an orthonormal basis of C(G).

Proof. Let $\alpha \in C(G)$ and let $\langle \alpha, \chi_V \rangle = 0$ for every irreducible representation V of G. Claim: $\alpha = 0$.

Consider $\phi_{\alpha,V} = \sum \alpha(g)\rho_g : V \to V$. By Schur's lemma, V irreducible implies that $\phi_{\alpha,V} = \lambda I$ for some $\lambda \in \mathbb{C}$. If dimV = n, $\operatorname{Tr}(\phi_{\alpha,V}) = n\lambda$. Thus

$$\begin{split} \lambda &= \frac{1}{n} \operatorname{Tr}(\phi_{\alpha,V}) \\ &= \frac{1}{n} \sum \alpha(g) \operatorname{Tr}(\rho_g) \\ &= \frac{1}{n} \sum \alpha(g) \chi_V(g) \\ &= \frac{1}{n} \overline{\sum \alpha(g)} \chi_{V^*}(g) \\ &= \frac{|G|}{n} \overline{\langle \alpha, \chi_{V^*} \rangle} \\ &= 0 \text{ (since } \langle \alpha, \chi_V \rangle = 0 \text{ for all irreducible } V \text{).} \end{split}$$

Thus, $\lambda = 0$, so $\phi_{\alpha,V} = 0$ which implies that $\sum \alpha(g)\rho_g = 0$ for any representation V of G. In particular, this is true for the regular representation R of G. But in R, the elements $\{e_g\}_{g\in G}$ are linearly independent, i.e. the elements ρ_g are linearly independent as elements of End(R). Thus $\alpha(g) = 0$ for all $g \in G$ implying $\alpha = 0$.

Note that C(G) has a basis of functions which are 1 on a given conjugacy class and 0 on the others. Hence dimC(G) equals the number of conjugacy classes of G. Putting everything together we have:

Corollary 5.4. The number of irreducible representations of G is equal to the number of conjugacy classes of G.

Proof. # irreducible representations of $G = \dim C(G) = \#$ conjugacy classes of G.

5.1. The regular representation of G. Recall that for any finite group G, we can define the regular representation as the vector space R spanned by basis $\{e_s\}_{s\in G}$. The action of G on R is defined by $\rho_t(e_s) = e_{ts}$. Thus R is a special case of the permutation representation.

When is R irreducible? Problem 2 on HW 2 tells us that $\chi_R(g) = \#$ fixed points of g, so that

$$\chi_R(g) = \begin{cases} |G| & g = e \\ 0 & g \neq e \end{cases}$$

Thus R is irreducible iff $G = \{e\}$.

Suppose $R = V_1^{\oplus a_1} \oplus \cdots \oplus V_k^{\oplus a_k}$, then

$$a_i = \langle \chi_{V_i}, \chi_R \rangle = \frac{1}{|G|} \sum \overline{\chi_{V_i}(g)} \chi_R(g) = \frac{1}{|G|} \chi_{V_i}(e) |G| = \dim V_i$$

This gives us the following consequences:

- (1) Every irreducible representation of G appears as a summand of the regular representation of G. (In particular, this tells us again that there are only finitely many irreducible representations).
- (2) Every irreducible representation appears in R with multiplicity equal to its dimension.
- (3) We know that |G| equals the degree of the regular representation. Thus we get

(5.1)
$$|G| = \dim R = \sum a_i \dim V_i = \sum \dim V_i^2$$

(4) If $g \neq e$, then

(5.2)
$$\sum (\dim V_i)\chi_{V_i}(g) = \sum a_i\chi_{V_i}(g) = \chi_R(g) = 0.$$

Equations 5.1 and 5.2 are useful in calculating an unknown character if all but one characters is known.

5.2. List of properties of characters.

- (1) χ_V is constant on the conjugacy classes of G.
- (2) $\chi_V(1) = \dim V.$
- (3) The irreducible characters of G form an orthonormal basis of C(G) w.r.t the inner product

$$\langle \chi_V, \chi_W \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g).$$

- (4) If $V = V_1^{\oplus a_1} \oplus \cdots \oplus V_k^{\oplus a_k}$ is the decomposition into distinct irresucibles V_i , then $a_i = V_1^{\oplus a_1} \oplus \cdots \oplus V_k^{\oplus a_k}$ $\langle \chi_V, \chi_{V_i} \rangle.$
- (5) If R is the regular representation of G, then

$$\chi_R(g) = \begin{cases} |G| & g = e \\ 0 & g \neq e \end{cases}$$

- (6) Every irreducible representation V_i shows up as a summand of R with multiplicity dim V_i .
- (7) $|G| = \sum (\dim V_i)^2 = \sum (\chi_{V_i}(e))^2$, where V_i are distinct irreducible representations of G. In particular, this implies that the sum of squares of elements in the first column of the character table add up to |G|. This is useful in finding the possible dimensions of irreducible representations of G.
- (8) # irreducible representations of G are equal to # conjugacy classes of G. Thus, in the character table of G, the number of rows equals the number of columns.

5.3. Examples.

Example 5.5. Cyclic group C_n : Suppose $C_n = \{g, g^2, \ldots, g_{n-1}, g^n = e\}$. As in any abelian group, each element of C_n is a conjugacy class in itself. Thus C_n has n conjugacy classes. We have seen that any irreducible representation of C_n is 1-dim'l and corresponds to a nth root of unity. Let V_k be the irreducible representation corresponding to ω^k , where $\omega = e^{\frac{2\pi i}{n}}$. Then $V_0, V_1, \ldots, V_{n-1}$ are all the irreducible representations of C_n . The character table of C_n is as follows: In particular, let us

	e	g	 g^k	 g^{n-1}
V_0	1	1	 1	 1
V_0 V_1	1	ω	 ω^k	 ω^{n-1}
÷	÷	÷	÷	÷
V_l			 $\omega^l k$	 $\omega^{l(n-1)}$
÷	:	÷	÷	÷
V_{n-1}	1	ω^{n-1}	 $\omega^{(n-1)k}$	 $\omega^{(n-1)^2}$

look at C_4 . The four fourth roots of unity are:

$$\omega = e^{\frac{2\pi i}{4}} = \cos(\frac{2\pi}{4}) + i\sin(\frac{2\pi}{4}) = i, \ \omega^2 = -1, \ \omega^3 = -i, \ \omega^4 = 1.$$

$$\frac{\begin{vmatrix} e & g & g^2 & g^3 \\ \hline V_0 & 1 & 1 & 1 & 1 \\ V_1 & 1 & i & -1 & -i \\ V_2 & 1 & -1 & 1 & -1 \\ V_3 & 1 & -i & -1 & i \end{vmatrix}$$

Next, we look at the smallest non-abelian group.

Example 5.6. Symmetric group S_3 : What are the 1-dim'l representations of S_3 ? There are 2 candidates:

- the trivial representation ρ¹_g = 1 for every g ∈ S₃;
 the 'sign representation' ρ²_g = sgn(g) for every g ∈ S₃.

Let us write elements of S_3 in cycle notation as:

 $S_3 = \{e = (1)(2)(3), (1\ 2), (1\ 3), (2\ 3), (1\ 3\ 2), (1\ 2\ 3)\}.$

There are three conjugacy classes: $\{e\}, \{(1 \ 2), (1 \ 3), (2 \ 3)\}, \{(1 \ 3 \ 2), (1 \ 2 \ 3)\}$ (cycles of the same length are conjugate to each other).

With this information, it is already possible to calculate the character table of S_3 . We know the first two rows:

The third row can be calculated using the properties of characters. We know that

 $|S_3| = 6 = sum of squares of elements of first column = 1 + 1 + a^2$.

Thus, $a = \dim V_2 = 2$.

Further, $\sum (\dim V_i)\chi_{V_i}(g) = 0$ implies:

• for the second column: dim $V_0(1)$ + dim $V_1(-1)$ + dim $V_2(b) = 0 \implies 1 - 1 + 2b = 0 \implies b = 0.$

• for the third column: dim $V_0(1)$ +dim $V_1(1)$ +dim $V_2(c) = 0 \implies 1+1+2c = 0 \implies c = -1$. Thus the character table of S_3 is: