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Representations of symmetric groups

Lecture 5

Today we want to show that the number of irreducible representations of G is equal to the number
of conjugacy classes of G.

For this, we need the following theorem which says that a linear combination
∑
α(g)ρg of ele-

ments of GL(V ) is G-linear for all V iff α is a class function on G. Using this result we will be able
to show that the set of irreducible characters of G forms a basis of C(G).

Theorem 5.1. Let α : G → C be any function on G and for any representation V of G let
φα,V =

∑
α(g)ρg be an element of GL(V ). Then φα,V is G-linear for all V if and only if α is a

class function.

Proof. Suppose α is a class function. To prove that φα,V is G-linear, we must show that φα,V ◦ρh =
ρh ◦ φα,V for all h ∈ G.

Consider

(φα,V ◦ ρh)(v) =
∑

α(g)ρgρh(v)

=
∑

α(hgh−1)ρhρgρh−1ρh(v)

=
∑

α(hgh−1)ρhρg(v)

= ρh(
∑

α(hgh−1)ρg(v))

= (ρh ◦ φα,V )(v)

Thus φα,V is G-linear for all V .
Conversely, suppose φα,V is G-linear for all V and suppose α is not a class function. Then

(φα,V ◦ ρh)(v) =
∑

α(g)ρgh(v)

while

(ρh ◦ φα,V )(v) = ρh(
∑

α(g)ρg(v))

=
∑

α(g)ρhg(v)

so that φα,V ◦ ρh 6= ρh ◦ φα,V , a contradiction.
(In particular, let V be the regular representation ofG and v = eh−1 , then LHS=

∑
α(g)ρgh(eh−1) =∑

α(g)eg while RHS= (ρh ◦ φα,V )(v) =
∑
α(g)ehgh−1). �

Lemma 5.2. A representation V of G is irreducible if and only if V ∗ is irreducible.

Proof.

V irreducible ⇐⇒ 〈χV , χV 〉 = 1

⇐⇒ 〈χV , χV 〉 = 1

⇐⇒ 〈χV , χV 〉 = 1

⇐⇒ 〈χV ∗ , χV ∗〉 = 1

⇐⇒ V ∗ irreducible.

�

Corollary 5.3. The set of irreducible representations forms an orthonormal basis of C(G).

Proof. Let α ∈ C(G) and let 〈α, χV 〉 = 0 for every irreducible representation V of G.
Claim: α = 0.
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Consider φα,V =
∑
α(g)ρg : V → V . By Schur’s lemma, V irreducible implies that φα,V = λI

for some λ ∈ C. If dimV = n, Tr(φα,V ) = nλ. Thus

λ =
1

n
Tr(φα,V )

=
1

n

∑
α(g)Tr(ρg)

=
1

n

∑
α(g)χV (g)

=
1

n

∑
α(g)χV ∗(g)

=
|G|
n
〈α, χV ∗〉

= 0 (since 〈α, χV 〉 = 0 for all irreducible V ).

Thus, λ = 0, so φα,V = 0 which implies that
∑
α(g)ρg = 0 for any representation V of G. In

particular, this is true for the regular representation R of G. But in R, the elements {eg}g∈G are
linearly independent, i.e. the elements ρg are linearly independent as elements of End(R). Thus
α(g) = 0 for all g ∈ G implying α = 0. �

Note that C(G) has a basis of functions which are 1 on a given conjugacy class and 0 on the
others. Hence dimC(G) equals the number of conjugacy classes of G. Putting everything together
we have:

Corollary 5.4. The number of irreducible representations of G is equal to the number of conjugacy
classes of G.

Proof. # irreducible representations of G = dim C(G) = # conjugacy classes of G. �

5.1. The regular representation of G. Recall that for any finite group G, we can define the
regular representation as the vector space R spanned by basis {es}s∈G. The action of G on R is
defined by ρt(es) = ets. Thus R is a special case of the permutation representation.

When is R irreducible? Problem 2 on HW 2 tells us that χR(g) = # fixed points of g, so that

χR(g) =

{
|G| g = e

0 g 6= e.

Thus R is irreducible iff G = {e}.
Suppose R = V ⊕a11 ⊕ · · · ⊕ V ⊕akk , then

ai = 〈χVi , χR〉 =
1

|G|
∑

χVi(g)χR(g) =
1

|G|
χVi(e)|G| = dimVi.

This gives us the following consequences:

(1) Every irreducible representation of G appears as a summand of the regular representa-
tion of G. (In particular, this tells us again that there are only finitely many irreducible
representations).

(2) Every irreducible representation appears in R with multiplicity equal to its dimension.
(3) We know that |G| equals the degree of the regular representation. Thus we get

(5.1) |G| = dim R =
∑

aidim Vi =
∑

dim V 2
i .

(4) If g 6= e, then

(5.2)
∑

(dim Vi)χVi(g) =
∑

aiχVi(g) = χR(g) = 0.

Equations 5.1 and 5.2 are useful in calculating an unknown character if all but one characters is
known.



3

5.2. List of properties of characters.

(1) χV is constant on the conjugacy classes of G.
(2) χV (1) = dim V .
(3) The irreducible characters of G form an orthonormal basis of C(G) w.r.t the inner product

〈χV , χW 〉 =
1

|G|
∑
g∈G

χV (g)χW (g).

(4) If V = V ⊕a11 ⊕ · · · ⊕ V ⊕akk is the decomposition into distinct irresucibles Vi, then ai =
〈χV , χVi〉.

(5) If R is the regular representation of G, then

χR(g) =

{
|G| g = e

0 g 6= e.

(6) Every irreducible representation Vi shows up as a summand of R with multiplicity dim Vi.
(7) |G| =

∑
(dim Vi)

2 =
∑

(χVi(e))
2, where Vi are distinct irreducible representations of G.

In particular, this implies that the sum of squares of elements in the first column of the
character table add up to |G|. This is useful in finding the possible dimensions of irreducible
representations of G.

(8) # irreducible representations of G are equal to # conjugacy classes of G. Thus, in the
character table of G, the number of rows equals the number of columns.

5.3. Examples.

Example 5.5. Cyclic group Cn: Suppose Cn = {g, g2, . . . , gn−1, gn = e}. As in any abelian group,
each element of Cn is a conjugacy class in itself. Thus Cn has n conjugacy classes. We have seen
that any irreducible representation of Cn is 1-dim’l and corresponds to a nth root of unity. Let Vk
be the irreducible representation corresponding to ωk, where ω = e

2πi
n . Then V0, V1, . . . Vn−1 are all

the irreducible representations of Cn. The character table of Cn is as follows: In particular, let us

e g . . . gk . . . gn−1

V0 1 1 . . . 1 . . . 1
V1 1 ω . . . ωk . . . ωn−1

...
...

...
...

...

Vl 1 ωl . . . ωlk . . . ωl(n−1)

...
...

...
...

...

Vn−1 1 ωn−1 . . . ω(n−1)k . . . ω(n−1)2

look at C4. The four fourth roots of unity are:

ω = e
2πi
4 = cos(

2π

4
) + i sin(

2π

4
) = i, ω2 = −1, ω3 = −i, ω4 = 1.

e g g2 g3

V0 1 1 1 1
V1 1 i -1 -i
V2 1 -1 1 -1
V3 1 -i -1 i

Next, we look at the smallest non-abelian group.

Example 5.6. Symmetric group S3: What are the 1-dim’l representations of S3? There are 2
candidates:

• the trivial representation ρ1g = 1 for every g ∈ S3;

• the ‘sign representation’ ρ2g = sgn(g) for every g ∈ S3.
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Let us write elements of S3 in cycle notation as:

S3 = {e = (1)(2)(3), (1 2), (1 3), (2 3), (1 3 2), (1 2 3)}.
There are three conjugacy classes: {e}, {(1 2), (1 3), (2 3)}, {(1 3 2), (1 2 3)} (cycles of the same
length are conjugate to each other).

With this information, it is already possible to calculate the character table of S3. We know the
first two rows:

e (1 2) (1 2 3)
V0 1 1 1
V1 1 -1 1
V2 a b c

The third row can be calculated using the properties of characters. We know that

|S3| = 6 = sum of squares of elements of first column= 1 + 1 + a2.

Thus, a = dim V2 = 2.
Further,

∑
(dim Vi)χVi(g) = 0 implies:

• for the second column: dim V0(1) + dim V1(−1) + dim V2(b) = 0 =⇒ 1− 1 + 2b = 0 =⇒
b = 0.
• for the third column: dim V0(1)+dim V1(1)+dim V2(c) = 0 =⇒ 1+1+2c = 0 =⇒ c = −1.

Thus the character table of S3 is:

e (1 2) (1 2 3)
V0 1 1 1
V1 1 −1 1
V2 2 0 −1


