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Abstract : Our main goal in this article is to prove the theorem of Schützenberger. In first two sections

we establish Robinson Schensted correspondence using Schensted algorithm. We later appeal to Viennot’s Geo-

metric Construction and establish this correspondence again. And we finally prove the theorem of Schützenberger.

§1 Basic Definitions

Definition 1.1 A partition of a positive integer n is a sequence λ = (λ1, .., λk) where λi weakly decreasing

sequence of positive integers and
∑
λi = n. It is denoted by λ ` n.

Example: (2,1,1) is a partition of 4.

Notation: λ denotes a partition unless otherwise specified.

Definition 1.2 Suppose λ = (λ1, .., λk) ` n. Then a Young diagram of shape λ is an array of k left-justified rows

with λi dots in ith row.

As an example the partition (4,3,1) has Young diagram

• • • •
• • •
•

Definition 1.3 Let λ ` n. A generalized Young tableau of shape λ is an array obtained by replacing the dots of

young diagram of shape λ by positive integers.

An example of generalized Young tableau of shape (5,3,2) is
1 2 2 3 9

4 2 5

3 5

Notation: For every Young tableau P , sh(P ) denotes shape of P .

Definition 1.4 Suppose λ ` n. A tableau of shape λ is a generalized Young tableau in which all entries are

distinct.

Definition 1.5 Let λ ` n. A Standard tableau of shape λ is a tableau of shape λ such that

1. Entries are numbers between 1 and n .

2. Rows and columns are increasing sequences.

Example:

1 2 4

3 7 8

5 9

6

is a standard tableau of shape (3,3,2,1)
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Definition 1.6 A tableau is called partial tableau, if the entries strictly increase along each row and strictly

increase down each column .

Example:

1 3 6 8

4 5

7

9

is a partial tableau of shape (4,2,1,1)

Definition 1.7 A partial permutation on a finite set S is a bijection between two specified subsets of S.

Example: π =

(
1 2 4 7

2 5 7 8

)

§2 The Robinson-Schensted correspondence

The Robinson Schensted correspondence is a bijective correspondence between elements of Sn and pair of

standard Young tableaux of the same shape λ as λ varies over all partitions of n. The correspondence had been

described by Robinson in 1938, in an attempt to prove the Little wood-Richardson rule. Later Schensted es-

tablished the correspondence independently in 1961 using Schensted algorithm. Later R-S correspondence was

generalised to R-S-K correspondence by Knuth. The simplest description of the R-S correspondence was given by

the Schensted and we present it in this article. The correspondence is usually denoted as π
R−S←→ (P (π),Q(π)). This

correspondence gives a combinatorial proof of the enumerative identity
∑
λ`n

(tλ)2 = n! , where tλ is the number of

tableaux of shape λ.

To establish R-S correspondence we first construct a map from Sn to pair of standard young tableaux of same

shape which we denote by π
R−S−−−→ (P (π), Q(π)). Then we prove π

R−S−−−→ (P (π), Q(π)) gives the required corre-

spondence. We construct the map, using π
R−S−−−→ (P (π), Q(π)) the algorithms

i) row insertion and ii) placement of an element.

Algorithm 1: Row Insertion

The row insertion or row bumping is a procedure that takes a partial tableau P and a positive integer x different

from the entries of P , and constructs a tableau denoted as P ← x (or) rx(P ). The algorithm is described as follows.

Let P be a partial tableau and x be a positive integer which is different from the entries of P . Then do the

following

RS. Set R := the first row of P .

RS2 While x is less than some element of row R, do

RSa Let y be the smallest element of R greater than x and replace y by x in R .

RSb Set x := y and R := the next row down.

RS3 Now x is greater than every element of R, so place x at the end of row R and stop.

Illustration:

Consider the partial tableau P =

1 2 5 8

3 7

6

9
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We insert 4 in P using the Row insertion algorithm

1 2 5 8 ← 4

3 7

6

9

1 2 4 8

3 7 ← 5

6

9

1 2 3 8

3 5

6 ← 7

9

1 2 3 8

3 5

6 7

9

The fact that P ← x is a partial tableau, if the same holds for P is not obvious from the procedure described

above. Here I will outline the arguments that need to verified and supply proof for few statements.

Lemma 2.1 Let P be a partial tableau and x /∈ P be a positive integer. Then rx(P ) is a tableau.

Proof : If no two rows of P have same length then there is nothing to prove. Consider the case where two rows of P

have same length. Suppose a number is displaced from the first row, then are two possibilities, it can displace the

number below it or to the left of it. It can’t go to the right because the rows and columns are strictly increasing.

Lemma 2.2 Let P be a partial tableau and x /∈ P be a positive integer. Suppose that during row insertion the

elements x1, x2, x3,... are bumped from cells (1, j1), (2, j2), (3, j3),.... respectively. Let P ′ = P ← x. Then

1. x < x1 < x2 < ....

2. j1 ≥ j2 ≥ j3 ≥ ....

3. P ′i,j ≤ Pi,j for all i, j .

Proof : First and the last assertions are immediate from the description of row insertion. Suppose xk is displaced

from the cell (k, jk). Since P is a partial tableau we have Pk+1,j > Pk,j > xk for all j ≥ jk. So xk cannot bump

an element that is right to it. So it has to bump an element below it or to the left of it.

Theorem 2.3 Let P be a partial tableau and x be a positive integer distinct from the entries of P . Then P ← x

is also a partial tableau.

Proof : From lemma 2.1 we know that P ′ = P ← x is a tableau. We need to show

(i) rows of P ← x are strictly increasing and

(ii) columns of P ← x are strictly increasing

Suppose that during row insertion the elements x1, x2, x3, ....... are bumped from cells (1, j1), (2, j2), (3, j3),....

respectively. When a number xi is inserted into (i+1)th row the number left to it are less than xi and the numbers

right to it are greater than xi , thus we have rows are strictly increasing. Further, it is clear that P ′i,n = Pi,n <

Pi+1,n = P ′i+1,n for all n 6= ji , ji+1. From lemma 2.2 we know that ji ≥ ji+1.

If ji = ji+1 , then P ′i,ji = xi−1 < xi = P ′i+1,ji+1
= P ′i+1,ji

.

If ji > ji+1 , then P ′i,ji = xi−1 < xi = P ′i+1,ji+1
< P ′i+1,ji

. Further P ′i,ji+1
< P ′i,ji = P ′i,ji+1

.

In either of the cases we have columns of P ′ are strictly increasing.

Algorithm 2: Placement of an element

Placement of an element in a tableau is even easier than insertion. Suppose that Q is a partial tableau of shape

λ and that (i,j) is an outer corner of λ. Let k be greater than every element of Q. Then to place k in Q at cell

(i,j), is merely set Qij = k. The restriction on k guarantees that the new array is still a take partial tableau. For

example, consider

Q =

1 2 4

3 7

5

9

, then placing k = 8 in cell (i,j) = (2,3) of Q yields

1 2 4

3 7 8

5

9
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Finally, we are now in position to describe the Schensted algorithm which gives the map π
R−S−−−→ (P (π), Q(π).

Schensted Algorithm

Suppose that π is given in two-line notation as π =

(
1 2 ..... n

x1 x2 ..... xn

)
.

Given π ∈ Sn, Schensted algorithm constructs a sequence of tableaux pairs (P0, Q0), (P1, Q1),...... (Pn,Qn) =

(P ,Q) such that sh(Pk) = sh(Qk) for all 1≤ k ≤ n. Set (P0, Q0) = (∅, ∅) i.e, P0, Q0 are empty tableaux. Assuming

(Pk−1, Qk−1) has been constructed, define (Pk, Qk) by

Pk = rxk(Pk−1)

Qk = place k into Qk−1 at the cell (i, j) where the insertion terminates.

It is clear that form theorem 2.3 that each k, (Pk, Qk) are standard young tableaux and have same shape. Now

we consider an example for illustrating the complete algorithm. Let

π =
1 2 3 4 5 6 7

4 1 3 5 7 2 6

Then the tableaux constructed by the algorithm are

∅ , 4 , 1,

Pk : 4

1 3 ,

4

1 3 5 ,

4

1 3 5 7 ,

4

1 2 5 7 ,

3

4

1 2 5 6

3 7 = P

4

∅ , 1 , 1 ,

Qk : 2

1 3 ,

2

1 3 4 ,

2

1 3 4 5 ,

2

1 3 4 5 ,

2

6

1 3 4 5

2 7 = Q

6

So ,

1 2 3 4 5 6 7

4 1 3 5 7 2 6

R−S−−−→

 1 2 5 6

3 7 ,

4

1 3 4 5

2 7

6


Therefore Schensted algorithm gives the required map π

R−S−−−→ (P (π), Q(π)).

Inversion of Schensted Algorithm

The Schensted algorithm given in previous section can be inverted i.e, π
R−S−−−→ (P (π), Q(π)) is invertible. This

will enable us to prove R-S correspondence is a bijection as outlined earlier. We prove it in this section using the

inversion algorithm.

Now we start with a pair of standard young tableaux (P,Q) of same shape and want to construct a permutation

π such that π
R−S−−−→ (P,Q). The idea is simple, we merely reverse the preceding algorithm step by step. We begin

by defining (Pn, Qn) = (P,Q). Assuming that (Pk, Qk) has been constructed, we will find xk (the kth element of

π) and (Pk−1, Qk−1). To avoid double subscripting in what follows, we denote the (i,j) entry of Pk by Pij . Find

the cell (i, j) containing k in Qk. Since this is the largest element in Qk Pij must have been the last element to be

displaced in the construction of Pk. For convenience, we assume the existence of an empty zeroth row above the

first row of Pk.
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The following gives a systematic procedure to delete Pij from P. This procedure is usually called as

inversion algorithm .

SR1 Set x := Pij and erase Pij .

Set R := the (i− 1)th row of Pk .

SR2 While R is not the zeroth row of Pk , do

SRa Let y be the largest element of R smaller than x and replace y by x in R

SRb Set x := y and R := the next row up.

SR3 Now x has been removed from the first row, so set xk := x.

It is easy to see that Pk becomes Pk−1 after the deletion process just described is complete and Qk−1 is Qk with

the k erased.The other way of describing above is by row-inserting xk in the tableau obtained we get Pk. Con-

tinuing in this way, we eventually recover all the elements of permutation π in reverse order i.e, π = x1 x2.....xn,

where xk are as described in inversion algorithm.

As an example apply inversion algorithm to the pair of tableaux we obtained in illustration of Schensted algorithm.

Example:

Pk :
1 2 5 6 ,

3 7

4

1 2 5 7 ,

3

4

1 3 5 7 ,

4

1 3 5 ,

4

1 3 ,

4

1 , 4 , ∅
4

Qk :
1 3 4 5 ,

2 7

6

1 3 4 5 ,

2

6

1 3 4 5 ,

2

1 3 4 ,

2

1 3 ,

2

1 , 1 , ∅
2

Writing the erased entries in the reverse order we have π = 4 1 3 5 7 2 6

Thus from above discussion we have

Theorem 2.4([Rob 38, Sch 61]) The map π
R−S−−−→ (P (π),Q(π)) is a bijection between elements of Sn and pairs

of standard tableaux of the same shape λ, as λ varies over all partitions of n.

Definition 2.5 Two permutations π, σ ∈ Sn are said to be P - equivalent, if P (π) = P (σ). It is denoted as π
P∼= σ.

Example: 2 1 3 4
P∼= 2 3 1 4 .

Definition 2.6 Let x < y < z. Two permutations π, σ ∈ Sn are said to differ by a Knuth relation of the first

kind, written π
1∼= σ if for some k,

1. π = x1..... yxz ..... xn and σ = x1..... yzx ..... xn or vice versa.

They differ by a Knuth relation of the second kind, written π
2∼= σ , if for some k,

2. π = x1..... xzy ..... xn and σ = x1..... zxy ..... xn or vice versa.

The two permutations are Knuth equivalent, written as π
K∼= σ if there is a sequence of permutations such that

π = π1
i∼= π2

j∼= .....
l∼= πk = σ where i, j,..., l ∈ {1, 2}.

Following theorem due to Knuth describes that Knuth equivalence and P-equivalence are same notions.

Theorem 2.7[Knu 70] If π, σ ∈ Sn then π
K∼= σ ⇐⇒ π

P∼= σ.

Proof : We skip proof of theorem as it is long. Reader may refer to theorem 3.4.3 of [Sagan].

5



§3 Viennot Geometric Construction

Viennot in the paper Une forme géométrique de la correspondence de Robinson-Schensted (1977) gave a beau-

tiful geometric description of the Robinson-Schensted correspondence. This was later generalised to matrix-

ball construction by Fulton. The matrix-ball construction can be used to establish R-S-K correspondence. We

would discuss only the Viennot construction in this article and towards the end prove a remarkable theorem of

Schützenberger which states taking the inverse of the permutation merely interchanges the two tableaux in R-S

correspondence i.e, if

π
R−S−−−→ (P (π), Q(π)) then π−1

R−S−−−→ (Q(π), P (π)).

Consider a point (i, j) in first quadrant of the Cartesian plane. Imagine a light shining from the origin so that

each box casts shadow with boundaries parallel to the coordinate axes. For example, the shadow cast by the box

at (3,4) is :

Figure 1: Shadow Diagram of point (3,4)

§§ 3.1 Shadow Lines and Shadow Diagram

Lemma 3.1.1 Let (i, j) be a point in first quadrant. Then (m,n) lies in the shadow of (i, j) if and only if

m ≥ i and n ≥ j.

Proof : It is an easy observation.

Above lemma characterizes the points which lie in shadow of point (i,j).

Let (i, j) and (m,n) be two points in first quadrant of the Cartesian plane. Define (i, j) E (m,n) if and only if

(i, j) lies in the shadow of (m,n). Then it follows from lemma 3.1 that E is a partial order.

Definition 3.1.2 Let {ij}j=kj=1 and {xj}j=kj=1 be a two subsets of positive integers. Consider the shadows of points

Pj = (ij , xj) for j=1,...,k. Then the first shadow line L1(P1, ..., Pn) is the (topological) boundary of the combined

shadows of all the Pj that are not in the shadow of any other point.

Note :

1. The first shadow line is a same as boundary of the combined shadows of all the points Pj .

2. By abuse of notation we denote L1(P1, ..., Pn) by L1.

3. The points Pj which lie on L1 are maximal w.r.t. E .

The following theorem gives the description of first shadow line.
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Theorem 3.1.3 Let P1, ..., Pn be as in definition 3.1.2. Then the first shadow line L1(P1, ..., Pn) is a broken line

consisting of line segments and exactly one horizontal and one vertical ray.

Proof : Observe that by suitable relabelling we may assume P1, ..., Pr are the set of all points on the first shadow

line. Further we may assume i1 < i2 < · · · < ir. Then it follows from lemma 3.1 that j1 < j2 < · · · < jr. Then

L1 = boundary of the combined shadows of P1, .., Pr

= Boundary (∪r1 shadow of Pk)

= Boundary (∪r1 Sk) where Sk = shadow of Pk = {(x, y): x ≥ ik and y ≥ jk}
= (∪r1 Sk) \ (∪r1 Sk)◦ where A◦ = interior of the set A.

= (∪r1 Sk) \ (∪r1 Tk) where Tk = {(x, y): x > ik and y > jk}
= V ∪ H

where V = {(x, y): x = i1 and j1 ≤ y} ∪ {(x, y): x = ik and jk+1 ≤ y ≤ jk for some k = 1, .., r − 1 } and

H = {(x, y): y = jr and ir ≤ x} ∪ {(x, y): y = jk and ik ≤ y ≤ ik+1 for some k = 1, .., r − 1 }
Now the theorem follows immediately.

Corollary 3.1.4 The line x = c intersects L1 in a ray or a line segment if and only if there exists Pj whose

x-coordinate is c. If above condition doesn’t hold then the line x = c intersects L1 at a single point, say (c, d)

such that (c ± 1, d).

Proof : From the proof of previous theorem we have L1 = V ∪ H. The vertical line x = c intersects L1 in a ray

or a line segment if and only if the line x = c intersects V. The later case occurs if it intersects H but not V and

proof follows from previous theorem.

Corollary 3.1.5 Let (k, x), (k + 1, y) be two points on the shadow line then y ≤ x.

Proof : Follows immediately from theorem 3.1.3

Corollary 3.1.6 Suppose that P1, ..., Pr are the set of all points on the L1(P1, ..., Pn). Then

1. xL1 = the x-coordinate of Li’s vertical ray = min{x-coordinate of P1, ..., Pr}
2. yL1 = the y-coordinate of L1’s vertical ray = min{y-coordinate of P1, ..., Pr}
Proof : We may assume i1 < i2 < · · · < ir and j1 < j2 < · · · < jr. From theorem 3.1.3 , it follows the horizontal

and vertical rays of L1 are {(x, y): y = jr and x ≥ ir} and {(x, y): x = i1 and y ≥ j1} respectively. Therefore

xL1 = i1 = min{i1, ..., ir} and yL1 = jr = min{j1, ..., jr}.

Definition 3.1.7 Given a set of points S={(ij ,xij )}k1 in first quadrant, we form its shadow lines L1,... as follows.

Assuming that L1, .., Li−1 have been constructed, remove all points of S on these lines. Then Li is the boundary

of shadow of the remaining points of S.

Observe that Lj is first shadow line of points which are not on L1, .., Lj−1. So, every shadow line is a broken

line with one horizontal and one vertical ray. Therefore one can define x-coordinate and y-coordinate of Lj as

xLj = the x-coordinate of Li’s vertical ray,

yLj = the y-coordinate of Li’s horizontal ray

The shadow lines make up the shadow diagram .

Observe that intersection of any two shadow lines is empty and every point lies on a shadow line. Further the

line x = c intersects at most one of the Lj in a ray or a segment and rest all in single points. It follows from

corollary 3.1.4 that the former condition holds if there exists a point Pj on Lj whose x-coordinate is c.

Lemma 3.1.8 Let {ij}j=kj=1 and {xj}j=kj=1 be a two subsets of positive integers. Consider the points Pj = (ij ,xj) for

j=1,...,k. Let L1 be denote first shadow of Pj . Then xL1 = min{ij} and yL1 = min{xj} .

Proof : By suitable rearrangement we may assume that x1 is the minimum of xj ’s. Then (i1, x1) is not in shadow

of no other point. Therefore (i1, x1) lies on L1. Now lemma is an immediate consequence of corollary 3.1.6. The

proof of other assertion is similar to the above.
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Corollary 3.1.9 Let Pj be as in the previous lemma. Let L1, L2,... be shadow lines in the shadow diagram of Pj .

Then

xLj = the minimum of the x-coordinate of Pi’s which are not on L1,...,Lj−1

yLj = the minimum of the y-coordinate of Pi’s which are not on L1,...,Lj−1

Proof : This follows from immediately the observation that Lj is the first shadow line of points which are not on

L1,..,Lj−1 and corollary 3.1.6 .

Given π ∈ Sn , the shadow diagram of π is defined as the shadow diagram of points (1,π(1)), ... ,(n,π(n)).

To illustrate the properties of shadow line proved earlier we consider shadow diagrams of few permutations.

Example : Let π = 4 1 3 5 6 2 7

Figure 2: Shadow Diagram of π

§§ 3.2 R-S Correspondence using Shadow lines

In this section we describe R-S correspondence using the shadow lines. This remarkable geometric interpretation

of R-S correspondence is made by Viennot. To motivate consider the figure 1. We observe the following :

y- coordinate of lowest point of intersection

x = k L1 L2 L3 L4

k = 1 4 - - -

k = 2 1 - - -

k = 3 1 3 - -

k = 4 1 3 5 -

k = 5 1 3 5 7

k = 6 1 2 5 7

k = 7 1 2 5 6

Table 1
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From the table we observe the following remarkable property that 1st row of Pi(π1) constructed in Schensted

algorithm is the ith row of the above. This indeed turns out be true in general !

Theorem 3.2.1 Let the shadow diagram of π = x1x2...xn constructed as before. Suppose the vertical line x= k

intersects ik of the shadow lines. Let yj be the y-coordinate of the lowest point of the intersection with Lj . Then

the first row of the Pk = P(x1, .., xk) is R1 = y1 y2 ... yik
Proof : Induct on k, the lemma being trivial for k = 0 since there are no intersections. Assume that the result

holds k and consider k+1. Since y1, y2, ..., yik form first row of Pk we have y1 < y2 < · · · < yik . So, there are two

cases to consider

Case 1: xk+1 > yik
By corollary 3.1.5, the point (k+1, xk+1) doesn’t lie on L1,...,Lik as the y-coordinate of the lowest point of the

intersection of x = k with Lj is smaller than xk+1. Therefore the point (k+1, xk+1) starts a new shadow line. So

none of the values y1, y2, ..., yik change, and we obtain a new intersection yik+1 = xk+1. The number of shadow

lines x = k+1 intersects is ik+1 = ik + 1. Then first row of Pk+1 is y1 y2 ... yi xk+1 which is same as y-coordinates

of lowest point of the intersection x = k + 1 with L1, ..., Lik+1
.

Case 2: If there exists j such that, y1 < · · · < yj < xk+1 < yj < · · · < yik
The point (k+1, xk) doesn’t lie on L1, ..., Lj by case 1. If (k+1, xk+1) lies on Lj+r for some r > 1, then Lj+r

contains line segment {(x, y): x = k+1 and xk+1 ≤ y ≤ yj+r}. Then the point (k, yj) lies on Lj and Lj+r. So,

(k+1, xk+1) get added to the line Lj and yi = xk+1. Other yi’s doesn’t change. Schensted algorithm and induction

hypothesis imply first row of Pk+1 is y1...yj−1xk+1yj−1...yi which is same predicted by shadow diagram.

It follows from the proof of the previous lemma that the shadow diagram of π can be read left to right like a

time-line recording the construction of P(π) [Table 1]. At the kth stage, the line x= k intersects one shadow line

in a ray or line segment and all the rest in single points. In terms of the first row of Pk , a ray corresponds to

placing an element at the end, a line segment corresponds to displacing an element, and the points correspond to

elements that are unchanged.

Corollary 3.2.2 If the permutation π has Robinson-Schensted tableaux (P (π), Q(π)) and shadow lines Lj , then

for all j, P1j(π) = yLj and Q1j(π) = xLj .

Proof : The statement for P is just the case k = n of Lemma 3.6 because Pn = P . As for Q(π), the entry k

appears Q(π) in the cell (1,j) when xk is greater than every element of the first row of Pk−1(π). But the previous

lemma’s proof shows every that this happens precisely when the line x = k intersects shadow line Lj in vertical

ray (Case-1 of previous lemma). In other words, yLj = k = Q1j(π) as desired.

The above corollary gives a method to construct the first row of P (π) and Q(π) from the shadow diagram of π.

How do we recover the rest of the rows of P and Q tableaux from the shadow diagram of π ?

Definition 3.2.3 The north east (NE) corner of a shadow line such that (x+ 1, y) and (x, y + 1) doesn’t belong

to the shadow line. These are indicated as by dots in the shadow diagram.

Note: From definition it follows NE corner is the rightmost / topmost point of horizontal / vertical segment

respectively of a shadow line.

Now, consider the north-east corners of the shadow lines. If such a corner has coordinates (k, x′), then by the

proof of Lemma 3.6 x′ must be displaced from the first row of Pk−1 by the insertion of xk. For example, consider

(3,5) in the diagram 2. From Schensted correspondence we observe 3 is bumped while inserting x5= 2. So the

NE corners correspond to the elements inserted into the later rows during the construction of P . Thus we can get

the rest of the two tableaux by iterating the shadow diagram.
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Definition 3.2.4 The ith skeleton of π ∈ Sn π(i) is defined inductively by π(1) = π and

π(i) =
k1 k2 · · · km

l1 l2 · · · lm
,

where (k1 , l1), ..., (km , lm) are the north-east corners of the shadow diagram of π(i−1) listed in lexicographic

order. The shadow lines for π(i) are denoted by L
(i)
j .

From the previous note it follows π(i) is a partial permutation.

We consider consider the example π = 4 1 3 5 6 2 7. From the first shadow diagram of π (Figure 2) we have

π(2) =

(
2 6 7

4 3 7

)
.

The shadow diagram of π(2) is

Figure 3: Shadow Diagram of π(2)

We observe from above that P21(π) = 3 = xL1(π(2)) and P22(π) = 7 = xL2(π(2)). Similar observations can be made

for Q(π).

Theorem 3.2.5 ([Vie 76]) Suppose π
R−S−−−→ (P,Q). Then π(i) is a partial permutation such that

π(i)
R−S−−−→ (P (i), Q(i)) where P (i)(respectively Q(i) ) consists of the rows i and below of P (respectively, Q).

Furthermore, Pij = y
L
(i)
j

and Qij = x
L
(i)
j

for all i, j.

Proof : It is observed earlier that NE corners in shadow diagram of π(i) are the elements bumped from ith row.

Now the proof follows by statement analogous to corollary 3.2.2 (Theorem 3.2.1) for ith shadow diagram. Since

proof follows by similar arguments used in proving corollary 3.2.2 (Theorem 3.2.1) we skip the proof.

Theorem 3.2.6 ([Scü 63]) If π ∈ Sn , then P(π−1) = Q(π) and Q(π−1) = P(π) .

Proof : Taking the inverse of a permutation corresponds to reflecting the shadow diagram in the

line y = x. The theorem now follows from Theorem 3.2.5
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§4. Dual Knuth Relations

Now we consider the similar theme we carried out after R-S correspondence. Dual to our definition of P - equiva-

lence is the following.

Definition 4.1 Two permutations π , σ ∈ Sn are said to be Q -equivalent, written as π ∼=Q σ if

Q(π) = Q(σ).

Example : 2 1 3 4 ∼=Q 3 1 2 4 .

We also have a dual notion for the Knuth relations.

Definition 4.2 Two permutations π,σ ∈ Sn are said to differ by a dual Knuth relation of the first kind, written

π
1?∼= σ if for some k,

1. π = ..... k + 1 .... k .... k + 2 . .. and σ = ..... k + 1 .... k .... k + 2 . .. or vice versa.

They differ by a dual Knuth relation of the second kind, written π
2?∼= σ , if for some k,

2. π = ..... k .... k + 2 .... k + 1 . .. and σ = ..... k + 1 .... k + 2 .... k . .. or vice versa.

The two permutations are dual Knuth equivalent, written as π
K?

∼= σ if there is a sequence of permutations such

that π
i?∼= π1

j?∼= .....
l?∼= πk where i,j, ..., l ∈ {1, 2}.

Example: 2 1 3 4
1?∼= 3 1 2 4 and 4 2 3 1

2?∼= 4 1 3 2

Lemma 4.3 If π, σ ∈ Sn then π
K∼= σ ⇐⇒ π−1

K?

∼= σ−1.

Proof : Observe that to prove the theorem it is enough to verify the following:

(i) π
1∼= σ ⇐⇒ π−1

1?∼= σ−1 (ii) π
2∼= σ ⇐⇒ π−1

2?∼= σ−1

We give of proof statement (i). It can be observed that proof of (ii) follows by similar arguments .

π
1∼= σ ⇐⇒ ∃ k and x < π(k + 1) = y = σ(k + 1) < z such that π = .... yxz .... and σ = .... yzx ....

or vice versa ⇐⇒ π−1 = ..... k + 1 .... k .... k + 2 . .. and σ−1 = ..... k + 1 .... k .... k + 2 . .. or vice versa ⇐⇒
π−1

1?∼= σ−1

Theorem 4.4 If π, σ ∈ Sn then π
K?

∼= σ ⇐⇒ π
Q∼= σ.

Proof : π
K?

∼= σ ⇐⇒ π−1
K∼= σ−1 ( Lemma 4.3 )

⇐⇒ P (π−1) = P (σ−1) ( Thm 4.2 )

⇐⇒ Q(π) = Q(σ) ( Thm 3.2.6 )

From above theorem we have 2 1 3 4
K?

� 4 2 3 1
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