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The Murnaghan-Nakayama rule gives us a combinatorial way of computing the character
table of any symmetric group .5,.
Before illustrating this rule, we need to define a new class of objects called Skew hook tableau.

First we define what a skew hook is. Skew hook(or rim hook) is a skew diagram
obtained by taking all cells on a finite lattice path with steps one unit northward or east-
ward.Equivalently,a skew hook is a skew diagram such that it is edgewise connected and con-
tains no 2 x 2 subset of cells. A typical skew hook looks like:

[ ]

If ¢ is a skew hook, then we define the leg length of ((denoted by 11({)) to be
(the number of rows in ¢) —1. In the above case the leg length is 3.

Skew hook tableau is a generalized tableau T with positive integral entries such that
i)rows and columns of T weakly increase
ii)all occurrences of i in T lie in a single rim hook.
Here is an example of a skew hook tableau.
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Now we define the sign of a rim hook tableau with rim hooks £¢® to be

(1) = I (-1
¢Wer
The sign of the above rim hook tableau is 1.
Now we are in a position to state the result which will help us compute the character table of
any symmetric group .S,.



where the sum is over all rim hook tableaux of shape A and content .

Remark: From Theorem 1, we can see that all the irreducible characters of S,, are integer
valued.

Let us consider an example:
Suppose A = (3,2) and v = (2,2, 1). Then all the rim hook tableaux are:

L[1]3] [1]2[3] [1]2]2]
2[2] [1]2] "[1]3

The signs of the rim hooks are 1,1 and —1 respectively. So,

Xoay =1+1-1=1

Now,we will prove the following statement, from which theorem 1 will follow naturally.

Theorem 2: If A\Fn and o = (o, ....., ;) is a composition of n, then

A
XA = ;(—mﬂ@xaiil

where the sum runs over all rim hooks £ of A having « cells.

Note that there may exist some rim hook £ such that A\ & may not be a proper shape or
all the cells may be deleted. for e.g.

or,

Here, the dotted cells represent the hook.

A\

In the first case we set Xo\en

to be 0 and for the second case set ng; =1.

Example:For large n, it might not be easy to find the rim hook tableaux. In that case,
theorem 2 can be used.
Let A = (7,4,3,1) and o = (5,4,3,2,1). Then, to apply theorem 2, we need to find the rim
hooks & with 5 cells in A such that A \ € has proper shape. We can see that there is only one
such hook:

of[e]e]




Here,the rim hooks to be removed are denoted by dots. So, after removing we get:

(7747371) P (3737371)
X(5.4,3.21) = X432

There are two rim hooks with 4 cells within the above figure:

[ ] [ ] [ ]
So, after removing we get,
(7:4,3,1) (3,3,3,1) __ (3,3) (2,2,1,1)
(5,4,3,2,1) — ~ X(4,3,2,1) — _(_X(3,2,1) + (3,2,1) )

Now, there are no rim hooks with 3 cells within the second figure, and two rim hooks with
3 cells in the first figure:

So, after removing the rim hooks they become

Nann

(74,31 _(3331) (3,3) (2,21,1)\ (3) (2,1)
X(5,4321) — X321 — _<_X(3,2,1) + X321 ) = _(_(X(2,1) - X(2,1)> +0)

There are no rim hooks with 2 cells in the first figure and in the second figure there is only

one rim hook with 2 cells:

7.4,3,1 (3) (1)
X iaan = — (@) = —(-(x)) =1

So, after removing we get,

So,

Proof of Theorem 1 from Theorem 2: We will proceed by induction on k. The case
m = 1 follows from Lemma 1, which will be proved later.
Suppose the statement is true for £ — 1. Then, by theorem 2 and induction hypothesis,

A _ _ nE) A 1l T
X(al,az,....,ak) - X(ak,ag,....,og) - Z(_l) (g)Xa\ak - Z(_l) © Z<_]‘) ¢

3 3 Te



where ¢ is all rim hooks of A with oy, cells such that A\ ¢ has proper shape and 7¢ is a rim
hook tableau of shape A\ £ and content « \ ay.(to avoid too many new names, we, for now,
denote (ay;, ....,a1) by a. )

Now it is easy to see that the sets {(£,T¢)| £ is all rim hooks of A with ay cells such that
A\ € has proper shape and T is a rim hook tableau of shape A \ € and content « \ oy, } and {
T | T is a rim hook tableau of shape A and content « } are bijective.
(For a given rim hook tableau of shape A and content «a, the hook corresponding to the maximum
element which appear in T will be a hook with «y cells and removing the hook from T will
give a rim hook tableau of shape A \ € and a \ a. And for a pair (¢, T¢) construct a rim hook
tableau of shape A and content a by placing the tableau T¢ in the place A\ ¢ within A and
placing the rim hook £ in the place & within A. )
Also , if we denote this bijection by f , then

(_)f((&T&)) — (_1)11(5)(_1)T5

So, it follows that

where T runs over all rim hook tableaux of shape A and content .
Proof of Theorem 2: Let m = a;. Consider wo € S, _,, X S,, € S,, ,where 7 € S,,_,, has
type (az, ....,) and o € S,, is a m-cycle. So, wo has type (a1, ag, ...., ).

Therefore, xa = x*(70) = x* s, _,. x5, (70)

Now, since {x*|u F n —m} and {x"|v F m} are the sets of all irreducible characters of S,,_,
and S, respectively, so {x* ® x’|u n —m,v F m} is the set of all irreducible characters of
S X S

Xa = xXN70) =X Ls,_pxsn (10) = > mu Xt @ X (mo) = 3 mu,x*(m)x" (o)
pFn—m pFn—m
vkEm vkEm

where mpy, = (X* Lo, xsms X @ XY)

Then using Frobenius reciprocity,we get

mp, = (A, (X @ x¥) +5)

Now, we know that (x*, (x* ® x?) 1°7) is the Littlewood-Richardson coefficient, denoted by

A
Chv

So, the equation becomes

Mro) = Y ¥ Y (o) (1)

uFn—m vEm

Now we will evaluate " (o), where o is a m-cycle.



Lemma 1:If v - m then,

v (=)™ ifo=(r,1mT")
X(m) = {

0 otherwise.

Proof: We know that ]
Sy — ; z_uXZpP«

where s, is the schur function associated with the partition A , z, is the order of the centralizer
of any element of type p and p, is the power sum function associated with .

SO,XE’m) iS 2(;y) times the coefficient of p(,,).

Now, by the the complete homogeneous Jacobi-Trudi determinant, we get

Sy = ||hvi—i+j||lxl = Zihn
K

where h, is the complete homogeneous symmetric function associated with x, and the sum is
over all compositions k = (K, ...., k;) that occur as a term in the determinant. Now ,since
{Pa, | F k;} forms a basis of A" | so

If pamy occurs in this sum, then for some a; = ki, g = Ko, ..., o = K we get

aPa;Pas-+-Poy = P(m)-

where a is a constant.

So,some «; must be m and so, k; = m. .". X(m) # 0 only when h,,, appears in the preceding
determinant.

The largest index to appear in this determinant is at the end of the first row, and v; —1+1 =
hy1 , the hook length of (1,1) in a tableau of shape v. So, we always have m = |v| > hy;.
Thusx{,,, # 0 only when %1, =m i.e., when v is a hook (r,1™~").In this case, we have,

he ... .
ho hy ...
0 ho hi ...

— (_1)m77‘hm
+ other terms not involving p,,

Now, we know that h,, = s(,) and the coefficient of p,, in s,, is given by %XEZ;, which is equal
to 1/m. So,
ijm) = (_1)m—7“



U

Lemma 2:Let A\ - n,u = n —m and v = (r,1™"). Then cﬁv = 0 unless each edgewise
connected component of of A\ p is a rim hook. In that case, if there are k component hooks
spanning a total of ¢ columns, then
k—1
A
Cuv = <c — 7’)

Proof: By the Littlewood-Richardson rule, ¢, = number of semi-standard tableaux T of
shape A \ g with content v = (r,1™"") such that mr is a reverse lattice permutation.i.e.if
71, T2, ..., m are the rows of T, then the sequence 7, = wi7}....7] is a lattice permutation.Note
that since the content of of T is (r,1™7"), so there are exactly r 1’s in T and the numbers
2,3,...,(m —r+ 1)appears exactly once in T.From this we can see that the numbers greater than
1 appears in increasing order in 7. This condition together with semi-standardness puts the
following constraints on T

T1:Any cell of T having a cell to its right must contain a 1. (If it contains s > 1 then, cell to
its right must contain a number ¢ > s > 1 because of semi-standardness. But in 77, ¢ appears
before s, so ¢ < s.Now we can see that this is not possible. )

T2:Any cell of T having a cell above must contain an element bigger than 1.(in a semi-
standard tableau columns are strictly increasing.)

From T1 and T2, it follows that if T contains a 2 x 2 square then there is no way of filling

the lower left cell, so c;\w = 0 if any one of the components is not a rim hook.

Now suppose that A\ p = ¥, €D, where each €® is a rim hook. T1, T2 and the fact
that the numbers 2 through m — r + 1 increase in 7} show that £ is of the form

1 [1]1][b]
d

1 [1[d+1

d+2

d+3

Here we order the £ such that the number of the first row of £¢® is less than the number
of the first row of £0+Y) Then the d > 1 is the smallest number that has not appeared in
Wg(l)wg(m....wg(i,l) and b is either 1 or d — 1.Also, in £ | b=1(the first element imrg(l) is this
b).Now, by T1 and T2 we get that the number of 1’s fixed in £ is the number of columns of
€W and for any ¢ > 1, number of 1’s fixed in £ is number of columns of ¢® — 1.So, number
of 1’s fixed in T is ¢ — k + 1(number of columns of T = >~ number of columns of ¢ since any

two distinct component hooks cannot have a common column).Hence there are r —c+ k — 1
1’s left to distribute among the (k — 1) cells marked with a b. The number of ways this can be
done is

C g —= .
Hv r—c+k—1 r—c



Putting the values from lemma 1 and 2 in equation 1, we get

NCCEDIRUC) IERCCED SRUC) B (i IS

puFn—m vkEm puFn—m r=1

Now, k < ¢ < m, since k is the number of skew hooks ¢@, ¢ is the number of columns in
all the €@, and m is the number of cells in all the €. So

o Y ewy (B <—1>H:{é_”mc e

But if £ =1, A\ p is a single rim hook & with m cells and ¢ columns.Hence m — ¢ = 11(£),

so equation 2 becomes
XNra) = Y ()"0 (r)
|€]=m



