The Murnaghan-Nakayama Rule

Chandranandan Gangopadhyay

April 21, 2014

The Murnaghan-Nakayama rule gives us a combinatorial way of computing the character table of any symmetric group S_n .

Before illustrating this rule, we need to define a new class of objects called Skew hook tableau.

First we define what a skew hook is. Skew hook(or rim hook) is a skew diagram obtained by taking all cells on a finite lattice path with steps one unit northward or east-ward. Equivalently, a skew hook is a skew diagram such that it is edgewise connected and contains no $2 \ge 2$ subset of cells. A typical skew hook looks like:

If ζ is a skew hook, then we define the leg length of ζ (denoted by $ll(\zeta)$) to be (the number of rows in ζ) -1. In the above case the leg length is 3.

Skew hook tableau is a generalized tableau T with positive integral entries such that i)rows and columns of T weakly increase

ii)all occurrences of i in T lie in a single rim hook.

Here is an example of a skew hook tableau.

1	2	2	3	3
2	2	3	3	
2	4	4	4	
2	4			
2				

Now we define the sign of a rim hook tableau with rim hooks $\xi^{(i)}$ to be

$$(-1)^T = \prod_{\xi^{(i)} \in T} (-1)^{\mathrm{ll}(\xi^{(i)})}$$

The sign of the above rim hook tableau is 1.

Now we are in a position to state the result which will help us compute the character table of any symmetric group S_n .

Theorem 1: Let $\lambda \vdash n$ and let $\alpha = (\alpha_1, ..., \alpha_k)$ be any composition of n. Then

$$\chi_{\alpha}^{\lambda} = \sum_{T} (-1)^{T}$$

where the sum is over all rim hook tableaux of shape λ and content α .

Remark: From Theorem 1, we can see that all the irreducible characters of S_n are integer valued.

Let us consider an example:

Suppose $\lambda = (3, 2)$ and v = (2, 2, 1). Then all the rim hook tableaux are:

1	1	3		1	2	3		1	2	2
2	2		,	1	2		,	1	3	

The signs of the rim hooks are 1, 1 and -1 respectively. So,

$$\chi_{(2,2,1)}^{(3,2)} = 1 + 1 - 1 = 1$$

Now, we will prove the following statement, from which theorem 1 will follow naturally.

Theorem 2: If $\lambda \vdash n$ and $\alpha = (\alpha_1, ..., \alpha_k)$ is a composition of n, then

$$\chi_{\alpha}^{\lambda} = \sum_{\xi} (-1)^{\mathrm{ll}(\xi)} \chi_{\alpha \backslash \alpha_1}^{\lambda \backslash \xi}$$

where the sum runs over all rim hooks ξ of λ having α_1 cells.

Note that there may exist some rim hook ξ such that $\lambda \setminus \xi$ may not be a proper shape or all the cells may be deleted. for e.g.

	•					
•	•					
or,						
	•					

Here, the dotted cells represent the hook.

In the first case we set $\chi_{\alpha\setminus\alpha_1}^{\lambda\setminus\xi}$ to be 0 and for the second case set $\chi_{(0)}^{(0)} = 1$.

Example:For large n, it might not be easy to find the rim hook tableaux. In that case, theorem 2 can be used.

Let $\lambda = (7, 4, 3, 1)$ and $\alpha = (5, 4, 3, 2, 1)$. Then, to apply theorem 2, we need to find the rim hooks ξ with 5 cells in λ such that $\lambda \setminus \xi$ has proper shape. We can see that there is only one such hook:

Here, the rim hooks to be removed are denoted by dots. So, after removing we get:

$$\chi_{(5,4,3,2,1)}^{(0,1,1)} = -\chi_{(4,3,2,1)}^{(0,1,1)}$$

There are two rim hooks with 4 cells within the above figure:

So, after removing we get,

Now, there are no rim hooks with 3 cells within the second figure, and two rim hooks with 3 cells in the first figure:

So, after removing the rim hooks they become

$$\chi_{(5,4,3,2,1)}^{(7,4,3,1)} = -\chi_{(4,3,2,1)}^{(3,3,3,1)} = -(-\chi_{(3,2,1)}^{(3,3)} + \chi_{(3,2,1)}^{(2,2,1,1)}) = -(-(\chi_{(2,1)}^{(3)} - \chi_{(2,1)}^{(2,1)}) + 0)$$

There are no rim hooks with 2 cells in the first figure and in the second figure there is only one rim hook with 2 cells:

So, after removing we get,

So,

$$\chi_{(5,4,3,2,1)}^{(7,4,3,1)} = -(-(\chi_{(2,1)}^{(3)})) = -(-(\chi_{(1)}^{(1)})) = 1$$

Proof of Theorem 1 from Theorem 2: We will proceed by induction on k. The case m = 1 follows from Lemma 1, which will be proved later.

Suppose the statement is true for k-1. Then, by theorem 2 and induction hypothesis,

$$\chi^{\lambda}_{(\alpha_1,\alpha_2,\dots,\alpha_k)} = \chi^{\lambda}_{(\alpha_k,\alpha_2,\dots,\alpha_1)} = \sum_{\xi} (-1)^{\mathrm{ll}(\xi)} \chi^{\lambda|\xi}_{\alpha\setminus\alpha_k} = \sum_{\xi} (-1)^{\mathrm{ll}(\xi)} \sum_{T_{\xi}} (-1)^{T_{\xi}} (-1)^{T_{$$

where ξ is all rim hooks of λ with α_k cells such that $\lambda \setminus \xi$ has proper shape and T_{ξ} is a rim hook tableau of shape $\lambda \setminus \xi$ and content $\alpha \setminus \alpha_k$.(to avoid too many new names, we, for now, denote $(\alpha_k, ..., \alpha_1)$ by α .)

Now it is easy to see that the sets $\{(\xi, T_{\xi}) | \xi \text{ is all rim hooks of } \lambda \text{ with } \alpha_k \text{ cells such that } \lambda \setminus \xi \text{ has proper shape and } T_{\xi} \text{ is a rim hook tableau of shape } \lambda \setminus \xi \text{ and content } \alpha \setminus \alpha_k \} \text{ and } \{T \mid T \text{ is a rim hook tableau of shape } \lambda \text{ and content } \alpha \} \text{ are bijective.}$

(For a given rim hook tableau of shape λ and content α , the hook corresponding to the maximum element which appear in T will be a hook with α_k cells and removing the hook from T will give a rim hook tableau of shape $\lambda \setminus \xi$ and $\alpha \setminus \alpha_k$. And for a pair (ξ, T_{ξ}) construct a rim hook tableau of shape λ and content α by placing the tableau T_{ξ} in the place $\lambda \setminus \xi$ within λ and placing the rim hook ξ in the place ξ within λ .)

Also , if we denote this bijection by f , then

$$(-)^{f((\xi,T_{\xi}))} = (-1)^{\mathrm{ll}(\xi)}(-1)^{T_{\xi}}$$

So, it follows that

$$\chi^{\lambda}_{\alpha} = \sum_{T} (-1)^{T}$$

where T runs over all rim hook tableaux of shape λ and content α .

Proof of Theorem 2: Let $m = \alpha_1$. Consider $\pi \sigma \in S_{n-m} \times S_m \subseteq S_n$, where $\pi \in S_{n-m}$ has type $(\alpha_2, ..., \alpha_k)$ and $\sigma \in S_m$ is a m-cycle. So, $\pi \sigma$ has type $(\alpha_1, \alpha_2, ..., \alpha_k)$.

Therefore,
$$\chi^{\lambda}_{\alpha} = \chi^{\lambda}(\pi\sigma) = \chi^{\lambda} \downarrow_{S_{n-m} \times S_m} (\pi\sigma)$$

Now, since $\{\chi^{\mu}|\mu \vdash n - m\}$ and $\{\chi^{\upsilon}|\upsilon \vdash m\}$ are the sets of all irreducible characters of S_{n-m} and S_m respectively, so $\{\chi^{\mu} \otimes \chi^{\upsilon}|\mu \vdash n - m, \upsilon \vdash m\}$ is the set of all irreducible characters of $S_{n-m} \times S_m$.

$$\chi_{\alpha}^{\lambda} = \chi^{\lambda}(\pi\sigma) = \chi^{\lambda} \downarrow_{S_{n-m} \times S_m} (\pi\sigma) = \sum_{\substack{\mu \vdash n-m \\ \nu \vdash m}} m_{\mu\nu}^{\lambda} \chi^{\mu} \otimes \chi^{\nu}(\pi\sigma) = \sum_{\substack{\mu \vdash n-m \\ \nu \vdash m}} m_{\mu\nu}^{\lambda} \chi^{\mu}(\pi) \chi^{\nu}(\sigma)$$

where $m_{\mu\nu}^{\lambda} = \langle \chi^{\lambda} \downarrow_{S_{n-m} \times S_m}, \chi^{\mu} \otimes \chi^{\nu} \rangle$

Then using Frobenius reciprocity, we get

$$m_{\mu\nu}^{\lambda} = \langle \chi^{\lambda}, (\chi^{\mu} \otimes \chi^{\nu}) \uparrow^{S_n} \rangle$$

Now, we know that $\langle \chi^{\lambda}, (\chi^{\mu} \otimes \chi^{\upsilon}) \uparrow^{S_n} \rangle$ is the Littlewood-Richardson coefficient, denoted by $c^{\lambda}_{\mu\nu}$

So, the equation becomes

$$\chi^{\lambda}(\pi\sigma) = \sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{\upsilon \vdash m} c^{\lambda}_{\mu\upsilon} \chi^{\upsilon}(\sigma)$$
(1)

Now we will evaluate $\chi^{\upsilon}(\sigma)$, where σ is a m-cycle.

Lemma 1:If $v \vdash m$ then,

$$\chi_{(m)}^{\upsilon} = \begin{cases} (-1)^{m-r} & \text{if } \upsilon = (r, 1^{m-r}) \\ 0 & otherwise. \end{cases}$$

Proof: We know that

$$s_{\upsilon} = \sum_{\mu} \frac{1}{z_{\mu}} \chi^{\upsilon}_{\mu} p_{\mu}$$

where s_v is the schur function associated with the partition λ , z_{μ} is the order of the centralizer of any element of type μ and p_{μ} is the power sum function associated with μ . So, $\chi_{(m)}^{v}$ is $z_{(m)}$ times the coefficient of $p_{(m)}$.

Now, by the the complete homogeneous Jacobi-Trudi determinant, we get

$$s_{\upsilon} = ||h_{\upsilon_i - i + j}||_{l \times l} = \sum_{\kappa} \pm h_{\kappa}$$

where h_{κ} is the complete homogeneous symmetric function associated with κ , and the sum is over all compositions $\kappa = (\kappa_1, ..., \kappa_l)$ that occur as a term in the determinant. Now ,since $\{p_{\alpha_i} | \alpha_i \vdash \kappa_i\}$ forms a basis of Λ^{κ_i} , so

$$h_{\kappa} = \prod_{i} (\sum_{\alpha_i \vdash \kappa_i} a_{\alpha_i} p_{\alpha_i})$$

If $p_{(m)}$ occurs in this sum, then for some $\alpha_1 \vdash \kappa_1, \alpha_2 \vdash \kappa_2, ..., \alpha_l \vdash \kappa_l$ we get

$$ap_{\alpha_1}p_{\alpha_2}...p_{\alpha_l} = p_{(m)}.$$

where a is a constant.

So, some α_i must be m and so, $\kappa_i = m$. $\therefore \chi^{\nu}_{(m)} \neq 0$ only when h_m appears in the preceding determinant.

The largest index to appear in this determinant is at the end of the first row, and $v_1 - 1 + l = h_{1,1}$, the hook length of (1, 1) in a tableau of shape v. So, we always have $m = |v| \ge h_{1,1}$. Thus $\chi_{(m)}^{v} \ne 0$ only when $h_{1,1} = m$ i.e., when v is a hook $(r, 1^{m-r})$. In this case, we have,

$$s_{\upsilon} = \begin{vmatrix} h_r & \dots & h_m \\ h_0 & h_1 & \dots & \\ 0 & h_0 & h_1 & \dots & \\ 0 & 0 & h_0 & h_1 & \dots & \\ \vdots & \vdots & \vdots & \vdots & \\ \vdots & \vdots & \vdots & \vdots & \\ = (-1)^{m-r} h_m \end{vmatrix}$$

+ other terms not involving p_m

Now, we know that $h_m = s_{(m)}$ and the coefficient of p_m in s_m is given by $\frac{1}{m}\chi_{(m)}^{(m)}$, which is equal to 1/m. So,

$$\chi^{v}_{(m)} = (-1)^{m-r}$$

Lemma 2:Let $\lambda \vdash n, \mu \vdash n - m$ and $v = (r, 1^{m-r})$. Then $c_{\mu\nu}^{\lambda} = 0$ unless each edgewise connected component of $\lambda \setminus \mu$ is a rim hook. In that case, if there are k component hooks spanning a total of c columns, then

$$c_{\mu\nu}^{\lambda} = \begin{pmatrix} k-1\\ c-r \end{pmatrix}$$

Proof: By the Littlewood-Richardson rule, $c_{\mu\nu}^{\lambda} =$ number of semi-standard tableaux T of shape $\lambda \setminus \mu$ with content $\nu = (r, 1^{m-r})$ such that π_T is a reverse lattice permutation.i.e.if $\pi_1, \pi_2, ..., \pi_l$ are the rows of T, then the sequence $\pi_T^r = \pi_1^r \pi_2^r ..., \pi_l^r$ is a lattice permutation.Note that since the content of T is $(r, 1^{m-r})$, so there are exactly r 1's in T and the numbers 2,3,...,(m-r+1)appears exactly once in T.From this we can see that the numbers greater than 1 appears in increasing order in π_T^r .This condition together with semi-standardness puts the following constraints on T:

T1:Any cell of T having a cell to its right must contain a 1. (If it contains s > 1 then, cell to its right must contain a number $q \ge s > 1$ because of semi-standardness. But in π_T^r , q appears before s, so q < s.Now we can see that this is not possible.)

T2:Any cell of T having a cell above must contain an element bigger than 1.(in a semistandard tableau columns are strictly increasing.)

From T1 and T2, it follows that if T contains a 2×2 square then there is no way of filling the lower left cell, so $c_{\mu\nu}^{\lambda} = 0$ if any one of the components is not a rim hook.

Now suppose that $\lambda \setminus \mu = \biguplus_{i=1}^k \xi^{(i)}$, where each $\xi^{(i)}$ is a rim hook. T1, T2 and the fact that the numbers 2 through m - r + 1 increase in π_T^r show that $\xi^{(i)}$ is of the form

		1	1	1	b
		d			
1	1	d+1			
d+2					
d+3					

Here we order the $\xi^{(i)}$ such that the number of the first row of $\xi^{(i)}$ is less than the number of the first row of $\xi^{(i+1)}$. Then the d > 1 is the smallest number that has not appeared in $\pi^r_{\xi^{(1)}}\pi^r_{\xi^{(2)}}...\pi^r_{\xi^{(i-1)}}$ and b is either 1 or d-1. Also, in $\xi^{(1)}$, b=1(the first element $\ln \pi^r_{\xi^{(1)}}$ is this b). Now, by T1 and T2 we get that the number of 1's fixed in $\xi^{(1)}$ is the number of columns of $\xi^{(1)}$ and for any i > 1, number of 1's fixed in $\xi^{(i)}$ is number of columns of $\xi^{(i)} - 1$. So, number of 1's fixed in T is c - k + 1 (number of columns of T = \sum_i number of columns of $\xi^{(i)}$ since any two distinct component hooks cannot have a common column). Hence there are r - c + k - 11's left to distribute among the (k - 1) cells marked with a b. The number of ways this can be done is

$$c_{\mu\nu}^{\lambda} = \binom{k-1}{r-c+k-1} = \binom{k-1}{r-c}.$$

Putting the values from lemma 1 and 2 in equation 1, we get

$$\chi^{\lambda}(\pi\sigma) = \sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{\nu \vdash m} c^{\lambda}_{\mu\nu} \chi^{\nu}(\sigma) = \sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=1}^{m} \binom{k-1}{c-r} (-1)^{m-r}$$
(2)

Now, $k \leq c \leq m$, since k is the number of skew hooks $\xi^{(i)}$, c is the number of columns in all the $\xi^{(i)}$, and m is the number of cells in all the $\xi^{(i)}$. So

$$\sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=1}^{m} \binom{k-1}{c-r} (-1)^{m-r} = \sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=0}^{k-1} \binom{k-1}{r} (-1)^{m-r}$$
$$= (-1)^{m-c} \sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=0}^{k-1} \binom{k-1}{r} (-1)^{c-r} = \begin{cases} (-1)^{m-c} & \text{if } k-1=0\\ 0 & \text{otherwise} \end{cases}$$

But if k = 1, $\lambda \setminus \mu$ is a single rim hook ξ with m cells and c columns. Hence $m - c = ll(\xi)$, so equation 2 becomes

$$\chi^{\lambda}(\pi\sigma) = \sum_{|\xi|=m} (-1)^{\mathrm{ll}(\xi)} \chi^{\lambda \setminus \xi}(\pi)$$