The Murnaghan-Nakayama Rule

Chandranandan Gangopadhyay

April 21, 2014

The Murnaghan-Nakayama rule gives us a combinatorial way of computing the character table of any symmetric group S_{n}.
Before illustrating this rule, we need to define a new class of objects called Skew hook tableau.

First we define what a skew hook is. Skew hook(or rim hook) is a skew diagram obtained by taking all cells on a finite lattice path with steps one unit northward or eastward.Equivalently, a skew hook is a skew diagram such that it is edgewise connected and contains no 2×2 subset of cells. A typical skew hook looks like:

If ζ is a skew hook, then we define the leg length of $\zeta($ denoted by ll $(\zeta))$ to be (the number of rows in ζ) -1 . In the above case the leg length is 3 .

Skew hook tableau is a generalized tableau T with positive integral entries such that i)rows and columns of T weakly increase
ii)all occurrences of i in T lie in a single rim hook.

Here is an example of a skew hook tableau.

1	2	2	3	3
2	2	3	3	
2	4	4	4	
2	4			
2				

Now we define the sign of a rim hook tableau with rim hooks $\xi^{(i)}$ to be

$$
(-1)^{T}=\prod_{\xi^{(i)} \in T}(-1)^{11\left(\xi^{(i)}\right)}
$$

The sign of the above rim hook tableau is 1 .
Now we are in a position to state the result which will help us compute the character table of any symmetric group S_{n}.

Theorem 1: Let $\lambda \vdash n$ and let $\alpha=\left(\alpha_{1}, \ldots ., \alpha_{k}\right)$ be any composition of n.Then

$$
\chi_{\alpha}^{\lambda}=\sum_{T}(-1)^{T}
$$

where the sum is over all rim hook tableaux of shape λ and content α.
Remark: From Theorem 1, we can see that all the irreducible characters of S_{n} are integer valued.

Let us consider an example:
Suppose $\lambda=(3,2)$ and $v=(2,2,1)$. Then all the rim hook tableaux are:

1	1	3				
2	2		,	1	2	3
:---	:---	:---	:---	:---	:---	
1	2		,	1	2	2
:---	:---	:---				
1	3					

The signs of the rim hooks are 1,1 and -1 respectively. So,

$$
\chi_{(2,2,1)}^{(3,2)}=1+1-1=1
$$

Now, we will prove the following statement, from which theorem 1 will follow naturally.
Theorem 2: If $\lambda \vdash n$ and $\alpha=\left(\alpha_{1}, \ldots . ., \alpha_{k}\right)$ is a composition of n , then

$$
\chi_{\alpha}^{\lambda}=\sum_{\xi}(-1)^{11(\xi)} \chi_{\alpha \backslash \alpha_{1}}^{\lambda \backslash \xi}
$$

where the sum runs over all rim hooks ξ of λ having α_{1} cells.

Note that there may exist some rim hook ξ such that $\lambda \backslash \xi$ may not be a proper shape or all the cells may be deleted. for e.g.

or,

Here, the dotted cells represent the hook.
In the first case we set $\chi_{\alpha \backslash \alpha_{1}}^{\lambda \backslash \xi}$ to be 0 and for the second case set $\chi_{(0)}^{(0)}=1$.

Example:For large n, it might not be easy to find the rim hook tableaux. In that case, theorem 2 can be used.
Let $\lambda=(7,4,3,1)$ and $\alpha=(5,4,3,2,1)$. Then, to apply theorem 2 , we need to find the rim hooks ξ with 5 cells in λ such that $\lambda \backslash \xi$ has proper shape. We can see that there is only one such hook:

Here,the rim hooks to be removed are denoted by dots. So, after removing we get:

$$
\chi_{(5,4,3,2,1)}^{(7,4,3,1)}=-\chi_{(4,3,2,1)}^{(3,3,3,1)}
$$

There are two rim hooks with 4 cells within the above figure:

So, after removing we get,

$$
\chi_{(5,4,3,2,1)}^{(7,4,3,1)}=-\chi_{(4,3,2,1)}^{(3,3,3,1)}=-\left(-\chi_{(3,2,1)}^{(3,3)}+\chi_{(3,2,1)}^{(2,2,1,1)}\right)
$$

Now, there are no rim hooks with 3 cells within the second figure, and two rim hooks with 3 cells in the first figure:

So, after removing the rim hooks they become

$$
\chi_{(5,4,3,2,1)}^{(7,4,3,1)}=-\chi_{(4,3,2,1)}^{(3,3,3,1)}=-\left(-\chi_{(3,2,1)}^{(3,3)}+\chi_{(3,2,1)}^{(2,2,1,1)}\right)=-\left(-\left(\chi_{(2,1)}^{(3)}-\chi_{(2,1)}^{(2,1)}\right)+0\right)
$$

There are no rim hooks with 2 cells in the first figure and in the second figure there is only one rim hook with 2 cells:

So, after removing we get,

So,

$$
\chi_{(5,4,3,2,1)}^{(7,4,3,1)}=-\left(-\left(\chi_{(2,1)}^{(3)}\right)\right)=-\left(-\left(\chi_{(1)}^{(1)}\right)\right)=1
$$

Proof of Theorem 1 from Theorem 2: We will proceed by induction on k. The case $m=1$ follows from Lemma 1, which will be proved later.
Suppose the statement is true for $k-1$. Then, by theorem 2 and induction hypothesis,

$$
\chi_{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}^{\lambda}=\chi_{\left(\alpha_{k}, \alpha_{2}, \ldots, \alpha_{1}\right)}^{\lambda}=\sum_{\xi}(-1)^{11(\xi)} \chi_{\alpha \backslash \alpha_{k}}^{\lambda \backslash \xi}=\sum_{\xi}(-1)^{11(\xi)} \sum_{T_{\xi}}(-1)^{T_{\xi}}
$$

where ξ is all rim hooks of λ with α_{k} cells such that $\lambda \backslash \xi$ has proper shape and T_{ξ} is a rim hook tableau of shape $\lambda \backslash \xi$ and content $\alpha \backslash \alpha_{k}$. (to avoid too many new names, we, for now, denote $\left(\alpha_{k}, \ldots ., \alpha_{1}\right)$ by α.)

Now it is easy to see that the sets $\left\{\left(\xi, T_{\xi}\right) \mid \xi\right.$ is all rim hooks of λ with α_{k} cells such that $\lambda \backslash \xi$ has proper shape and T_{ξ} is a rim hook tableau of shape $\lambda \backslash \xi$ and content $\left.\alpha \backslash \alpha_{k}\right\}$ and $\{$ $\mathrm{T} \mid \mathrm{T}$ is a rim hook tableau of shape λ and content $\alpha\}$ are bijective.
(For a given rim hook tableau of shape λ and content α, the hook corresponding to the maximum element which appear in T will be a hook with α_{k} cells and removing the hook from T will give a rim hook tableau of shape $\lambda \backslash \xi$ and $\alpha \backslash \alpha_{k}$. And for a pair $\left(\xi, T_{\xi}\right)$ construct a rim hook tableau of shape λ and content α by placing the tableau T_{ξ} in the place $\lambda \backslash \xi$ within λ and placing the rim hook ξ in the place ξ within λ.)
Also, if we denote this bijection by f, then

$$
(-)^{f\left(\left(\xi, T_{\xi}\right)\right)}=(-1)^{11(\xi)}(-1)^{T_{\xi}}
$$

So, it follows that

$$
\chi_{\alpha}^{\lambda}=\sum_{T}(-1)^{T}
$$

where T runs over all rim hook tableaux of shape λ and content α.
Proof of Theorem 2: Let $m=\alpha_{1}$. Consider $\pi \sigma \in S_{n-m} \times S_{m} \subseteq S_{n}$, where $\pi \in S_{n-m}$ has type $\left(\alpha_{2}, \ldots, \alpha_{k}\right)$ and $\sigma \in S_{m}$ is a m-cycle. So, $\pi \sigma$ has type $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$.

$$
\text { Therefore, } \chi_{\alpha}^{\lambda}=\chi^{\lambda}(\pi \sigma)=\chi^{\lambda} \downarrow_{S_{n-m} \times S_{m}}(\pi \sigma)
$$

Now, since $\left\{\chi^{\mu} \mid \mu \vdash n-m\right\}$ and $\left\{\chi^{v} \mid v \vdash m\right\}$ are the sets of all irreducible characters of S_{n-m} and S_{m} respectively, so $\left\{\chi^{\mu} \otimes \chi^{v} \mid \mu \vdash n-m, v \vdash m\right\}$ is the set of all irreducible characters of $S_{n-m} \times S_{m}$.

$$
\begin{aligned}
\chi_{\alpha}^{\lambda}=\chi^{\lambda}(\pi \sigma)=\chi^{\lambda} \downarrow_{S_{n-m} \times S_{m}}(\pi \sigma) & =\sum_{\substack{\mu \vdash-n-m \\
v \vdash m}} m_{\mu v}^{\lambda} \chi^{\mu} \otimes \chi^{v}(\pi \sigma)=\sum_{\substack{\mu \vdash n-m \\
v \vdash m}} m_{\mu v}^{\lambda} \chi^{\mu}(\pi) \chi^{v}(\sigma) \\
\text { where } m_{\mu v}^{\lambda} & =\left\langle\chi^{\lambda} \downarrow_{S_{n-m} \times S_{m}}, \chi^{\mu} \otimes \chi^{v}\right\rangle
\end{aligned}
$$

Then using Frobenius reciprocity, we get

$$
m_{\mu v}^{\lambda}=\left\langle\chi^{\lambda},\left(\chi^{\mu} \otimes \chi^{v}\right) \uparrow^{S_{n}}\right\rangle
$$

Now, we know that $\left\langle\chi^{\lambda},\left(\chi^{\mu} \otimes \chi^{v}\right) \uparrow^{S_{n}}\right\rangle$ is the Littlewood-Richardson coefficient, denoted by $c_{\mu v}^{\lambda}$

So, the equation becomes

$$
\begin{equation*}
\chi^{\lambda}(\pi \sigma)=\sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{v \vdash m} c_{\mu v}^{\lambda} \chi^{v}(\sigma) \tag{1}
\end{equation*}
$$

Now we will evaluate $\chi^{v}(\sigma)$, where σ is a m-cycle.

Lemma 1:If $v \vdash m$ then,

$$
\chi_{(m)}^{v}= \begin{cases}(-1)^{m-r} & \text { if } v=\left(r, 1^{m-r}\right) \\ 0 & \text { otherwise } .\end{cases}
$$

Proof: We know that

$$
s_{v}=\sum_{\mu} \frac{1}{z_{\mu}} \chi_{\mu}^{v} p_{\mu}
$$

where s_{v} is the schur function associated with the partition λ, z_{μ} is the order of the centralizer of any element of type μ and p_{μ} is the power sum function associated with μ.
So, $\chi_{(m)}^{v}$ is $z_{(m)}$ times the coefficient of $p_{(m)}$.
Now, by the the complete homogeneous Jacobi-Trudi determinant, we get

$$
s_{v}=\left\|h_{v_{i}-i+j}\right\|_{l \times l}=\sum_{\kappa} \pm h_{\kappa}
$$

where h_{κ} is the complete homogeneous symmetric function associated with κ, and the sum is over all compositions $\kappa=\left(\kappa_{1}, \ldots ., \kappa_{l}\right)$ that occur as a term in the determinant. Now ,since $\left\{p_{\alpha_{i}} \mid \alpha_{i} \vdash \kappa_{i}\right\}$ forms a basis of $\Lambda^{\kappa_{i}}$, so

$$
h_{\kappa}=\prod_{i}\left(\sum_{\alpha_{i} \vdash \kappa_{i}} a_{\alpha_{i}} p_{\alpha_{i}}\right)
$$

If $p_{(m)}$ occurs in this sum, then for some $\alpha_{1} \vdash \kappa_{1}, \alpha_{2} \vdash \kappa_{2}, \ldots, \alpha_{l} \vdash \kappa_{l}$ we get

$$
a p_{\alpha_{1}} p_{\alpha_{2}} \ldots . p_{\alpha_{l}}=p_{(m)} .
$$

where a is a constant.
So,some α_{i} must be m and so, $\kappa_{i}=m . \therefore \chi_{(m)}^{v} \neq 0$ only when h_{m} appears in the preceding determinant.

The largest index to appear in this determinant is at the end of the first row, and $v_{1}-1+l=$ $h_{1,1}$, the hook length of $(1,1)$ in a tableau of shape v. So, we always have $m=|v| \geq h_{1,1}$. Thus $\chi_{(m)}^{v} \neq 0$ only when $h_{1,1}=m$ i.e., when v is a hook $\left(r, 1^{m-r}\right)$.In this case, we have,

$$
\begin{aligned}
& s_{v}=\| \begin{array}{ccccc}
h_{r} & \ldots \ldots . & & & h_{m} \\
h_{0} & h_{1} & \ldots . . & & \\
0 & h_{0} & h_{1} & \ldots . & \\
0 & 0 & h_{0} & h_{1} & \ldots . . \\
\cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & \\
=(-1)^{m-r} h_{m}
\end{array} \\
& + \text { other terms not involving } p_{m}
\end{aligned}
$$

Now, we know that $h_{m}=s_{(m)}$ and the coefficient of p_{m} in s_{m} is given by $\frac{1}{m} \chi_{(m)}^{(m)}$, which is equal to $1 / m$. So,

$$
\chi_{(m)}^{v}=(-1)^{m-r}
$$

Lemma 2:Let $\lambda \vdash n, \mu \vdash n-m$ and $v=\left(r, 1^{m-r}\right)$. Then $c_{\mu v}^{\lambda}=0$ unless each edgewise connected component of of $\lambda \backslash \mu$ is a rim hook. In that case, if there are k component hooks spanning a total of c columns, then

$$
c_{\mu v}^{\lambda}=\binom{k-1}{c-r}
$$

Proof: By the Littlewood-Richardson rule, $c_{\mu v}^{\lambda}=$ number of semi-standard tableaux T of shape $\lambda \backslash \mu$ with content $v=\left(r, 1^{m-r}\right)$ such that π_{T} is a reverse lattice permutation.i.e.if $\pi_{1}, \pi_{2}, \ldots, \pi_{l}$ are the rows of T , then the sequence $\pi_{T}^{r}=\pi_{1}^{r} \pi_{2}^{r} \ldots . \pi_{l}^{r}$ is a lattice permutation. Note that since the content of of T is $\left(r, 1^{m-r}\right)$, so there are exactly r 1 's in T and the numbers $2,3, \ldots,(m-r+1)$ appears exactly once in T.From this we can see that the numbers greater than 1 appears in increasing order in π_{T}^{r}. This condition together with semi-standardness puts the following constraints on T :

T1:Any cell of T having a cell to its right must contain a 1 . (If it contains $s>1$ then, cell to its right must contain a number $q \geq s>1$ because of semi-standardness. But in π_{T}^{r}, q appears before s, so $q<s$.Now we can see that this is not possible.)

T 2 :Any cell of T having a cell above must contain an element bigger than 1.(in a semistandard tableau columns are strictly increasing.)

From T1 and T2, it follows that if T contains a 2×2 square then there is no way of filling the lower left cell, so $c_{\mu v}^{\lambda}=0$ if any one of the components is not a rim hook.

Now suppose that $\lambda \backslash \mu=\biguplus_{i=1}^{k} \xi^{(i)}$, where each $\xi^{(i)}$ is a rim hook. T1, T2 and the fact that the numbers 2 through $m-r+1$ increase in π_{T}^{r} show that $\xi^{(i)}$ is of the form

Here we order the $\xi^{(i)}$ such that the number of the first row of $\xi^{(i)}$ is less than the number of the first row of $\xi^{(i+1)}$. Then the $d>1$ is the smallest number that has not appeared in $\pi_{\xi^{(1)}}^{r} \pi_{\xi^{(2)}}^{r} \ldots \pi_{\xi^{(i-1)}}^{r}$ and b is either 1 or $d-1$.Also, in $\xi^{(1)}, \mathrm{b}=1$ (the first element in $\pi_{\xi^{(1)}}^{r}$ is this b).Now, by T1 and T2 we get that the number of 1's fixed in $\xi^{(1)}$ is the number of columns of $\xi^{(1)}$ and for any $i>1$, number of 1's fixed in $\xi^{(i)}$ is number of columns of $\xi^{(i)}-1$.So, number of 1's fixed in T is $c-k+1$ (number of columns of $\mathrm{T}=\sum_{i}$ number of columns of $\xi^{(i)}$ since any two distinct component hooks cannot have a common column). Hence there are $r-c+k-1$ 1 's left to distribute among the $(k-1)$ cells marked with a b . The number of ways this can be done is

$$
\mathrm{c}_{\mu v}^{\lambda}=\binom{k-1}{r-c+k-1}=\binom{k-1}{r-c} .
$$

Putting the values from lemma 1 and 2 in equation 1 , we get

$$
\begin{equation*}
\chi^{\lambda}(\pi \sigma)=\sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{v \vdash m} c_{\mu v}^{\lambda} \chi^{v}(\sigma)=\sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=1}^{m}\binom{k-1}{c-r}(-1)^{m-r} \tag{2}
\end{equation*}
$$

Now, $k \leqslant c \leqslant m$, since k is the number of skew hooks $\xi^{(i)}, c$ is the number of columns in all the $\xi^{(i)}$, and m is the number of cells in all the $\xi^{(i)}$. So

$$
\begin{aligned}
& \sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=1}^{m}\binom{k-1}{c-r}(-1)^{m-r}=\sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=0}^{k-1}\binom{k-1}{r}(-1)^{m-r} \\
= & (-1)^{m-c} \sum_{\mu \vdash n-m} \chi^{\mu}(\pi) \sum_{r=0}^{k-1}\binom{k-1}{r}(-1)^{c-r}= \begin{cases}(-1)^{m-c} & \text { if } k-1=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

But if $k=1, \lambda \backslash \mu$ is a single rim hook ξ with m cells and c columns. Hence $m-c=11(\xi)$, so equation 2 becomes

$$
\chi^{\lambda}(\pi \sigma)=\sum_{|\xi|=m}(-1)^{11(\xi)} \chi^{\lambda \backslash \xi}(\pi)
$$

