# Representations of symmetric groups 

Homework 7
(Due on 10/03/2014 at 9:10 a.m.)

Instructions:

- Solutions must be complete and legible in order to earn maximum points.
- You may discuss and work together if necessary but you must write your own solutions. Copied solutions (from each other or books or the internet) are easy to identify and easier to grade as they can only earn a zero.

1. List a basis for $S^{(3,2)}$.

(a) Find the Garnir element corresponding to $t$.
(b) Use the straightening law to undo the row inversion in $t$.
(c) Express $e_{t}$ as a linear combination of standard polytabloids.
2. Let $H$ be a subgroup of $G$ and let $V$ denote the coset representation of $G$ w.r.t $H$. Let $C_{x}$ denote the conjugacy class of an element $x \in G$ and let $C_{G}(x)=\{y \in G \mid x y=y x\}$ be the centralizer of $x$ in $G$. Prove that

$$
\chi_{V}(x)=[G: H] \frac{\left|C_{x} \cap H\right|}{\left|C_{x}\right|}
$$

Deduce that for $\lambda, \mu \vdash n$, if $\chi_{\lambda}$ is the character of $M^{\lambda}$, then

$$
\chi_{\lambda}\left(C_{\mu}\right)=\frac{n!\left|C_{\mu} \cap S_{\lambda}\right|}{\left(\lambda_{1}!\cdots \lambda_{r}!\right)\left|C_{\mu}\right|}
$$

$\left(\right.$ Here $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right).\right)$

