Representations of symmetric groups
 Homework 6
 (Due on 17/02/2014 at 9:10 a.m.)

Instructions:

- Solutions must be complete and legible in order to earn maximum points.
- You may discuss and work together if necessary but you must write your own solutions. Copied solutions (from each other or books or the internet) are easy to identify and easier to grade as they can only earn a zero.

1. Let $n=4$. Answer each of the following questions for the partitions $\lambda \in\{(2,2),(2,1,1)\}$.
(a) List a basis of tabloids for M^{λ}.
(b) Find the induced representation $1 \uparrow_{S_{\lambda}}^{S_{4}}$ by writing out the cosets explicitly. Find an isomorphism of S_{4}-modules $\theta_{\lambda}: 1 \uparrow_{S_{\lambda}}^{S_{4}} \rightarrow M^{\lambda}$.
(c) Let $t=\begin{array}{|l|l}\hline 1 & 2 \\ \hline & 4 \\ \hline\end{array}$ (resp. $\left.\begin{array}{|l|l|}\hline 1 & 2 \\ \hline & \\ \hline\end{array}\right]$) be a λ-tableau. What are the corresponding R_{t}, C_{t}, κ_{t} and e_{t} ?

(d) Let $s=$\begin{tabular}{|l|l|l|l|}
\hline 3 \& 1

\hline 2 \& 4 \& 4

\hline

 (resp.

\hline 1 \& 3

\hline
\end{tabular}) be another λ-tableau. Find $\sigma \in S_{\lambda}$ such that $t=\sigma s$. What is the relation between e_{s} and e_{t} ?

(e) What is $\kappa_{t}\{s\}$?
2. Let G be a group and $H \subset G$ have index 2. Prove the following:
(a) H is normal in G.
(b) Every conjugacy class of G having non-empty intersection with H becomes a conjugacy class of H or splits into two conjugacy classes of H of equal size. Furthermore, the conjugacy class K of G does not split in H if and only if some $k \in K$ commutes with some $g \notin H$.
(c) Let χ be an irreducible character of G. Then $\chi \downarrow_{H}$ is either irreducible or is the sum of two inequivalent irreducibles. Furthermore, $\chi \downarrow_{H}$ is irreducible if and only if $\chi(g) \neq 0$ for some $g \notin H$.
3. Let A_{n} denote the alternating subgroup of S_{n} and consider $\pi \in S_{n}$ having cycle type $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$.
(a) Show that $\pi \in A_{n}$ if and only if $n-l$ is even.
(b) Prove that the conjugacy classes of S_{n} that split in A_{n} are those where all parts of λ are odd and distinct.

Observe that you can use the above two exercises to find the character table of A_{4} using the character table of S_{4}.

