Representations of symmetric groups Homework 6 (Due on 17/02/2014 at 9:10 a.m.)

Instructions:

- Solutions must be complete and legible in order to earn maximum points.
- You may discuss and work together if necessary but you must **write your own solutions**. Copied solutions (from each other or books or the internet) are easy to identify and easier to grade as they can only earn a zero.
- 1. Let n = 4. Answer each of the following questions for the partitions $\lambda \in \{(2,2), (2,1,1)\}$.
 - (a) List a basis of tabloids for M^{λ} .
 - (b) Find the induced representation $1\uparrow_{S_{\lambda}}^{S_{4}}$ by writing out the cosets explicitly. Find an isomorphism of S_{4} -modules $\theta_{\lambda}: 1\uparrow_{S_{\lambda}}^{S_{4}} \to M^{\lambda}$.

(c) Let
$$t = \begin{bmatrix} 1 & 2 \\ \hline 3 & 4 \end{bmatrix}$$
 (resp. $\begin{bmatrix} 1 & 2 \\ \hline 3 & 4 \end{bmatrix}$) be a λ -tableau. What are the corresponding R_t , C_t , κ_t and e_t ?

(d) Let $s = \boxed{3 \ 1}{2 \ 4}$ (resp. $\boxed{2 \ 3}{1 \ 4}$) be another λ -tableau. Find $\sigma \in S_{\lambda}$ such that $t = \sigma s$. What is the relation between e_s and e_t ?

(e) What is
$$\kappa_t \{s\}$$
?

- 2. Let G be a group and $H \subset G$ have index 2. Prove the following:
 - (a) H is normal in G.
 - (b) Every conjugacy class of G having non-empty intersection with H becomes a conjugacy class of H or splits into two conjugacy classes of H of equal size. Furthermore, the conjugacy class K of G does not split in H if and only if some $k \in K$ commutes with some $g \notin H$.
 - (c) Let χ be an irreducible character of G. Then $\chi \downarrow_H$ is either irreducible or is the sum of two inequivalent irreducibles. Furthermore, $\chi \downarrow_H$ is irreducible if and only if $\chi(g) \neq 0$ for some $g \notin H$.
- 3. Let A_n denote the alternating subgroup of S_n and consider $\pi \in S_n$ having cycle type $\lambda = (\lambda_1, \ldots, \lambda_l)$.
 - (a) Show that $\pi \in A_n$ if and only if n l is even.
 - (b) Prove that the conjugacy classes of S_n that split in A_n are those where all parts of λ are odd and distinct.

Observe that you can use the above two exercises to find the character table of A_4 using the character table of S_4 .