Representations of the symmetric group

Homework 1
(Due on 13/01/2014 at 9:10 a.m.)

Instructions:

- Solutions must be complete and legible in order to earn maximum points.
- You may discuss and work together if necessary but you must write your own solutions. Copied solutions (from each other or books or the internet) are easy to identify and easier to grade as they can only earn a zero.

1. If a group G acts on a set S and $s \in S$, then the stabilizer of s is $G_{s}=\{g \in G \mid g s=s\}$ and the orbit of s is $\mathcal{O}_{s}=\{g s \mid g \in G\}$.
(a) Prove that G_{s} is a subgroup of G.
(b) Find a bijection between the cosets of G / G_{s} and the elements of \mathcal{O}_{s}.
(c) Show that $\left|\mathcal{O}_{s}\right|=|G| /\left|G_{s}\right|$.
2. Let V be a finite-dimensional vector space and W be a subspace of V. Prove that there is a bijective correspondence between the projections of V onto W and the complements of W in V.
3. Let V be a 4-dimensional vector space with basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. List the corresponding bases of $V \otimes V$, $\mathrm{Sym}^{2} V$ and $\bigwedge^{2} V$.
4. Let V be a representation of G containing a vector v such that the set $\left\{\rho_{s}(v)\right\}_{s \in G}$ forms a basis of V. Prove that V is isomorphic to the regular representation of G.
(Here $\rho: G \rightarrow \mathrm{GL}(V)$ is the representation of G in V and ρ_{s} stands for the element $\rho(s) \in \mathrm{GL}(V)$.)
5. Let V be the regular representation of G and W be the 1-dimensional subspace of V generated by the element $x=\sum_{s \in G} e_{s}$. Prove that W is a subrepresentation of V and that W is isomorphic to the trivial representation of G.
