Reflection Groups - Assignment 3
Due on Thursday, February 18, 2016
(please submit in class)

1. Prove that the reflection group of type $B C_{2}$ is isomorphic to the dihedral group D_{8}.
2. Prove that the set of roots $\left\{ \pm e_{i} \mid i=1,2, \ldots, n\right\}$ is a root system of type $A_{1} \oplus A_{1} \oplus \cdots \oplus A_{1}$ (n summands).
3. Let Φ be the root system of type A_{n}. Prove that the intersection Ψ of Φ with the hyperplane $x_{1}+x_{2}+\cdots+x_{n}=$ 0 is a root system of type A_{n-1}.
4. Make a sketch of the roots systems $A_{1} \oplus A_{1}$ in \mathbb{R}^{2} and $A_{1} \oplus A_{1} \oplus A_{1}$ in \mathbb{R}^{3}.
5. For $\alpha \in \Delta$ and $w \in W$, let $\Pi(w)$ denote the set $\Pi \cap w^{-1}(-\Pi)$. Show that $\Pi\left(w s_{\alpha}\right)$ is the disjoint union of $s_{\alpha} \Pi(w)$ and $\{\alpha\}$. Use it to prove the following properties of the length function and the n function: :
(a) $w \alpha>0 \Longrightarrow n\left(w s_{\alpha}\right)=n(w)+1$;
(b) $w \alpha<0 \Longrightarrow n\left(w s_{\alpha}\right)=n(w)-1$;
(c) $w^{-1} \alpha>0 \Longrightarrow n\left(s_{\alpha} w\right)=n(w)+1$;
(d) $w^{-1} \alpha<0 \Longrightarrow n\left(s_{\alpha} w\right)=n(w)-1$;
6. For $w \in W$, prove that $\operatorname{det}(w)=(-1)^{n(w)}$.
7. If $w, w^{\prime} \in W$, prove that $n\left(w w^{\prime}\right) \leq n(w)+n\left(w^{\prime}\right)$ and $n\left(w w^{\prime}\right) \equiv n(w)+n\left(w^{\prime}\right) \bmod (2)$.
