Reflection Groups - Assignment 3 Due on Thursday, February 18, 2016 (please submit in class)

- 1. Prove that the reflection group of type BC_2 is isomorphic to the dihedral group D_8 .
- 2. Prove that the set of roots $\{\pm e_i \mid i = 1, 2, ..., n\}$ is a root system of type $A_1 \oplus A_1 \oplus \cdots \oplus A_1$ (n summands).
- 3. Let Φ be the root system of type A_n . Prove that the intersection Ψ of Φ with the hyperplane $x_1 + x_2 + \cdots + x_n = 0$ is a root system of type A_{n-1} .
- 4. Make a sketch of the roots systems $A_1 \oplus A_1$ in \mathbb{R}^2 and $A_1 \oplus A_1 \oplus A_1$ in \mathbb{R}^3 .
- 5. For $\alpha \in \Delta$ and $w \in W$, let $\Pi(w)$ denote the set $\Pi \cap w^{-1}(-\Pi)$. Show that $\Pi(ws_{\alpha})$ is the disjoint union of $s_{\alpha}\Pi(w)$ and $\{\alpha\}$. Use it to prove the following properties of the length function and the *n* function: :
 - (a) $w\alpha > 0 \implies n(ws_{\alpha}) = n(w) + 1;$
 - (b) $w\alpha < 0 \implies n(ws_{\alpha}) = n(w) 1;$
 - (c) $w^{-1}\alpha > 0 \implies n(s_{\alpha}w) = n(w) + 1;$
 - (d) $w^{-1}\alpha < 0 \implies n(s_{\alpha}w) = n(w) 1;$
- 6. For $w \in W$, prove that $det(w) = (-1)^{n(w)}$.
- 7. If $w, w' \in W$, prove that $n(ww') \leq n(w) + n(w')$ and $n(ww') \equiv n(w) + n(w') \mod (2)$.