Reflection Groups - Assignment 2 Due on January 26, 2016

- 1. Prove that a finite group of orthogonal transformations of \mathbb{R}^2 is either a cyclic group or the dihedral group D_{2n} .
- 2. Let Φ be a root system in a euclidean space V and $U \subset V$ be a vector subspace of V. Prove that $\Phi \cap U$ is a (possibly empty) root system in U.
- 3. Describe planar root systems with 4 roots and the corresponding reflection groups.
- 4. Prove that D_{2n} has one conjugacy class of reflections if n is odd and two conjugacy classes of reflections if n is even.
- 5. Prove that in a root system in \mathbb{R}^2 , the lengths of roots can take at most two values.