1. Prove that a finite group of orthogonal transformations of \mathbb{R}^{2} is either a cyclic group or the dihedral group $D_{2 n}$.
2. Let Φ be a root system in a euclidean space V and $U \subset V$ be a vector subspace of V. Prove that $\Phi \cap U$ is a (possibly empty) root system in U.
3. Describe planar root systems with 4 roots and the corresponding reflection groups.
4. Prove that $D_{2 n}$ has one conjugacy class of reflections if n is odd and two conjugacy classes of reflections if n is even.
5. Prove that in a root system in \mathbb{R}^{2}, the lengths of roots can take at most two values.
