Reflection Groups - Assignment 1
 Due on January 112016

1. Show that the only isometry of \mathbb{R}^{n} fixing $\mathbf{0}$ and the standard basis is the identity. Further show that this need not be the case if the isometry does not fix $\mathbf{0}$.
2. Prove that the group $\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ is isomorphic to the semidirect product $\mathbb{R}^{n} \rtimes \mathcal{O}_{n}$, where \mathbb{R}^{n} is the subgroup of translations and \mathcal{O}_{n} is the subgroup of orthogonal transformations.
3. Let $\mathrm{t}_{v} \in \operatorname{Iso}\left(\mathbb{R}^{n}\right)$ denote the translation through the vector v and let $A \in \operatorname{Iso}\left(\mathbb{R}^{n}\right)$ be an orthogonal transformation. Then prove that

$$
A t_{v} A^{-1}=t_{A v} .
$$

4. Let A be an $n \times n$ real matrix. Show that $v \cdot w=0 \Rightarrow A v \cdot A w=0$ if and only if A is a scalar multiple of an orthogonal matrix.
5. Prove that two isometries of \mathbb{R}^{n} that are equal at $\mathbf{0}$ and at a basis of \mathbb{R}^{n} are the same.
