Reflection Groups - Assignment 1 Due on January 11 2016

- 1. Show that the only isometry of \mathbb{R}^n fixing **0** and the standard basis is the identity. Further show that this need not be the case if the isometry does not fix **0**.
- 2. Prove that the group $\operatorname{Iso}(\mathbb{R}^n)$ is isomorphic to the semidirect product $\mathbb{R}^n \rtimes \mathcal{O}_n$, where \mathbb{R}^n is the subgroup of translations and \mathcal{O}_n is the subgroup of orthogonal transformations.
- 3. Let $t_{\nu} \in \operatorname{Iso}(\mathbb{R}^n)$ denote the translation through the vector ν and let $A \in \operatorname{Iso}(\mathbb{R}^n)$ be an orthogonal transformation. Then prove that

$$At_{\nu}A^{-1} = t_{A\nu}.$$

- 4. Let A be an $n \times n$ real matrix. Show that $v \cdot w = 0 \Rightarrow Av \cdot Aw = 0$ if and only if A is a scalar multiple of an orthogonal matrix.
- 5. Prove that two isometries of \mathbb{R}^n that are equal at **0** and at a basis of \mathbb{R}^n are the same.