MSc. Applications of Mathematics

Linear Algebra - Homework 2

(Due on Wednesday, 18 January at 10:30 a.m.)

1. Let A be an $m \times n$ matrix. Define

$$||A||_F = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{\frac{1}{2}}$$

(i) Prove that this is indeed a matrix norm.

(ii) Evaluate $||A||_1$, $||A||_2$, ||A|| and $||A||_F$ for

$$A = \left(\begin{array}{rrr} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{array}\right).$$

2. Explain why $||I_{n\times n}|| = 1$ for every induced matrix norm. What is $||I_{n\times n}||_F$?

- 3. If $x \in \mathbb{C}^m$ and A is a $m \times n$ matrix, prove the following inequalities:
 - (a) $||x||_{\infty} \le ||x||_2$.
 - (b) $||x||_2 \le \sqrt{m} ||x||_{\infty}$.
 - (c) $||A||_{\infty} \le \sqrt{n} ||A||_2$.
 - (d) $||A||_2 \le \sqrt{m} ||A||_{\infty}$.

4. Prove that if a matrix is both triangular and unitary, then it is diagonal. What are its diagonal entries?

5. Prove that for the induced 2-norm and the Frobenius norm on matrices are invariant under multiplication by unitary matrices.