MSc. Applications of Mathematics

Linear Algebra - Homework 2
(Due on Wednesday, 18 January at 10:30 a.m.)

1. Let A be an $m \times n$ matrix. Define

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} .
$$

(i) Prove that this is indeed a matrix norm.
(ii) Evaluate $\|A\|_{1},\|A\|_{2},\|A\|$ and $\|A\|_{F}$ for

$$
A=\left(\begin{array}{rrr}
4 & -2 & 4 \\
-2 & 1 & -2 \\
4 & -2 & 4
\end{array}\right)
$$

2. Explain why $\left\|I_{n \times n}\right\|=1$ for every induced matrix norm. What is $\left\|I_{n \times n}\right\|_{F}$?
3. If $x \in \mathbb{C}^{m}$ and A is a $m \times n$ matrix, prove the following inequalities:
(a) $\|x\|_{\infty} \leq\|x\|_{2}$.
(b) $\|x\|_{2} \leq \sqrt{m}\|x\|_{\infty}$.
(c) $\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2}$.
(d) $\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}$.
4. Prove that if a matrix is both triangular and unitary, then it is diagonal. What are its diagonal entries?
5. Prove that for the induced 2-norm and the Frobenius norm on matrices are invariant under multiplication by unitary matrices.
