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1 Introduction

The random character of stock market prices was first modelled by Jules Reg-
nault, a French broker, in 1863 and then by Louis Bachelier, a French mathe-
matician, in his 1900 Ph.D. thesis, ”The Theory of Speculation”.

The efficient-market hypothesis was developed by Professor Eugene Fama at
the University of Chicago Booth School of Business as an academic concept of
study through his published Ph.D. thesis in the early 1960s. The efficient-market
hypothesis (EMH), or the joint hypothesis problem, asserts that financial mar-
kets are ”informationally efficient”. In other words EMH, claims that prices on
traded assets (e.g., stocks, bonds, or property) already reflect all past publicly
available information. Stonger versions of EMH even additionally claim that
prices instantly reflect even hidden or ”insider” information. Eversince there
has been much interest in discering patterns in the prices of stock markets.
And in today’s world where automated algorithmic trading dominates the sce-
nario, the subject matter is even more serious and pertinent.

In our project we wish to apply popular prevalent techniques such as Prin-
cipal Component Analysis, Random Matrix Theory and Markowitz Theory of
Portfolio Optimization to discover information from the trading history of the
stocks listed in BSE.

2 Correlation Matrix

Much of the fundamentals of many trading strategies rely on exploiting the
correlation between different stocks. And such an exercise not only uncovers
the underlying ”interactions” for the stock market, but also furthers our under-
standing of the economy as a complex dynamical system.

In order to quantify correlations, we first calculate the price change (”re-
turn”) of stock i = 1, ..., N:

gi(t) = lnSi(t+ 1)− lnSi(t)

where Si(t) denotes the price of stock i on the tth day. Since different stocks
have varying levels of volatality (standard deviation), we define a normalized
return:

Gi(T ) =
gi(t)− 〈gi〉

σi

where σi is the standard deviation of gi, and 〈...〉 denotes a time average over
a period studied. We then compute the equal-time cross-correlation matrix C
with elements:

Cij = 〈Gi(t)Gj(t)〉

In other words:

Cij =
1

T
(GTG)ij
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So, C thus formed is N ×N matrix.

By construction, the elements are restrited to the domain −1 ≤ Cij ≤ 1,
where Cij = 1 corresponds to perfect correlations, Cij = −1 corresponds to
perfect anticorrelations, and Cij = 0 corresponds to uncorrelated pairs of stocks.

2.1 Collection of Data

• We collected data for the 200 companies that constitute the S&P BSE
index from www.finance.yahoo.com for the period 1st January 2007 to
31stDecember2012.

• We wrote a Python code to automatically download data from the website.
The Python code can be found in the Appendix.

• As a part of pre-processing we deleted the companies for which we couldn’t
find enough data.

• We also removed dates on which most of the market didn’t trade and less
than 0.25 fraction of the companies traded.

• For trading dates where more than 0.25 fraction of the companies traded,
we used the prices of the last available trading date for the companies that
didn’t trade.

• In a situation where the data for a company was not available for a few days
(either because the company was not listed in the exchange at that time
or during the 2008 crash when a lot of companies did not list their prices),
we interpolated to get data between dates whose data was available.

• We were left with 170 companies and 1513 trading dates to work with, i.e.
N = 170 and T = 1513.

• We constructed of correlation matrix C by the above mentioned procedure.

3 Principal Component Analysis

The correlation matrix defined above is a symmetric matrix, that can be diag-
onalized.

This is the basis of the well known Principal Component Analysis (PCA),
aiming at decomposing the fluctuations of Gi(t).

Notice that C ∼ GTG (differ by a scalar factor of I/T ). Construct G′ = G√
T

so that C = G′
T
G′. So finding the eigenvalue-decompositon of C is equivalent

to finding the singular value decomposition of G′.

Suppose the SVD of G′ is UΣV T , then we may write:

G′ij =

N∑
α=1

√
λαu

α
i v

α
j
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Now if we consider the k-largest singular values and truncate it there after,
then:

G′ij ≈
k∑

α=1

√
λαu

α
i v

α
j

is a reasonably good approximation to the original data.

Further more if the largest singular value λ1 � other singular values then:

G′ij ≈
√
λ1u

1
i v

1
j

The eigen-vectors corresponding to these first few largest eigenvalues are called
as the Principal Components.

3.1 Calculating the Eigenvalues and Eigenvectors

With the idea of how eigenvalues and eigenvectors might be useful in studying
C, we move towards calculating its eigenvalues and the corresponding eigenvec-
tors. Physically, eigenvalue analysis can give insight into the behaviour of the
matrix and thus tend to be the most powerful tool available in matrix theories.
The eigenvalues and the corresponding eigenvectors are calculated in MATLAB
using the QR algorithm. The program for the same is given the appendix.

4 Markowitz Portfolio Theory

In this section we give a very short introduction to Markowitz Portfolio Theory
(MPT).

MPT is the mathematical formulation of the concept of diversification in
investing, with the aim of selecting a collection of investment assets that collec-
tively has lower risk than any individual asset. Harry Markowitz won a Nobel
memorial prize for the theory.

4.1 Formulation

In MPT a portfolio Π consists of weights wi, where wi is the fraction of the
wealth is invested in stock Si and

∑
wi = 1. Then the return on the stock is

given by:

Φ =

N∑
i=1

wigi

And the corresponding risk in holding the portfolio Π is given by the variance
of returns:

Ω2 =

N∑
j=1

N∑
i=1

wiwjCijσiσj
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MPT assumes that investors are risk averse, meaning that given two port-
folios that offer the same expected return, investors will prefer the less risky
one. Thus, an investor will take on increased risk only if compensated by higher
expected returns. Conversely, an investor who wants higher expected returns
must accept more risk.

Mathematically the above can be formulated as the following constrained
optimization problem:

Minimize:

Ω2 =

N∑
j=1

N∑
k=1

wkwjCijσiσj

Subject to:

Φ =

N∑
k=1

wkGk

N∑
k=1

wk = 1

4.2 Eigenportfolios and Eigenvalues

The list of numbers {uik} can be seen as the weights of the different stock
k = 1, ..., N in a certain portfolio Πi, where some stocks are ’long’ (uik > 0)
while others are ’short’ (uik < 0).

The realized risk is measured by the variance of the returns, given by:

Ω2
i =

1

T

∑
t

(∑
k

uikGkt

)2

=
∑
jk

uiju
i
kCjk = λi

.

It is customary to call the portfolios corresponding to the eigenvectors as
eigenportfolios. And the essential synopsis is that the risk of the investment in
an eigenportfolio is its corresponding eigenvalue.

5 Random Matrix Theory

Much of the success of the trading strategies depends on whether the correla-
tions are true correlations or not. We use random matrix theory to help us
decide that.
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5.1 Random matrices and the correlation matrix

The project started with an expectation that the price changes are random. We
claim that it is indeed so and verify this claim. Since our measure of the price
changes is determined by the correlation matrix C, we intend to show that C
behaves like a random matrix and exhibits most of its properties. Since the
properties of random matrices are known, we can thereby use them to study C.

A random matrix R is defined as a matrix whose elements are all uncorre-
lated, have mean 0 and variance 1. To construct such a matrix, we take A to
be an T ×N random matrix (constructed using MATLAB) with elements that
belong to a standard normal distribution having mean 0 and variance 1. Define
R as

R =
1

T
ATA

So R is a random matrix and henceforth will be used throughout the project
for the comparison of properties with C.

The tests used to prove the claim are as follows:-

• Probability distribution of the eigenvalues of C is almost the same as the
probability distribution of the eigenvalues of R.

• Probability distribution of the components of ”almost” all eigenvectors
converges to standard normal distribution, i.e., N(0, 1) which is the prob-
ability distribution of the components of every eigenvector of a random
matrix.

• Probability distribution of the ’nearest neighbour unfolded eigenvalues’ is
the same as that of R.

Note that all 3 tests are necessary but not sufficient to prove our claim.
However, there does not exist any sufficient test for this. So we verify whether
the necessary tests hold or not. In the event of non-compliance with any of the
tests, our whole claim will fail.

For this project, we perform the first 2 tests. The third test, although the
most powerful test which if done, can show that the ’nearest neighbour un-
folded eigenvalues’ of C and R are same for more than 99.5% eigenvalues is
being skipped because of the depth of the probability and measure theoretic
topics involved in that study. We hope to study it in the near future if we can.

5.2 Test 1: Probability distribution of eigenvalues

Eigenvalue decomposition does not get changed for similar matrices. Since C
and R are expected to show a lot of similar behaviour, therefore mathematically,
they are expected to be ’somewhat’ similar. This ’somewhat’ similar mathemat-
ical nature is determined by whether their eigenvalues are almost equal or not.

The probability distribution of eigenvalues denotes the probability of an
eigenvalue lying in a small interval. If in a very small interval, the probability of
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an eigenvalue of C and of R is very close to each other, we can safely conclude
that their eigenvalues are almost equal. For this we follow the follwing steps:

• Find the largest and smallest eigenvalues of C.

• Divide the interval between these eigenvalues in to a lot of smaller subin-
tervals (around 500 in number).

• Find the number of eigenvalues of C that lie in each subinterval.

• Divide these numbers with the total number of eigenvalues of C.

We compare this distribution with the probability density of the eigenvalues
of the random matrix R which is given by the formula

Prm(λ) =
Q

2π

√
(λ+ − λ)(λ− λ−)

λ

where Q = T
N and λ+ and λ− are the largest and the smallest eigenvalues

respectively.
T is the number of dates for which data was collected and N is the number of
stocks being studied.

According to random matrix theory, the largest and the smallest eigenvalues
of a random matrix are given by

λ± = 1 +
1

Q
± 2

√
1

Q

The fact that different random matrices will have different eigenvalues lying
between the same range explains the possibility of infinitely many values that
can be an eigenvalue of a randomly chosen R. This is the reason why we con-
sider probability density here.

Plotting the two distributions, we note that the distributions have a lot of
similarity.

Probability distribution of eigenvalues of C.
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Probability distribution of eigenvalues of C (with modified axes).

Probability distribution of eigenvalues of the random matrix R.

Since the two graphs are very similar to each other, our first test is success-
fully verified.

5.3 Test 2: Probability distribution of eigenvector com-
ponents

According to random matrix theory, the components of any eigenvector follows
standard normal distribution. We see if the same is true for the components
of eigenvectors of C or not. For this we find the probability distribution of the
componets of some eigenvectors of C.
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Probability distribution of components of u20

Probability distribution of components of u35

For a majority of the eigenvectors, we see that the test holds.

5.4 Areas where the tests fail

As we saw, RMT gives bounds for the largest and the smallest eigenvalues of
a random matrix (given by an equation written in section 5.2). These bounds
are dependent purely on the dimensions of the data collected. Thus if C was a
perfect random matrix, these bounds predicted by RMT would have been the
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actual bounds for the eigenvalues of C.

The upper bound according to RMT predictions is 1.7496 and the lower
bound is 0.4589.

But C has some eigenvalues outside these bounds. This shows that C is not
a complete random matrix.

This can be seen in both the tests as well. In test 1,there are some eigenval-
ues much outside the predicted plot of eigenvalues of a random matrix.

In test 2, the components of eigenvectors corresponding to eigenvalues out-
side the RMT predicted bounds do not have a standard normal distribution as
displayed below:

Probability distribution of components of u3

So the RMT predicted bounds give a range within which most of the eigenval-
ues lie, those that correspond to uncorrelated and random data. The existence
of eigenvalues outside the bounds means that there are some elements of C that
have some correlation and the genuine information about these correlations is
obtained from the eigenvalues that are outside the bounds.

5.5 Deviating eigenvalues and eigenvectors

The eigenvalues that lie outside the RMT predicted bounds are called deviating
eigenvalues. The eigenvectors corresponding to deviating eigenvalues are called
deviating eigenvectors. For portfolio construction, the aim is to find some stocks
that have some positive correlation so that an increase in price of one stock in-
creases the price of others as well and thus total profit increases. It also needs
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to consider a fall in the price of a stock. The stocks should not be very highly
correlated because then the total loss would increase. To sum it up, correlations
play an important role in portfolio construction. So the meaningful information
in this regard is contained in the deviating eigenvalues and deviating eigenvec-
tors because they corespond to existence of correlations in the market.

Deviations are of two types:

• Eigenvalues lying below the RMT lower bound

• Eigenvalues lying above the RMT upper bound

6 Principal Components of C corresponding to
the Deviating Eigenvalues

From the previous section we already know that the deviating eigenvalues con-
tain the ”genuine” correlation. In this section we interpret the physical or
financial meaning of the deviating eigenvectors. Before that we shall define a
few statistics.

6.1 Inverse Participation Ratio & Significant Participants

The IPR of an eigenvector uk is defined as:

IPR(uk) ≡ Ik =

N∑
i=1

[uki ]4

where N is the number of components in the eigenvector uk and uki are its com-
ponents.

The meaning of IPR can be illustrated by two limiting cases: (i) a vector
with identical components uki = 1√

N
has IPR= 1

N , whereas (ii) a vector with one

component uk1 = 1 and the remainder zero has IPR= 1. Thus, the IPR quan-
tifies the reciprocal of the number of eigenvector components that contribute
significantly.

The first few of the 1
Ik

components of higest magnitude in uk are called the

significant participants of uk. The motivation is that these significant partici-
pants would almost completely describe uk.

6.2 Interpretation of the largest Deviating Eigenvalue

For the eigenvector u1 corresponding to the largest eigenvalue λ1, IPR(u1) =
0.0072 and hence 1

I1 = 138.48 stocks out of 170 participate significantly in u1.

The following graph shows the probability mass of each component of the
eigenvector u1:
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Probability distribution of components of u1

It is an almost uniform distribution, and it is as if one were to invest equally
in the market. Thus the eigenvector u1 depicts the entire market and it’s dy-
namics are influenced by macroeconomic factors such as interest rate changes,
GDP of the economy, inflation etc. that influence the entire market on the
whole.

6.3 Interpretaion of Larger Deviating Eigenvalues

For the eigenvector u2 corresponding to the largest eigenvalue λ2, 1
I2 turns out

to be 44.3913.

Listing the stocks corresponding to the top 10 significant participants, we
get

• Wipro

• Infosys

• TCS

• HCL Tech

• Tech Mahindra

• Oracle

• Reliance Industries Ltd.

• Mphasis

• Cairn

• Tata Steel
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i.e. 8 out of the top 10 significant participants of u2 belong to the IT sector.

Repeating a similar exercise for the next few deviating eigenvectors we find:

• Most of the top significant participants of u3 belong to the power, oil and
petroleum sector.

• Most of the top significant participants of u4 belong to the consumer
products and pharmaceutical sector.

• And most of the top significant participants of u5 belong to the banking
sector.

Thus, the deviating eigenvalues above the RMT reveal the microstructure
of the economy, with each correponding deviating eigenvector respresenting a
cluster corresponding to the major market segments.

6.4 Interpretation of Smaller Deviating Eigenvalues

There are also a few eigenvalues that lie below the predicted RMT bounds. As
expected the IPR of these eigenvectors are large. In other words, the number of
significant participants are few. So these eigenvectors represent small clusters
of highly correlated stocks.

For example the significant companies in the u170 are (where the number to
the right of it represents its component in the vector):

• Hindustan Petroleum Corporation Limited: -0.44

• Reliance Capital: -0.27

• Syndicate Bank: -0.18

• Vijay Bank: 0.51

• Bharat Petroleum Corporation Limited: 0.33

• Canara Bank: 0.14

The corresponding correlation coefficients are:

HPCL BPCL
HPCL 1 0.70
BPCL 0.70 1

RELC SYND VIJAY CANARA
RELC 1 0.63 0.58 0.51
SYND 0.63 1 0.74 0.59
VIJAY 0.58 0.74 1 0.60
CANBARA 0.51 0.59 0.60 1
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RELC SYND VIJAY CANARA
HPCL 0.3 0.32 0.34 0.29
BPCL 0.31 0.31 0.28 0.27

So we notice that the eigenvector has two highly correlated subclusters com-
prising of the petroleum and the banking sector. And the subclusters themselves
are weakly correlated amongst themselves. These feature of the eigenportfolio
corresponding to the smaller eigenvalues, makes them ammenable to a pairs
trading strategy.

7 An Illustrative Strategy: Pairs Trading
Strategy

The pairs trade or pair trading is a market neutral trading strategy enabling
traders to profit from virtually any market conditions: uptrend, downtrend, or
sideways movement.This strategy is categorized as a statistical arbitrage and
convergence trading strategy. The pair trading was pioneered by Gerry Bam-
berger and later led by Nunzio Tartaglia’s quantitative group at Morgan Stanley
in the 1980s.

The strategy monitors performance of two historically correlated securities.
When the correlation between the two securities temporarily weakens, i.e. one
stock moves up while the other moves down, the pairs trade would be to short
the outperforming stock and to long the underperforming one, betting that the
”spread” between the two would eventually converge.

Now consider the eigenportfolio u170 considered in the previous section. So
one could make the following offsetting pair trades with:

1. HPCL: 0.44 & BPCL: -0.33

2. Vijay Bank: 0.51, Canara Bank: 0.14 & Reliance Capital: -0.27, Syndicate
Bank: -0.18

However MPT tells us that by making both the above pairs trade, instead
of just one of them, we can further reduce the risk in the portfolio.

8 Conclusion

Thus we categorised the stocks into 3 categories:

• Those corresponding to the small deviating eigenvalues (i.e. highly corre-
lated small clusters)

• Those corresponding to eigenvalues lying within RMT predicted bounds
(i.e uncorrelated stocks)

• Those corresponding to the large deviating eigenvalues (i.e. formation of
the major diversified clusters of the market)
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Depending on the investors preferences and risk appetite, he invests in either
the first or the third category. The first category provides him assured prof-
its with very low risk. But since this calls for an arbitrage opportunity, this
strategy is applicable only in the short run. For higher returns, the investor
makes a portfolio comprising of the top significant participants of each cluster
of the eigenvectors corresponding to eigenvalues above the RMT bounds. These
stocks determine how the market moves as a whole. A change in the significant
participants of each cluster determines how all other stocks in the same cluster
will behave and with any change in the market, the top significant participants
are likely to get affected the most. This makes them more risky. But since the
portfolio consists of only a limited number of stocks (that too the significant
ones) rather than any stock chosen at random, the risk can be predicted well
with the reduction in the data to be considered. This makes it an optimal port-
folio where the returns are high due to the high risk. But at the same time, the
risk management is done in a better way.

9 Appendix: Codes

1. Python Code to Download Data
Code to Fetch Data:

from urllib.request import urlopen

base_url1 =

"http://ichart.finance.yahoo.com/table.csv?s="

base_url2 =

"&a=0&b=1&c=2007&d=11&e=30&f=2012&g=d&ignore=.csv"

def make_url(ticker_symbol):

return base_url1 + ticker_symbol + base_url2

output_path="New folder"

def make_filename(ticker_symbol):

return output_path + "\\" + ticker_symbol + ".csv"

def get_data(ticker_symbol):

r=urlopen(make_url(ticker_symbol))

outfile = open(make_filename(ticker_symbol), "wb")

outfile.write(r.read())

outfile.close()

def fetch(filename = ’BSEticker.txt’):

f = open(filename)

l = f.readlines()

for t in l:

get_data(t[:-1])

print(t[:-1])

Code to Club Data:
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folder = ’New folder’

filenames = ’BSEticker.txt’

outfile_path = ’Data’

outfile = ’Consolidate.csv’

output = outfile_path + ’\\’ + outfile

def club():

w = open(output, ’w’)

w.write(’Date\n\n’)

w.close()

l = open(filenames).readlines()

col = 0

for t in l:

now =

open(folder+’\\’+t[:-1]+’.csv’).readlines()

print(t[:-1])

x = now[:]

for i in range(0,len(now)):

x[i] = now[i].split(’,’)

x[i] = [x[i][0],x[i][4]]

insert(output,x,t[:-1],col)

col = col + 1

def insert(out,x,filename,col):

y = open(out).readlines()

for i in range(0,len(y)):

y[i] = y[i].split(’,’)

l=len(y[i])-1

y[i][l] = y[i][l][:-1]

y[0].append(filename)

m = 1

for d in x[1:]:

append = 0

for i in range(1,len(y)):

if (d[0]==y[i][0]):

y[i].append(d[1])

append = 1

for j in range(m,i):

y[j].append(’’)

m = i+1

if (append == 0):

i = 1
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while(compare(y[i][0],d[0])):

if (i+1 < len(y)):

i = i+1

for k in range(0,col):

d.insert(1,’’)

for j in range(m,i):

y[j].append(’’)

y.insert(i,d)

m = i+1

for j in range(m,len(y)):

y[j].append(’’)

pprint(y,output)

def compare(y,x):

y=y.split(’-’)

x=x.split(’-’)

if (y[0]>x[0]):

return 1

elif (y[0]==x[0]):

if (y[1]>x[1]):

return 1

elif (y[1]==x[1]):

if (y[2]>x[2]):

return 1

else:

return 0

else:

return 0

else:

return 0

def pprint(t,file):

y = t[:]

for i in range(0,len(y)):

y[i] = ’’.join(str(e)+’,’ for e in y[i])

y[i] = y[i][:-1]+’\n’

y = ’’.join(str(e) for e in y)

w = open(file, ’w’)

w.write(y)

w.close()

Code to Clean Data:

path = r’C:\Users\Abhishek\Desktop\CMI Text books\Sem - I\2 Linear Algebra\Project\Random Matrix Theory\Data’

data = ’Consolidate.csv’

cleaned = ’NewClean.csv’

infile = path + ’\\’ + data
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outfile = path + ’\\’ + cleaned

def clean(purity=0.75):

y = open(infile).readlines()

for i in range(0,len(y)):

y[i] = y[i].split(’,’)

l=len(y[i])-1

y[i][l] = y[i][l][:-1]

l = len(y[0])

p = purity*l

for e in y:

c = count(e)

if (c < p):

y.remove(e)

#elif (c < l):

#e = fill(y,e)

pprint(y, outfile)

def count(l):

c = len(l)

for e in l:

if (e == ’’):

c = c - 1

return c

def fill(y,e):

i = y.index(e)

if (i == 1):

for j in range(0,len(y[i])):

if (y[i][j] == ’’ and y[i+1][j] != ’’):

y[i][j] = y[i+1][j]

else:

for j in range(0,len(y[i])):

if (y[i][j] == ’’ and y[i-1][j] != ’’):

y[i][j] = y[i-1][j]

def pprint(t,file):

y = t[:]

for i in range(0,len(y)):

y[i] = ’’.join(str(e)+’,’ for e in y[i])

y[i] = y[i][:-1]+’\n’

y = ’’.join(str(e) for e in y)

w = open(file, ’w’)

18



w.write(y)

w.close()

2. MATLAB Code to form the Correlation Matrix

num=xlsread(’Project results.xlsx’,’Data’);

l=size(num);

num1=num;

num2=zeros(l(1)-1,l(2));

for i=1:(l(1)-1)

num2(i,:)=log(num1(i,:))-log(num1(i+1,:));

end

m=mean(num2); %gives column wise mean

for i=1:l(2)

sqsum=0;

for j=1:l(1)-1

sqsum=sqsum+(num2(j,i)-m(i))^2;

end

v(i)=sqsum/(l(1)-1);

%gives column wise variance

end

num3=zeros(l(1)-1,l(2));

for i=1:(l(1)-1)

for j=1:l(2)

num3(i,j)=(num2(i,j)-m(j))/sqrt(v(j));

%standard normalize

end

end

for i = 1:l(2)

for j = 1:l(2)

c(i,j) = num3(:,i)’*num3(:,j)/(l(1)-1);

%correlation matrix elements

end

end

xlswrite(’Project results.xlsx’,c,’Correlation matrix’);

3. MATLAB Code to Compute Eigenvalues and Eigenvectors

eigen1=xlsread(’Project results.xlsx’, ’Correlation matrix’);

l=size(eigen1);

l1=l(1);

eigen2=zeros(l1,l1);

s=1;

for m=1:8000

for i=1:l1 %implementing QR algorithm

v=eigen1(:,i);

for k=1:i-1

r(k,i)=(q(:,k)’)*eigen1(:,i);
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v=v-r(k,i)*q(:,k);

end

r(i,i)=norm(v);

q(:,i)=v/r(i,i);

end

s=s*q; %matrix containing eigenvectors

for i=2:l1

for j=1:i-1

r(i,j)=0; %putting lower triangular elements to 0

%so that r is now upper triangular

end

end

eigen1=r*q;

disp(m); %to know the progress of the program working

end

for t=1:(l1^2)

eigen2(t)=round(eigen1(t)*10^8)/10^8;

end

xlswrite(’Project results.xlsx’,s,’Eigenvectors’);

xlswrite(’Correlation.xlsx’,eigen2,’Eigenvalues’);

4. MATLAB Code to find the p.m.f. of distribution of eigenvalues
of Correlation Matrix

a=xlsread(’Project Results.xlsx’, ’Eigenvalues’);

l=size(a);

l1=l(1);

eig=zeros(l1,1);

for k=1:l1

eig(k)=a(k,k);

end

l2=55/500; %dividing range of eigenvalues in 500

%smaller parts

x(1)=0;

t=zeros(1,500);

for i=2:500

x(i)=(i-1)*l2;

for k=1:l1

if x(i-1)<=eig(k) && x(i)>=eig(k) %seeing

%if eigenvalue lies in the small interval

t(i-1)=t(i-1)+1; %counting the no.

%of such eigenvalues

end

end

prob(i-1)=t(i-1)/l1; %probability of eigenvalue

y(i-1)=(x(i-1)+x(i))/2; %mid-point of the

%interval to make a probability histogram

end

bar(y,prob)
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5. MATLAB Code to find the p.m.f. of distribution of the compo-
nents of Eigenvectors

a=xlsread(’Project Results.xlsx’, ’Eigenvectors’);

l=size(a);

k=input(’kth eigenvector’);

e=a(:,k);

e1=min(e);

e2=max(e);

dif=e2-e1;

l2=dif/50;

x(1)=e1;

t=zeros(1,50);

for i=2:50

x(i)=x(i-1)+l2;

for k=1:l(1)

if x(i-1)<=e(k) && x(i)>=e(k) %seeing if the

%component lies in the small interval

t(i-1)=t(i-1)+1;

%counting the no. of such components

end

end

prob(i-1)=t(i-1)/l(1); %probability of component

y(i-1)=(x(i-1)+x(i))/2; %mid-point of the interval

%to make a probability histogram

end

bar(y,prob)

6. MATLAB Code to find the IPR and the Significant Participants
of Eigenvectors

a=xlsread(’Project Results.xlsx’, ’Eigenvectors’);

%finding IPR

ipr=zeros(1,6);

%6 because these many eigenvalues were

%outside the upper bound

for i=1:6

for j=1:170

ipr(i)=ipr(i)+(a(j,i))^4;

end

ripr(i)=1/ipr(i); %reciprocal of ipr

end

% finding the top participants of each eigenvector

k=input(’Eigenvector’);

A=a(:,k); %To study the kth eigenvector.

A=sort(A,’descend’);

for i=1:10
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for j=1:170

if A(i)==a(j,k)

disp(j);

%gives the indices of the largest participants

end

end

end
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