
15/11/2013

Iterative methods for eigenvalue problem
Project Report

Group members: Radharaman Roy, Mouktik Chattopadhyay

Necessity of an Iterative Method for Eigenvalues:In general, any method for computing eigenvalues
necessarily involves an infinite number of steps. This is because finding eigenvalues of an n × n matrix
is equivalent to finding the roots of its characteristic polynomial of degree n and Computing coefficients of
characteristic polynomial requires computation of the determinant, however, the problem of finding the roots
of a polynomial can be very ill-conditioned and for n > 4 such roots cannot be found (By Abel’s theorem), in
general, in a finite number of steps. In other words, we must consider iterative methods producing, at step k,
an approximated eigenvector xk associated with an approximated eigenvalue λk that converge to the desired
eigenvector x and eigenvalue λ as the number of iterations becomes larger. Here we present some iterative
methods called the Schur factorization, QR method, power method, Bisection method, Jacobi’s method, and
Divide and conquer method.

Jacobi eigenvalue algorithm: Jacobi eigenvalue algorithm is an iterative method for calculation of the
eigenvalues and eigenvectors of a symmetric matrix.

•• Givens rotation: A Givens rotation is represented by a matrix of the form

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · c · · · −s · · · 0
...

...
...

...
...

0 · · · s · · · c · · · 0
...

...
...

...
...

0 · · · 0 · · · 0 · · · 1


where c = cos θ, s = sin θ appear intersection of i th and j th rows and columns. That is the non zero
elements of Givens matrix is given by gkk = 1 for k 6=i, j

gii=c

gjj=-s

gij = s for i > j.

• Description of Jacobi algorithm: S′ = GTSG where G be a Givens rotation matrix & S be a symmetric
matrix then S′ is also a symmetric matrix. S′ has entries

S′ij = S′ji = (c2 − s2)Sij + sc(Sii − Sjj),



S′ik = S′ki = cSik − sSjk for k 6=i,j
S′jk = S′kj = sSik + cSjk for k 6=j,i
S′ii = c2Sii − 2scSij + s2Sjj ,
S′jj = s2Sii + 2scSij + c2Sjj ,

,where c = cos θ , s = sin θ, G is orthogonal,S and S′ have the same Frobenious norm , however we can
choose θ s.t S′ij = 0, in which case S′ has a large sum of squares on the diagonal.

S′ij = (cos 2θ)SiJ + 1
2(sin 2θ)(Sii − Sjj)

Set this equal to 0 , tan 2θ =
2Sij

Sjj−Sii
.

The Jacobi eigenvalue method repeatedly performs rotation until the matrix becomes almost diagonal. Then
the diagonal elements are approximations of the eigenvalues of S.

• Convergence of Jacobi’s method:

Let od(A)is the root-sum-of-squares of the (upper) off diagonal entries of A, so A is diagonal if and only if
od(A) = 0. Our goal is to make od(A) approach 0 quickly. The next lemma tells us that od(A) decreases
monotonically with every Jacobi rotation.

– Lemma: Let A′ be the matrix after calling Jacobi-Rotation (A, j, k)for any j,k. Then od2(A′) =
od2(A)− a2jk.

Proof: Here A′ = A except in rows and columns j and k. Write

od2(A)=1
2×sum of square of all off diagonal elements of A except ajk + a2jk

and similarly od2(A′) = S′2 + a′jk
2 = S′2, since a′jk = 0 after calling Jacobi- Rotation(A,j,k). Since

‖ X ‖F = ‖ QX ‖F and ‖ X ‖F = ‖ XQ ‖F for any X and any orthogonal Q, we can show S2 = S′2.
Thus od2(A′) = od2(A) - a2jk as desired.

– Theorem: After one Jacobi’s rotation in the classical Jacobi’s algorithm, we have od(A′) ≤
√

(1− 1
N ),

where N = n(n−1)
2 =the no. of sub-per diagonal entries of A. After k Jacobi rotation od(.) is no more

than (1− 1
N )

k
2 od(A).

Proof: od2(A′) = od2(A) − a2jk, where ajk is the largest off diagonal entry. Thus od(A) ≤ n(n−1)
2 a2jk.

So od2(A)− a2jk ≤ (1− 1
N )od2(A).

So the classical Jacobi’s algorithm converges at least linearly with the error (measured by od(A))
decreasing by a factor at least

√
(1− 1

N ) at time. It eventually converges quadratically.

• Algorithm: This method determines the eigenvalues and eigenvectors of a real symmetric matrix A, by
converting A into a diagonal matrix by similarity transformation.

– Step 1. Read the symmetric matrix A.

– Step 2. Initialize D = A and S = I, a unit matrix.



– Step 3. Find the largest off-diagonal element (in magnitude) from D = [dij ] and

let it be dij .

– Step 4.Find the rotational angle .

If dii = djj then

if dij > 0 then θ = π
4 else θ = −π

4 endif;

else

θ = 1
2 tan1

(
2dij

dii−djj

)
;

endif;

– Step 5. Compute the matrix S1 = [spq]

Set spq = 0 for all p, q = 1, 2, ..., n

skk = 1, k = 1, 2, ..., n

and sii = sjj = cos , sij = sin , sji = sin.

– Step 6. Find D = ST1 DS1 and S = SS1;

– Step 7. Repeat steps 3 to 6 until D becomes diagonal.

– Step 8. Diagonal elements of D are the eigenvalues and the columns of S are the corresponding
eigenvectors.

• Program: This program finds all the eigenvalues and the corresponding eigenvectors of a real symmetric
matrix. Assume that the given matrix is real symmetric.

#include < stdio.h >

#include < math.h >

void main()

{
int n,i,j,p,q,flag;

float a[10][10],d[10][10],s[10][10],s1[10][10],s1t[10][10];

float temp[10][10],theta,zero=1e-4,max,pi=3.141592654;

printf(”Enter the size of the matrix ”);

scanf(”%d”,&n);

printf(”Enter the elements row wise ”);

for(i = 1; i <= n; i+ +) for(j = 1; j <= n; j + +) scanf(”%f”,&a[i][j]);

printf(”The given matrix is”);

for(i = 1; i <= n; i+ +)



{
for(j = 1; j <= n; j + +) printf(”%8.5f”, a[i][j]); printf(”\n”);

}
printf(”\n”);

for(i = 1; i <= n; i+ +) for(j = 1; j <= n; j + +) {
d[i][j]=a[i][j]; s[i][j]=0;

}
for(i = 1; i <= n; i+ +) s[i][i]=1;

do

{
flag=0;

i=1; j=2; max=fabs(d[1][2]);

for(p = 1; p <= n; p+ +) for(q = 1; q <= n; q + +)

{
if(p!=q)

if(max < fabs(d[p][q]))

{
max=fabs(d[p][q]); i=p; j=q;

}
}

if(d[i][i]==d[j][j]) {
if(d[i][j] > 0) theta=pi/4; else theta=-pi/4;

}
else

{
theta=0.5*atan(2*d[i][j]/(d[i][i]-d[j][j]));

}
for(p = 1; p <= n; p+ +) for(q = 1; q <= n; q + +)

s1[p][q]=0; s1t[p][q]=0;

for(p = 1; p <= n; p+ +) s1[p][p]=1; s1t[p][p]=1;

s1[i][i]=cos(theta); s1[j][j]=s1[i][i];

s1[j][i]=sin(theta); s1[i][j]=-s1[j][i];

s1t[i][i]=s1[i][i]; s1t[j][j]=s1[j][j];

s1t[i][j]=s1[j][i]; s1t[j][i]=s1[i][j];

for(i = 1; i <= n; i+ +)

for(j = 1; j <= n; j + +){



temp[i][j]=0;

for(p = 1; p <= n; p+ +) temp[i][j]+=s1t[i][p]*d[p][j];

}
for(i = 1; i <= n; i+ +)

for(j = 1; j <= n; j + +) {
d[i][j]=0;

for(p = 1; p <= n; p+ +) d[i][j]+=temp[i][p]*s1[p][j];

}
for(i = 1; i <= n; i+ +)

for(j = 1; j <= n; j + +)

{
temp[i][j]=0;

for(p = 1; p <= n; p+ +) temp[i][j]+=s[i][p]*s1[p][j];

}
for(i = 1; i <= n; i+ +) for(j = 1; j <= n; j + +) s[i][j]=temp[i][j];

for(i = 1; i <= n; i+ +) for(j = 1; j <= n; j + +)

{
if(i!=j) if(fabs(d[i][j] > zero)) flag=1;

}
}
while(flag==1);

printf(”The eigenvalues are \n”);

for(i = 1; i <= n; i+ +) printf(”%8.5f ”,d[i][i]);

printf(”\nThe corresponding eigenvectors are \n”);

for(j = 1; j <= n; j + +)

{
for(i = 1; i < n; i+ +) printf(”% 8.5f,”,s[i][j]);

printf(”%8.5f\n”,s[n][j])

}
}

Divide and conquer method eigenvalue algorithm: This method we can use for symmetric tridiagonal
matrix.



• Divide: The divide part of the divide conquer algorithm from the realization that a tridiagonal matrix is
almost block diagonal.

T =

(
T1 A

B T2

)
.where A and B be a matrix whose elements are 0 except (n, 1)th element of A and (1, n)th

element of B and these elements are a.

The size of sub-matrix T1 is n× n and then T2 is (m− n)× (m− n)

T =

(
T ′1 0

0 T ′2

)
+

(
a a

a a

)
The only difference between T1 and T ′1 is that the lower right entry in T ′1 has been replaced with tnn - a and
similarly in T

′
2 .

• Conquer: First define zt = (qt1, q
t
2) where qt1 is the last row of Q1 and qt2 is the first row of Q2 then

T =

(
Q1

Q2

)((
D1

D2

)
+ azzt

)(
Qt1

Qt2
)

)
Now we have to find the eigenvalues of a diagonal matrix plus a rank one correction . We are looking for the
eigenvalues of the matrix (D + wwt),where D is diagonal. If w is zero, (ei, di) is an eigen pair of D + wwt

since (D + wwt)ei = Dei = diei. If x is an eigenvalue (D + wwt)q = xq where q is the corresponding
eigenvector.(D − xI)q + w(wtq) = 0 which implies wtq+wt(D − xI)−1 w(wtq)=0. Now wtq 6= 0 because if
wtq were to be 0, q would be eigenvector of D by (D+wwt)q = xq then q contain only one non zero element
since D is distinct diagonal and thus the inner product wtq can not be 0 after all.Then 1+wt(D−xI)−1w = 0
or written as a scalar equation

1+
w2

1
dj−x + - - - + w2

m
dj−x =0.

This equation is known as secular equation. The problem has therefore been reduced to find the roots of the
rational function defined by the left hand side of the equation.

Power iteration method:

• Description:

The power iteration is an eigenvalue algorithm given a matrix A. It will find only one eigenvalue(which is
the greatest absolute value eigenvalue) & it’s corresponding eigenvector.

The power iteration algorithm starts with a vector b0, which may be an approximation of the dominant
eigenvector. The method is described by the iteration bk+1 = Abk

||Abk|| under the assumptions,

1) A has an eigenvalue whose absolute value is strictly greater than all eigenvalue |x1| > |xi| for all i > 1,

2) The starting vector b0 = c1v1 + c2v2 + .....+ cnvn where ci are real and c1 6= 0,

3) A sub-sequence of (bk) converges to an eigenvector associated with the dominant eigenvector.

Let A be decomposition into it’s Jordan canonical form V JV −1 where the first column of V is an
eigenvector of A is unique, the first Jordan block of J is the 1× 1 matrix [x1].

Now

bk+1 = Abk
||Abk||



= (V JkV −1)b0
||V JkV −1b0||

= V JkV −1(c1v1+c2v2+···+cnvn)
‖V JkV −1(c1v1+c2v2+···+cnvn)||

= x1
|x1|

k c1
|c1|

v1+

v(J)k

xk1

(c2e2+...+cnen)

c1

||v1+

v(J)k

xk1

(c2e2+...+cnen)

c1
||

=eiθk c1
|c1|V1 + rk, where eiθk = ( x1

|x1|)
k

As ( 1
x1
J)k =


[
1
] [

1
x1
J2
]k

. . . [
1
x1
Jm
]k

 →


1
0

0
. . .

0

, as k →∞

V1=
v1

||v1+

v(J)k

xk1

(c2e2+...+cnen)

c1
||

The sequence (bk) is bounded. So it contains a convergent sub sequence. The presence of the term eiθk

implies that (bk) does not converge unless eiθk = 1.

If A is diagonalizable then Akb0 = c1x
k
1(v1 + c2(x2)kv2

c1(x1)k
v2 + ...+ cm(xm)kvm

c1(x1)k
vm).

The expression within the parenthesis converges to v1. Because |xjx1 | < 1 for j > 1.

Therefor (bk) converges to the eigenvector v1. Thus the sequence bk+1 = Abk
||Abk|| and µk =

b∗kAbk
b∗kbk

converges to

the dominant eigenvector and the dominant eigenvalue respectively under the above assumptions.

• Note:

The power method is also used to find the least eigenvalue of a matrix A. If X is the eigenvector corresponding
to the eigenvalue λ then AX = λX. If A is non-singular then A−1 exist. Therefore, A−1(AX) = λA−1 or,
A−1X = 1

λX. This means that if λ is an eigenvalue of A then 1
λ is an eigenvalue of A−1 and the same

eigenvector X corresponds to the eigenvalue 1/λ of the matrix A−1. Thus, if λ is largest (in magnitude)
eigenvalue of A then 1/λ is the least eigenvalue of A−1.

• Applications of fixed point theory in power method for a symmetric matrix: Let A be symmetric
matrix. So the eigenvector of A orthogonal. Let {u1, u2, · · · , un} and |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0
be the sets of of orthonormal eigenvectors and eigenvalues of A respectively. Let x∈ Rn. Because the



eigenvectors of A are orthonormal and therefore span Rn, we can write: x=
∑n

i=1 αiui where αi ∈ R. Then
we have the following

Ax=
∑n

i=1 αiAui=
∑n

i=1 αiλiui

Akx =
∑n

i=1 αiλ
k
i ui

Akx=
∑n

i=1 αiλ
k
i ui=λ

k
1α1u1 + λk1

∑k
i=2 αi(

λi
λ1

)kui

– Contraction Let X be a metric space. A transformation, T : X → X, is called a contraction if for
some c ≤ 1, d(Tu, Tv) ≤ cd(u, v) for all u,v in X.

– The Contraction Mapping Theorem: Let T be a contraction on a complete metric space X. Then
there exists an unique solution, u in X, s.t u=Tu and here u is the fixed point.

– The contraction: Define the transformation Tx = 1
λ1
Ax. Let x an y be any two points in Rn. Let us

consider a set of vectors V define by

V = {y ∈ Rn : (y.u1) = (x0.u1)}

(ie, V is the set of vectors such that α1 = β1 and let x0 be the initial guess to the dominant vector).Let
x an y be any two points in V. As ui are orthonormal vectors so we have the following

x =
n∑
i=1

αiui

y = β
n∑
i=1

αiui

Tx = α1u1 +
n∑
i=2

αi(
λi
λ1

)ui

Tx = β1u1+
∑n

i=2 βi(
λi
λ1

)ui

Tx− Ty = α1u1 − β1u1 +
n∑
i=2

(αi − βi)(
λi
λ1

)ui

‖ Tx− Ty ‖2 = (α1 − β1) +
n∑
i=2

(αi − βi)2(
λi
λ1

)2

‖ Tx− Ty ‖2 ≤
n∑
i=2

(αi − βi)2(
λi
λ1

)2

≤ (
λ2
λ1

)2 ‖ x− y ‖2;

as x and y are in V so α1 = β1 .

Thus we have



‖ Tx− Ty ‖2≤ ( λiλ1 )2 ‖ x− y ‖2

i.e, ‖ Tx− Ty ‖≤ ( λiλ1 ) ‖ x− y ‖

i.e, ‖ Tx− Ty ‖≤ k ‖ x− y ‖

where k = (λ2λ1 ) < 1, therefore T is a contraction mapping.

Here V is a closed subset of Rn and therefore V is also complete.Then by contraction mapping theorem,
there is exactly one fixed point f s.t f=Tf. Again Tf = 1

λ1
Af .i.e, Af = λ1f hence f is the required fixed

point as well as the dominant vector of the symmetric matrix.

• Finding non-dominant eigenvalues:Once the dominant eigenpair (λ1, V1) of A is computed, we may wish
to compute λ2. Now if A is symmetric, then its eigenvectors are orthogonal. Let U1 = V1

||V1|| , then

B = A− λ1U1U
T
1

i.e,

BV1 = AV1 − λ1U1U
T
1 V1

= λ1V1 − λ1
V1
||V1||

UT1 V1

= λ1V1(1− UT1 U1)

This implies that UT1 U1 = 1 and therefore 0 is an eigenvector of B. Since A is a symmetric matrix so for
j > 1 we have,

BVj = AVj − λjU1U
T
1 Vj

= λjVj − λ1
V1
||V1||

UT1 Vj

= λjVj

as UT1 Vj = 0, therefore λj (j > 1) is also an eigenvalue of B. Therefore, to find λ2 we could apply the power
method to A. The application of the power method to A to find λ2 is called the method of deflation.

• Algorithm:. This method determines the largest eigenvalue (in magnitude) and its corresponding eigen-
vector of a square matrix A. Algorithm Power Method

– Step 1. Read the matrix A.

– Step 2. Set initial vector X0 = (1, 1, 1, ..., 1)T of n components.

– Step 3. Find the product Y = AX0.

– Step 4. Find the largest element (in magnitude) of the vector Y and let it be λ.



– Step 5. Divide all the elements of Y by λ and take it as X1, i.e., X1 = Y
λ .

– Step 6. Let X0 = (x01, x02, ..., x0n) and X1 = (x11, x12, ..., x1n). If |x0i − x1i| > ε for at least i then set
X0 = X1 and goto Step 3.

– Step 7. Print λ as largest eigenvalue and corresponding eigenvector X1 of A.

• Program: This program finds the largest eigenvalue (in magnitude) of a square matrix.

#include < stdio.h >

#include < math.h >

void main()

{
int n,i,j,flag;

float a[10][10],x0[10],x1[10],y[10],lambda,eps=1e-5;

printf(”Enter the size of the matrix ”);

scanf(”%d”,&n);

printf(”Enter the elements row wise ”);

for(i = 1; i <= n; i+ +)for(j = 1; j <= n; j + +)scanf(”%f”,&a[i][j]);

printf(”The given matrix is)̈;

for(i = 1; i <= n; i+ +) {
for(j = 1; j <= n; j + +) printf(”%f ”,a[i][j]);

}
for(i = 1; i <= n; i+ +)

{
x0[i]=1; x1[i]=1;

}
do

flag=0;

for(i = 1; i <= n; i+ +)x0[i] = x1[i];

for(i = 1; i <= n; i+ +)

{
y[i]=0;

for(j = 1; j <= n; j + +) y[i]+ = a[i][j] ∗ x0[j];

}
lambda=y[1];



for(i = 2; i <= n; i+ +) if(lambda < y[i])lambda = y[i];

for(i = 1; i <= n; i+ +)x1[i] = y[i]/lambda;

for(i = 1; i <= n; i+ +) if(fabs(x0[i]− x1[i]) > eps)flag = 1;

}while(flag==1);

printf(”The largest eigenvalue is %8.5f ”,lambda);

printf(”The corresponding eigenvector is ”);

for(i = 1; i <= n; i+ +) printf(”%8.5f ”,x1[i]);

}

Bisection method for eigenvalues:

• Description of bisection method:Let ξ be a root of the equation f(x) = 0 lies in the interval [a, b], i.e.,
f(a).f(b) < 0, and (b-a) is not sufficiently small. The interval [a, b] is divided into two equal intervals [a, c]
and [c, b], each of length b−a

2 , and c = a+b
2 . If f(c) = 0, then c is an exact root.

Now, if f(c) 6= 0, then the root lies either in the interval [a, c] or in the interval [c, b]. If f(a).f(c) < 0
then the interval [a, c] is taken as new interval, otherwise [c, b] is taken as the next interval. Let the new
interval be [a1, b1] and use the same process to select the next new interval. In the next step, let the new
interval be [a2, b2]. The process of bisection is continued until either the midpoint of the interval is a root,
or the length (bn − an) of the interval [an, bn] (at nth step) is sufficiently small. The number an and bn are
the approximate roots of the equation f(x) = 0. Finally, xn = an+bn

2 is taken as the approximate value of
the root .

• Theorem: Assume that f(x) is a continuous function on [a, b] and that there exists a number ξ [a, b] such
that f(ξ) = 0. If f(a) and f(b) have opposite signs, and xn = an+bn

2 represents the sequence of midpoints
generated by the bisection method, then

|ξ-xn| ≤ b−a
2n+1 for n = 0, 1, 2, . . .

and therefore the sequence xn converges to the root ξ i.e.,

limx→∞ xn=ξ

• Description:Bisection method is generally used for finding the eigenvalues of the symmetric tridiagonal
matrix. Since the eigenvalues of real symmetric matrix are real, we can find them by searching in the real
line. Now the idea is to find the roots by evaluating p(x) at different points of x, without ever looking at its
coefficient, applying bisection process for non-linear functions.

A =



a1 b1
b1 a2 b2

b2 a3 b3
. . .

. . .
. . .

bn−1
bn−1 an


, where bj 6= 0.



Let A(k) denotes the upper-left k × k sub-matrix of A.

• Advantages of using symmetric matrix:

The eigenvalues of A(k) are distinct as every A(k) is symmetric tridiagonal. Let them be denoted by

x
(k)
1 < x

(k)
2 <...< x

(k)
k . The crucial property that makes bisection powerful is that these eigenvalues strictly

interlace, satisfying the inequalities x
(k+1)
j < x

(k)
j < x

(k+1)
j+1 for k = 1, 2, ...m− 1 and j = 1, 2, 3, ..., k − 1.

Second property of symmetric tridiagonal matrix in Rn×n which is advantageous for bisection method is
the number of negative eigenvalues is equals to the number of sign changes in the sequence 1,det(A(1)),det(A(2)),...,det(A(k))
. We define the sign change to mean a transition from + or 0 to − or from − or 0 to + but not from + or
− to 0.

One more observation completes the description of the bisection method for tridiagonal matrix. The
determinants of the matricesA(k) are related by a three term recurrence relation det(A(k)) = akdet(A(k−1))−
b2(k−1)det(A

(k−2)). Introducing the shift by xI and writing P (k)(x)=det(A(k) − xI). We get

P (k)(x) = (ak − x)P (k−1)(x)− b2k−1P (k−2)(x).If we define P (−1)(x) = 0 & P 0(x) = 1

then this recurrence is valid for k = 1, 2, ...,m.

• Example: Let us consider a symmetric matrix

A =


1 −1 −2 1 1
−1 0 1 3 2
−2 1 3 1 1
1 3 1 4 0
1 2 1 0 5


Then its tri-diagonal form is ( using Householder method)


1 2.64575 0 0 0

2.64575 1 2.03540 0 0
0 2.03540− 0.58621 0.94489 0
0 0 0.94489 5.44237 −1.26864
0 0 0 −1.26864 6.14384


Here

p1 = (1− x)

p2 = (1− x)2 − (2.64575)2

p3 = (7− (1− x)2)(x+ 0.58621)− (2.0354)2(1− x)



p4 = ((((7− (1−x)(1−x))(x+ 0.58621)− (2.0354)(2.0354)(1−x))(5.44237−x))− (0.94489× 0.94489)((1−
x)(1− x)− (2.64575)(2.64575)))

p5 = ((((7− (1−x)(1−x))(x+ 0.58621)− (2.0354)(2.0354)(1−x))(5.44237−x))− (0.94489× 0.94489)((1−
x)(1 − x) − (2.64575)(2.64575)))(6.14384 − x) − (1.26864 × 1.26864((7 − (1 − x)(1 − x))(x + 0.58621) −
(2.0354)(2.0354)(1− x)))

Roots P2 are -1.64574 and 3.64574. That of P3 are -2.76317, 0.05492, 4.12203 and that of p4 are -2.80402,
-0.03044, 4.06531, 5.62531 (Using the program).

So using the pair of consecutive roots of p4 as interval we are going to find the required eigenvalues of the
matrix A using program which is given bellow.

• Program to find a root of an equation by bisection method. Assume that a root lies between
a and b.

#include < stdio.h >

#include < math.h >

#include < stdlib.h >

# define f(x) ((((7− (1− x)(1− x))(x+ 0.58621)− (2.0354)(2.0354)(1− x))(5.44237− x))− (0.94489 ∗
0.94489)((1−x)(1−x)− (2.64575)(2.64575)))(6.14384−x)− (1.26864× 1.26864((7− (1−x)(1−x))(x+
0.58621)− (2.0354)(2.0354)(1− x)))

void main()

{
float a,b,fa,fb,c,fc;

float eps=1e− 5;

printf(”Enter the value of a and b ”);

scanf(”%f%f”,&a,&b);

fa = f(a); fb = f(b);

if(fa ∗ fb > 0)

{
printf(”There is no guarantee for a root within [a,b]”);

exit(0);

}
do

{
c = (a+ b)/2;



fc=f(c);

if((fc == 0)|| (fabs(fc) < eps))

{
a=c;b=c;

}
else if(fb ∗ fc > 0)

{
b=c; fb=fc;

}
else

{
a=c; fa=fc;

}
}while(fabs(b− a) > eps);

printf(”The desired root is %8.5f ”,c);

}

Input: Enter the value of a and b -2.80402 -0.03044

Output

The desired root is -0.03456 Press any key to continue . . .

Input: Enter the value of a and b -0.03044 4.06531

Output

The desired root is 4.01737 Press any key to continue . . .

Input: Enter the value of a and b 4.06531 5.62531

Output

The desired root is 4.66391 Press any key to continue . . .

Therefore the three eigenvalues of the matrix A are -0.03456, 4.01737, 4.66391.

• QR algorithm: Let, A = A1 be a square matrix and also let its QR decomposition be Q1R1. Now let
us define another matrix A2 = R1Q1. Next the QR factorization of A2 be Q2R2. Similarly we can define
A3, A4, A5 ...

where Ak = QkRk(QR factorization of Ak), and Ak+1 = RkQk.



i.e Ak+1 = RkQk = Q∗kQkRkQk = Q∗kAkQk = Q−1k AkQk.

Hence all Ak are similar and therefore they have the same eigenvalues as A. Also we have from above

Ak+1 = Q∗AkQk = ... = (Q1Q2...Qk)
∗A(Q1Q2...Qk).

If the process continued for a long time then the matrices Ak becomes upper triangular matrix (not always).
Or in other word we can say that the sense limk→∞ (Ak)ij = 0 for j < i, while the diagonal elements of the
matrices Ak converge to the eigenvalues of the matrix A.

• Theorem (Convergence of the QR algorithm): Suppose A be a square and also suppose that A is
invertible and its all its eigenvalues are distinct in modulus i.e. the algorithm gives us a Schur factorization
of A. Then, there exists (at least) one invertible matrix P such that

A = PΛP−1, with Λ = diag(λ1, λ2, ..., λn), and |λ1| > |λ2| > ... > |λn| > 0. Suppose that the matrix P−1

has an LU factorisation. Then the sequence of matrices (Ak) is such that

limk→∞(Ak)ii = λi, 1 ≤ i ≤ n,
limk→∞ (Ak)ij = 0, 1 ≤ j < i ≤ n.

This conditions are sufficient condition to converge the iterative method. If the matrix A is symmetric then
the method converge cubically. There may be several eigenvalues which are equal in modulus, then in the
limiting case Ak becomes a block triangular matrix and each diagonal sub-matrix correspond to a set of
eigenvalues which are equal in modulus. That is if there exists eigenvalues of some particular modulus of
multiplicity p, then there will appear in matrices Ak a diagonal sub −matrix of order p and at the same
time the the elements of the sub-matrix may not necessarily converge, but the eigenvalues of the matrix A
converges to the eigenvalues if they have some particular modulus. For example, let A be a 10× 10 matrix
whose eigenvalues are λ1 = λ2 = λ3 < λ4 < λ5 < λ6 = λ7 < λ8 < λ9 < λ10. Then in limiting case Ak will be
of the form

Ak =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗
∗


.

Example:

A1=A=

(
2 1
1 2

)

A1 =

(
1√
5

(
2 −1
1 2

))(
1√
5

(
5 4
0 3

))
= Q1R1.



A2=R1Q1 = 1
5

(
14 3
3 2

)
=

(
2.8 0.6
0.6 1.2

)
.

...

A4 ≈
(

2.997 −0.074
−0.074 1.0027

)
.

...

A10 ≈
(

3 −0.0001
−0.0001 1.0000

)
.

A10 is almost diagonal and contains approximations to the eigenvalues λ1 = 3 and λ2 = 1 on the diagonal.

The method which is discussed above,it may or may not be convergent and it also can be extremely slow. The
algorithm may be modified to make it converge both more quickly and for more matrices. One modification
is shifting: at each step a scalar quantity sk is chosen, then the QR factorization is done not on Ak but
Ak − skI. If the scalars sk are chosen so that they get closer and closer to an eigenvalue of the matrix, this
will dramatically speed up convergence.

• The Modified QR Method:

Step 1: Choose s1 be an approximation to the jth eigenvalue of the n×n matrix A. LetA1 = A−s1I = Q1R1

be a QR factorization of A− s1I; create A2 = R1Q1 + s1I

Step 2: Choose s2 to be be an approximation to the jth eigenvalue of A. Let A2 − s2I = Q2R2 be a QR
factorization of A2 − s2I; create A3 = R2Q2 + s2I

Step 3: Continue this process; Once Ak has been created, choose sk to be an approximation to the jth
eigenvalue of A. Let Ak − skI = QkRk be a QR factorization of Ak − skI and create Ak+1 = QkRk + skI.

Step 4: When the entries in the final row of Ak (except for the final entry) are tends to zero (to machine
accuracy), make Ak by removing the final row and column. The final entry in the row just removed is an
eigenvalue.

Step 5: Repeat Steps 1 through 4 on the matrix until all the eigenvalues have been found or until it appears
that convergence to a triangular limit matrix will not happen. The method is also known as shift QR method
and sk is called the shift at kth step.

The rate convergence depends on choice of sk. If sk be too closer to the eigenvalue then convergence rate
will be more faster. Some best choice for sk are given bellow

1) The shift sk can be chosen the last entry of diagonal of Ak in each step.



2) The shift sk = eTnAKen is called the Rayleigh quotient shift.

3) The eigenvalue of the lower right 2 × 2 corner of Ak closest to the (n, n) element of Ak is called the
Wilkinson shift. This shift can be used to find complex eigenvalues of a real matrix. The convergence is
very fast and at least quadratic both for the Rayleigh quotient shift and the Wilkinson shift. If λ1; λ2 are
eigenvalues of (

an−1,n−1 an−1,n
an,n−1 an,n

)
with |λ1 − an,n| ≤ |λ2 − an,n| then shift = λ1.

Algorithm:

Let A0 = A, we iterate

i=0

repeat

Choose a shift si

Ai − siI = QiRi (QR decomposition)

Ai+1 = RiQi + siI

i = i+ 1

until convergence

• Hessenberg Reduction: Note that the QR decomposition in the algorithm takes O(n) flops. Even if the
algorithm took n iterations to converge, the overall cost of the algorithm will be O(n) This is too expensive
today the complexity of algorithms for all standard matrix computation problems is at O(n).

However, if the matrix is initially reduced to upper Hessenberg form, then the QR decomposition of a
Hessenberg form costs O(n) flops. As a result the overall cost of the algorithm is reduced to O(n)4

An upper Hessenberg matrix H is the matrix whose elements below the sub diagonal are all zero.

H=



∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗



• Proposition: For any real square matrix A,there is an orthogonal matrix Q such that QTAQ = H an upper
Hessenberg matrix.



• An observation: Instead of finding Ai+1 = RiQi+siI we can only find Ai+1 = RiQi but for the eigenvalue
we have to add all the shifts which already being used.

• Example of the QR method with shifts to find the eigenvalues of A where:

A=


4 2 2 1
2 −3 1 1
2 1 3 1
1 1 1 2


First we transform A to tri-diagonal matrix using Hessenberg form. We have the tri-diagonal Hessenberg
matrix is

H=


4 −3 0 0
−3 2 3.1622777 0
0 3.1622777 −1.4 −0.2
0 0 −0.2 1.4


Step I: We choose a shift s1 = 1.4, which is (4, 4) element of H. Now we are going to find the QR factorization
of H − s1I i.e. H − s1I = Q1R1

where Q1=


−0.6549305 −0.3852774 −0.5660663 0.3196814
0.7556891 −0.3339071 −0.4905908 0.2770572

0 0.8602717 −0.4439346 0.2507085
0 0 0.4917434 0.8707402



R1=


−3.9698866 2.4182051 2.3896987 0

0 3.6759059 −3.4646677 −0.1720543
0 0 −0.4067162 0.0887869
0 0 0 −0.0501417



Step II: For next step we have A2 = R1Q1. Therefore

A2 = R1Q1=


4.4274112 2.777842 0 0
2.777842 −4.2079666 −0.3498864 0

0 −0.3498864 0.2242158 −0.0246568
0 0 −0.0246568 −0.0436604


Similarly now we have to find out the QR factorization of A2 − s2I = Q2R2 (say), where s2 = −0.0436604.
Then we have

Q2=


−0.8494108 0.5264465 −0.0366818 0.0031409
−0.5277323 −0.8473413 0.0590411 −0.0050555

0 −0.0697627 −0.9939266 0.0851068
0 0 0.0853147 0.9963541





R2=


−5.2637332 −0.1618900 0.1846463 0

0 5.0153827 0.2777854 0.0017201
0 0 −0.2890105 0.0245071
0 0 0 7− 0.0020985



Step III: A3= RQ=


4.5565062 −2.6467794 0 0
−2.6467794 −4.2691198 0.0201621 0

0 0.0201621 0.2893460 −0.0001790
0 0 −0.0001790 −0.0020908


and then A3 − s3I = Q3R3, where s3 = −0.0020908 where

Q3=


−0.8648011 −0.5021105 −0.0020170 0.0000012
0.5021145 −0.8647941 −0.0034739 0.0000021

0 0.0040170 −0.9999917 0.0006141
0 0 0.0006142 0.9999998



R3=


−5.2712662 0.1464005 0.0101237 0

0 5.0191584 −0.0162654 −0.0000007
0 0 −0.2915046 0.0001790
0 0 0 −0.0000001



Step IV: Similarly A4 = R3Q3 =


4.6321068 2.5201924 0 0
2.5201924 −4.3406042 −0.0011710 0

0 −0.0011710 0.2915023 0
0 0 0 −0.0000001


Hence we obtain A4 whose all elements in the last column and last row are zero except at the position (4,4).
Thus we have obtain an eigenvalue and which is s1 + s2 + s3 − 0.0000001 = 1.3584303

Step V: Now we have do same thing for remaining 3 × 3 matrix A4 by deleting the last row and column
and let us denote the matrix by

B1 =

4.6321068 2.5201924 0
2.5201924 −4.34060427− 0.001171

0 −0.001171 0.2915023


For shift we choose s11 = 0.2915023. Now we have to find out the QR factorization of B1− s11 = Q4R4. We
have

Q4=

−0.8648027 0.5021119 0.0001115
−0.5021119 −0.8648026 −0.0001921

0 −0.0002221 1.0000000



R4=

−5.0191849 0.1463666 0.0005880
0 5.2712767 0.0010127
0 0 0.0000002





Step VI: B2 = R4Q4=

 4.2671121 −2.6467707 0
−2.6467707 −4.5586143 0

0 0 0.0000002


Hence we have obtain the 2nd eigenvalue which is s1 + s2 + s3 − 0.0000001 + s11 + 0.0000002 = 1.6499326.

Step vII: The next step is similar as Step V. Choosing C1=

(
4.2671121 −2.6467707
−2.6467707 −4.5586143

)
and choosing

s111 = −4.5586143 and the QR factorization of C1 − s111 = Q5R5 (say), where s111 = −4.5586143

Q5=

(
−0.9578546 0.2872536
0.2872536 0.9578546

)
and

R5=

(
−9.2140567 2.5352214

0 −0.7602943

)

Step VIII: C2 = R5Q5=

(
9.5539778 −0.2183973
−0.2183973 −0.7282514

)
Now the QR factorization of C2−s222 = Q6R6 where

s222 = −0.7282514 and

Q6=

(
−0.9997745 0.0212355
0.0212355 0.9997745

)

R6=

(
−10.284548 0.2183480

0 −0.0046378

)

Step IX C3=

(
10.286866 −0.0000985
−0.0000985 −0.0046367

)
and here s333 = −0.0046367 and the QR factorization of C3 − s333 is given by

Q7=

(
−1 0.0000096

0.0000096 1

)

R7=

(
−10.291503 0.0000985

0 0

)

Thus C4 = R7Q7=

(
10.291503 0

0 0

)
So the third eigenvalue is s1 + s2 + s3 − 0.0000001 + s11 + 0.0000002 + s111 + s222 + s333 = −3.6415698 and
the last one is 10.291503-3.6415698=6.6499332. Hence the required eigenvalues are 6.6499332, -3.6415698,
1.6499326, 1.3584303.



Conclusion:
While there is no simple algorithm to directly calculate eigenvalues for general matrices, there are numerous

special classes of matrices where eigenvalues can be directly calculated. The purpose of this paper was to provide
an overview of some of the numeric techniques used to compute eigenvalues and eigenvectors of matrices. These
methods are all based on simple ideas that were steadily generalized and adapted until they became powerful
iterative algorithms. In our project, We discussed about some iterative methods for finding eigenvalues of a
matrix. There are many methods for finding eigenvalues of a matrix, but here we discussed about six methods
which are Jacobi’s method, Schur factorization, bisection method, QR method, Power method and Divide and
conquer method.

We see that the three methods bisection method, Divide and conquer method, Jacobi’s method applicable for
symmetric matrices and the other methods Power method, QR method are applicable all types of matrices. Also
the power method gives us only the dominant eigenvalue and corresponding eigenvector.

However, even the QR iteration method as presented is generally not suitable for use in practice, even in the
situations when it can be applied. There are many ways to refine the algorithms we have seen in order to speed up
the implementations. For example, before applying the QR algorithm, it is common to reduce the matrix A into a
simpler form, such as a tridiagonal matrix: performing QR decompositions on the new matrix then becomes much
faster. It is also possible to improve the QR iteration method by incorporating shifts and Rayleigh quotients, just
as these concepts helped improve the original power iteration method.

As with all algorithms, the question of improvement is always an open problem. Modern information process-
ing deals with increasingly large matrices, and efficient methods for computing eigenvalues and eigenvectors are
extremely necessary. The techniques of the future may become much more complicated in order to keep up with
this growing demand, but as we have seen, there is a lot that can be done using simple ideas and well-chosen
generalizations. Iterative algorithms solve the eigenvalue problem by producing sequences that converge to the
eigenvalues. Some algorithms also produce sequences of vectors that converge to the eigenvectors. Now let us look
at the following table



Method Applies to Produces Cost per
step

Conver-
gence

Description

Power it-
eration

General eigenpair
with
largest
value

O(n2) Linear Repeatedly applies the matrix to an
arbitrary starting vector and re nor-
malizes

Bisection
method

Real
Sym-
metric
Tridiago-
nal

any eigen-
value

linear Uses the bisection method to find
roots of the characteristic polyno-
mial, supported by the Sturm se-
quence.

Jacobi
eigenvalue
algorithm

Real
Symmet-
ric

all eigen-
values

O(n3) quadratic Uses Givens rotations to attempt
clearing all off-diagonal entries.
This fails, but strengthens the diag-
onal.

QR algo-
rithm

General 1)Hessen-
berg, 2)
all eigen-
values

1)O(n2),
2)6n3 +
O(n2)

cubic Factors A = QR, where Q is orthog-
onal and R is triangular, then ap-
plies the next iteration to RQ. all
eigenpairs

Divide-
and-
conquer
Hermitian

Tridiagonal 1) all
eigenval-
ues, 2) all
eigenpairs,

1) O(n2),
2) (43)n3+
O(n2)

Divides the matrix into sub matri-
ces that are diagonalized then re-
combined.

Therefore we can conclude that to find the eigenvalues of a matrix

• First transform the matrix to a suitable form, like tridiagonal form,

• To calculate only eigenvalues: use QR,

• Small eigenvalues with high accuracy: use Jacobi,

• Eigenvalues in the interval [a,b]: use bisection,

• For dominant eigenvalues and dominant eigenvector: use power method.

References:
1) http://www.wikibooks.org

2) Applied linear algebra by James Demmel
3) Numerical linear algebra by Lloyd N. Trefethen, David Bau

http://www.wikibooks.org

