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1 Introduction

With rapid demand of storing large amount of data, the space to store this data (in the form of files) in
the hard drives of the computer systems or onto the servers of big companies is getting less compared to
the amount of data that is to be stored. As a result of it, various compression techniques are in demand
which can help to reduce the size of data files. In this project, we will be discussing how Linear algebra can
be used in the compression of images. Basically we will be discussing how SVD and Wavelet techniques
are extensively used in image compression process resulting in saving computer’s memory. The basic idea
here is each image can be represented as a matrix and we apply linear algebra (SVD and Wavelet) on this
matrix and get a redcuced matrix out of this original matrix and the image corresponding to this reduced
matrix requires much lesser storage space as compared to the original image.

2 Image compression using SVD

An mxn pixels image can be represented by mxn matrix representation. Suppose we have an 9 megapixel
gray-scale image, which is 3000 × 3000 pixels (a 3000 × 3000 matrix).

For each pixel, we have some level of black and white color, given by some integer between 0 and 255.
0 representing black color and 255 representing white color.Each of these integers(and hence each pixel)
requires approximately 1 byte to store, resulting in anapproximately 8.6 Mb image.

A color image usually has three components, a red, a green, and a blue(RGB). Each of these is repre-
sented by a matrix, hence storing color images requires three times the space (25.8 Mb).

Mathematics Behind the SVD

2.1 Rayleigh quotient and 2-norm of a matrix

Definition: For a given complex Hermitian matrix M and nonzero vector x, the Rayleigh quotient
R(M,x), is defined as:

R(M,x) = x∗Mx/x∗x.

For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and
the conjugate transpose x∗ to the usual transpose xT . Note that R(M, cx) = R(M,x) for any real scalar
c 6= 0 . Recall that a Hermitian (or real symmetric) matrix has real eigenvalues. It can be shown that, for a
given matrix, the Rayleigh quotient reaches its minimum value λmin (the smallest eigenvalue of M) when x
is vmin (the corresponding eigenvector). Similarly, R(M,x) ≤ λmax and R(M, vmax) = λmax. The Rayleigh
quotient is used in min-max theorem to get exact values of all eigenvalues. It is also used in eigenvalue
algorithms to obtain an eigenvalue approximation from an eigenvector approximation. Specifically, this is
the basis for Rayleigh quotient iteration.

The 2- norm of a vector is given by:

‖x‖ =
√

Σn
i=1xi

2

Subordinate to the vector 2-norm is the matrix 2-norm :



‖A‖2 = largest eigenvalue of A∗A.

Due to this connection with eigenvalues, the matrix 2-norm is called the spectral norm.

For an arbitrary m× n matrix A, note that A∗A is n× n and Hermitian. The eigenvalues of A∗A are
real-valued. Also, A∗A is at least positive semi-definite since X∗A∗AX = (AX)∗AX ≥ 0∀X Hence, the
eigenvalues of A∗A are both real-valued and non-negative; denote them as

σ1
2 ≥ σ22 ≥ σ3

2 ≥ ... ≥ σn
2 ≥ 0.

Note that these eigenvalues are arranged according to size with σ1
2 being the largest. These eigenvalues

are known as the singular values of matrix A. Corresponding to these eigenvalues are n orthonormal (hence,
they are independent) eigenvectors U1, U2, ..., Un with

(A∗A)Uk = (σk
2)Uk, 1 ≤ k ≤ n.

The n eigenvectors form the columns of a unitary n× n matrix U that diagonalizes matrix A∗A under
similarity (matrix U∗(A∗A)U is diagonal with eigenvalues on the diagonal).

Since the n eigenvectors U1, U2, ..., Un are independent, they can be used as a basis, and vector X can
be expresssed as

X = Σn
k=1ckUk

where the ck are X-dependent constants. Multiply A∗A by X to obtain :

A∗AX = A∗A(Σn
k=1ckUk) = Σn

k=1ckσk
2Uk

which leads us to

‖AX‖2
2 = (AX)∗AX = X∗(A∗AX) = (Σn

k=1ck
∗Uk

∗)(Σn
j=1cjσj

2Uj = Σn
k=1|ck|2σk2 ≤ σ1

2(Σn
k=1|ck|2) =

σ1
2‖X‖2

2

for arbitrary X. Hence, we have completed step1: we found a constant K = σ1
2 such that

‖AX‖2 ≤ K‖X‖2 for all X. Step2 requires us to find at least one vector X0 for which equality holds; that
is, we must find an X0 with the property that ‖AX0‖2 = K‖X0‖2 the unit-length eigenvector associated
with eigenvalue σ1

2 , will work. Hence, the matrix 2-norm is given by ‖A‖2 =
√
σ12 , the square root of

the largest eigenvalue of A∗A.



2.2 Singular Value Decomposition (SVD)

Formal definition Given Let A ∈ Cm× n.(m and n be arbitrary and A not necessarily of full rank),a
singular value decomposition (SVD) of A is a factorization

A=UΣV *

where

U∈ Cm× m is unitary,
V∈ Cn× n is unitary,
Σ∈ Cm× n is diagonal,

In addition,it is assumed that the daigonal entries σj of Σ are nonnegative and in non increasing order;

that is, σ1 ≥ σ2 ≥· · · · · · ≥ σp ≥ 0 ,where p=min(m,n)Note that the diagonal matrix Σ has the same shape

as A even when A is not square,but U and V are always square unitary matrices.

Existence and Uniqueness Theorem:Every matrix A ∈ Cm×n has a singular value
decomposition.

Proof. To prove existence of the SVD.we isolate the direction of the largest action of
A ,and then proceed by induction on yhe dimension of A.

Set σ1−‖A‖2. By a compactness argument,there must be vector v1 ∈ Cn and u1 ∈ Cm

with ‖v1‖2 = ‖u1‖2 = 1 and Av1 = σu1. Consider any extension of v1 to an orthonormal
basis {vj} of Cm and of u1 to an orthonormal basis {uj} of Cm,and let U1 and V1 denote
the unitary matrices with columns uj and vj, respectively.Then we have

U∗1AV1 = S =

[
σ1 w∗

0 B

]
,

where 0 is a column vector of dimension m-1,w∗ is a row vector of dimension n-1, and B
has dimension (m-1) × (n-1). Furthermore,∥∥∥∥[σ1 w∗

0 B

] [
σ1
w

]∥∥∥∥
2

≥ σ21 + w∗w = (σ21 + w∗w)1/2
∥∥∥∥[σ1w

]∥∥∥∥
2

,

implying ‖S‖2 ≥ (σ21 + w∗w)1/2. Since U1 and V1 are unitary, we know that ‖s2‖ =
‖A‖2 = σ1, so this implies w = 0.

If n = 1 or m = 1, we are done.Otherwise, submatrix B describes the action of A on the
subspace orthogonal to v1.By the induction hypothesis, B has an SVD B = U2Σ2V

∗
2.Now

it is easily verified that

A = U1

[
1 0
0 U2

] [
σ1 0
0 Σ2

] [
1 0
0 V2

]∗
V∗1

is an SVD of A,completing the proof of existence.



� In addition,it is assumed that the daigonal entries σj of Σ are nonnegative and in
non increasing order;

� that is, σ1 ≥ σ2 ≥· · · · · · ≥ σp ≥ 0 ,where p=min(m,n)Note that the diagonal matrix
Σ has the same shape as A even when A is not square,but U and V are always
square unitary matrices.

� The diagonal entries of Σ are known as singular values of A . The m columns of U
and n columns of V are called lest-singular and right-singular vectors of A .

2.3 Example of SVD

We have stated that the purpose of (SVD) is to factor matrix A into UΣVT . The matrix
U contains the left singular vectors, the matrix V contains the right singular vectors,
and the diagonal matrix Σ contains the singular values. Where the singular values are
arranged on the main diagonal in such an order

σ1 ≥ σ2 ≥· · ·≥ σr > σr+1 =· · ·= σp = 0,

where r is the rank of matrix A, and where (p) is the smaller of the dimensions m or
n.

Arbitrary Example We begin the process of Singular Value Decomposition by se-
lecting the matrix A which has m rows and n columns. Now, we need to factor A into
three matrices U, Σ, VT .

First we will find V . If you multiply both sides of the equation A = UΣVT by AT

we get

ATA = (UΣVT )T (UΣVT ) = VΣTUTUΣVT .

Since UTU = I this gives

ATA = VΣ2VT

Now we need to diagonalize ATA. If you will notice, this is very similar to the diag-
onalization of matrix A into A = QΛQT . Except our symmetric matrix is not A, it is



ATA. To find V and Σ we need to find the eigenvalues and eigenvectors of ATA. The
eigenvalues are the square of the elements of Σ (the singular values), and the eigenvectors
are the columns of V (the right singular vectors).

Eliminating V from the equation is very similar to eliminating U . Instead of multi-
plying on the left by AT we will multiply on the right by AT . This gives:

AAT = (UΣVT )(UΣVT )T = UΣVTVΣTUT .

Since VTV = I, this gives

AAT = UΣ2UT

Again we will find the eigenvectors, but this time for AAT . These are the columns of
U (the left singular vectors).
Since A is m× n, Σ is m× n and

ATA

produces an n× n matrix, and:
AAT

produces an m×mmatrix,

A =
(
u1 · · · ur · · · um

)

σ1

. . .

σr
. . .

0




vT1
...
vTr
...
vTn


Where U is m×m, S is m× n, V is n× n.

Example
Let:

A =

(
2 −2
1 1

)
ATA =

(
2 1
−2 1

)(
2 −2
1 1

)
=

(
5 −3
−3 5

)
Subtracting λI from ATA ∣∣∣∣( 5 −3

−3 5

)
− λ

(
1 0
0 1

)∣∣∣∣ = 0



Therefore, ∣∣∣∣5− λ −3
−3 5− λ

∣∣∣∣ = 0

Now find λ,

(5− λ)(5− λ)− 9 = 0

⇒ 25− 10λ+ λ2 − 9 = 0

⇒ λ2 − 10λ+ 16 = 0

⇒ (λ− 8)(λ− 2) = 0

Therefore our eigenvalues are 8 and 2. We construct the matrix S2 by placing the
eigenvalues along the main diagonal in decreasing order.

S2 =

(
8 0
0 2

)
Therefore, taking the square root of matrix S2 gives,

S =

(
2
√

2 0

0
√

2

)
Now we need to find the eigenvectors of ATA which are the columns of V

First we will show where λ = 8,[(
5 −3
−3 5

)
−
(

8 0
0 8

)]
v̂1 = 0

=⇒
(
−3 −3
−3 −3

)
v̂1 = 0

=⇒
(

1 1
0 0

)
v̂1 = 0

Therefore,

v̂1 =

(
−1
1

)
Since V has an orthonormal basis, v̂1 needs to be of length one. We divide v̂1 by its
magnitude to accomplish this. Thus,

v̂1 =

(
−
√
2

2√
2
2

)



Similarly, well show where λ = 2[(
5 −3
−3 5

)
−
(

2 0
0 2

)]
v̂2 = 0

=⇒
(

3 −3
−3 3

)
v̂2 = 0

=⇒
(

1 −1
0 0

)
v̂2 = 0

Therefore,

v̂2 =

(
1
1

)
Similarly dividing by the magnitude to create the orthonormal basis gives,

v̂2 =

(√
2
2√
2
2

)
Now we need to construct the augmented orthogonal matrix V ,

V =
(
v1 v2

)
and,

V =

(
−
√
2

2

√
2
2√

2
2

√
2
2

)
Now we need to find the eigenvectors for AAT . Since the eigenvalues for AAT are the

same as the eigenvalues for ATA. We can go straight to finding the eigenvectors using
the eigenvalues previously found.
First well show where λ = 8, [(

8 0
0 2

)
−
(

8 0
0 8

)]
û1 = 0

=⇒
(

0 0
0 −6

)
û1 = 0

=⇒
(

0 1
0 0

)
û1 = 0

Therefore,

û1 =

(
−1
0

)



Since û1 is already of length one, dividing by the magnitude we get the same vector back.
Similarly, well show where λ = 2[(

8 0
0 2

)
−
(

2 0
0 2

)]
û2 = 0

=⇒
(

6 0
0 0

)
û2 = 0

=⇒
(

1 0
0 0

)
û2 = 0

Therefore,

û2 =

(
0
1

)
Setting up the augmented matrix U

U =
(
u1 u2

)
=

(
−1 0
0 1

)
Therefore

A = USV T

A =

(
−1 0
0 1

)(
2
√

2 0

0
√

2

)(−√2
2

√
2
2√

2
2

√
2
2

)

2.4 Approximation of a matrix using SVD

A m× n matrix A can be expressed as a linear combination of the singular values of the
matrix A and the corresponding vectors ui and vi

T (where ui is ith column of U and vi
T

s ith column of V )

A = UΣV T

Now we can write A as:

A = u1σ1v1
T + u2σ2v2

T + ...+ uiσivi
T + ...+ unσnvn

T



=⇒

A = σ1u1v1 + σ2u2v2 + ...+ σiuivi + ...+ σnunvn

The terms {σ1u1v1, σ2u2v2, ..., σnunvn} are in order of dominance from greatest to least.
(as σ1 ≥ σ2 ≥· · · · · · ≥ σn)

An approximation of the matrix A can be achieved by reducing the number of itera-
tions involved in the linear combination:

Ai = σ1u1v1 + σ2u2v2 + ...+ σiuivi

Keeping only some of these terms may result in a lower image quality, but lower
storage size. This process is sometimes called Principal Component Analysis (PCA) .

2.5 Saving memory using SVD

The matrix A requires n2 elements. U and V T require n2 elements each and Σ requires
n elements. Storing the full svd then requires 2n2 + n elements. Keeping 1 term in the
svd, u1σ1v

T
1 , requires only (2n+ 1) elements.

If we keep first i < n
2 terms, then storing the reduced matrix requires i(2n + 1) ele-

ments, which are less than the original number of elements (2n2 + n) in the matrix.

As a result of PCA, we get the reduced matrix, in other words the elements of this
reduced matrix stores the corresponding pixels of the compressed image.

Thus the memory of the system is reduced in storing the image without compromising
the quality of the image.



2.6 Image spectrum in Matlab

In order to understand how SVD is used in image compression, a brief discussion about
how matlab constructs images is necessary .
Basically each entry in the matrix corresponds to small square of the image.
The numeric value of the entry corresponds to a color in matlab.
The color spectrum can be seen in matlab by typing the following commands :

>> C = 1 : 64;
image(C)

As a reult of this, we get the following image of the spectrum as the output :

With this in mind, entering a 3× 3 matrix of random integers should give a picture of
nine square blocks comprising one large block. Furthermore, the color of each individual
block will correspond to the color pictured at that numerical value as shown .

Let S =

 1 10 20
30 40 60
15 25 35


>> image(S)



It has been shown that any matrix S can be approximated using a lesser number of
iterations when calculating the linear cimbinations defining S. This can be shown using
matlab command “svdimage“ . “svdimage“ is an interactive program which shows the
original image produced by S and the image produced by approximated s . The following
are the three images with respect to first, second and third iterations for the 3×3 matrix
S :



2.7 SVD image example

We take an image and discuss the affect that different iterations will have on it in the
following pages.
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3 Haar wavelet

3.1 Preliminaries

Another technique for image compression is wavelet compression which we will discuss
here.

Haar wavelet compression is an efficient way to perform both lossless and lossy image
compression. It relies on averaging and differencing values in an image matrix to produce
a matrix which is sparse or nearly sparse. A sparse matrix is a matrix in which a large
portion of its entries are 0. A sparse matrix can be stored in an efficient manner, leading
to smaller file sizes.

In information technology, ”lossy” compression is a data encoding method that com-
presses data by discarding (losing) some of it. The procedure aims to minimize the
amount of data that needs to be held, handled, and/or transmitted by a computer.

Lossless data compression is a class of data compression algorithms that allows the
original data to be perfectly reconstructed from the compressed data. By contrast, lossy
data compression, permits reconstruction only of an approximation of the original data,
though this usually allows for improved compression rates (and therefore smaller sized
files).

In our project we concentrated on grayscale images; however, rgb(colour) images can
be handled by compressing each of the color layers separately. The basic method is to
start with an image A, which can be regarded as an m×n matrix with values 0(for black)
to 255(for white). In Matlab, this would be a matrix with unsigned 8-bit integer values.
We then subdivide this image into 8×8 blocks, padding as necessary. It is these 8×8
blocks that we work with



3.2 An Example

Below is a 512 × 512 pixel grayscale image of the flying buttresses of the Notre Dame
Cathedral in Paris:

Figure 1: Flying buttresses of Notre Dame de Paris

And the following is the upper left 8× 8 section of our image:

A =



88 88 89 90 92 94 96 97
90 90 91 92 93 95 97 97
92 92 93 94 95 96 97 97
93 93 94 95 96 96 96 96
92 93 95 96 96 96 96 95
92 94 96 98 99 99 98 97
94 96 99 101 103 103 102 101
95 97 101 104 106 106 105 105


We will concentrate on the first row:

r1 =
(
88 88 89 90 92 94 96 97

)
Our transformation process will occur in three steps. The first step is to group all of

the columns in pairs:

[88, 88], [89, 90], [92, 94], [96, 97]



we replace the first 4 columns of r1 with the average of these pairs and replace the last
4 columns of r1 with 1/2 of the difference of these pairs. We will denote this new row as
r1h1 :

r1h1 =
(
88 89.5 93 96.5 0 −0.5 −1 −0.5

)
The first 4 entries are called the approximation coefficients and the last 4 are called

detail coefficients.
Next, we group the first 4 columns of this new row:

[88, 89.5], [93, 96.5]

and replace the first 2 columns of r1h1 with the average of the pairs and the next 2
columns of r1h1 with 1/2 of the difference of these pairs. We leave the last 4 rows of r1h1
unchanged. We will denote this second new row as r1h1h2 :

r1h1h2 =
(
88.75 94.75 −0.75 −1.75 0 −0.5 −1 −0.5

)
Finally, our last step is to group the first 2 entries of r1h1h2 together:

[88.75, 94.75]

and replace the first column of r1h1h2 with the average of the pairs and the second column
of r1h1h2 with 1/2 of the difference of these pairs. We leave the last 6 rows of r1h1h2
unchanged. We will denote this last new row as r1h1h2h3 :

r1h1h2h3 =
(
91.75 −3 −0.75 2 −1.75 0 −0.5 −1 −0.5

)
We then repeat this process for the remaining rows ofA. After this, we repeat this same

process to columns of A, grouping rows in the same manner as columns.The resulting
matrix is:

96. −2.03125 −1.53125 −0.21875 −0.4375 −0.75 −0.3125 0.125
−2.4375 −0.03125 0.78125 −0.78125 0.4375 0.25 −0.3125 −0.25
−1.125 −0.625 0 −0.625 0 0 −0.375 −0.125
−2.6875 0.75 0.5625 −0.0625 0.125 0.25 0 0.125
−0.6875 −0.3125 0 −0.125 0 0 0 −0.25
−0.1875 −0.3125 0 −0.375 0 0 −0.25 0
−0.875 0.375 0.25 −0.25 0.25 0.25 0 0
−1.25 0.375 0.375 0.125 0 0.25 0 0.25


Notice that this resulting matrix has several 0 entries and most of the remaining entries

are close to 0. This is a result of the differencing and the fact that adjacent pixels in
an image generally do no differ by much. We will now discuss how to implement this
process using matrix multiplication below.



3.3 Haar Wavelet Transformation Matrix

Haar Wavelet Transformation Matrix

If we let

H1 =



1/2 0 0 0 1/2 0 0 0
1/2 0 0 0 −1/2 0 0 0
0 1/2 0 0 0 1/2 0 0
0 1/2 0 0 0 −1/2 0 0
0 0 1/2 0 0 0 1/2 0
0 0 1/2 0 0 0 −1/2 0
0 0 0 1/2 0 0 0 1/2
0 0 0 1/2 0 0 0 −1/2


then AH1 is equivalent to the first step above applied to all of the rows of A.In

particular,

AH1 =



88 89.5 93 96.5 0 −0.5 −1 −0.5
90 91.5 94 97 0 −0.5 −1 0
92 93.5 95.5 97 0 −0.5 −0.5 0
93 94.5 96 96 0 −0.5 0 0

92.5 95.5 96 95.5 −0.5 −0.5 0 0.5
93 97 99 97.5 −1 −1 0 0.5
95 100 103 101.5 −1 −1 0 0.5
96 102.5 106 105 −1 −1.5 0 0


Similarly, by defining H2 by:

H2 =



1/2 0 1/2 0 0 0 0 0
1/2 0 −1/2 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0
0 1/2 0 −1/2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


then then AH1H2 is equivalent to the two steps above applied to all of the rows of A.In



particular,

AH1H2 =



88.75 94.75 −0.75 −1.75 0 −0.5 −1 −0.5
90.75 95.5 −0.75 −1.5 0 −0.5 −1 0
92.75 96.25 −0.75 −0.75 0 −0.5 −0.5 0
93.75 96 −0.75 0 0 −0.5 0 0

94 95.75 −1.5 0.25 −0.5 −0.5 0 0.5
95 98.25 −2 0.75 −1 −1 0 0.5

97.5 102.25 −2.5 0.75 −1 −1 0 0.5
99.25 105.5 −3.25 0.5 −1 −1.5 0 0


Finally, if we define

H3 =



1/2 1/2 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


then then AH1H2H3 is equivalent to the all three steps above applied to all of the

rows of A. In particular,

AH1H2H3 =



91.75 −3 −0.75 −1.75 0 −0.5 −1 −0.5
93.125 −2.375 −0.75 −1.5 0 −0.5 −1 0
94.5 −1.75 −0.75 −0.75 0 −0.5 −0.5 0

94.875 −1.125 −0.75 0 0 −0.5 0 0
94.875 −0.875 −1.5 0.25 −0.5 −0.5 0 0.5
96.625 −1.625 −2 0.75 −1 −1 0 0.5
99.875 −2.375 −2.5 0.75 −1 −1 0 0.5
102.375 −3.125 −3.25 0.5 −1 −1.5 0 0


If we let H be the product of these three matrices, then



H = H1H2H3 =



1/8 1/8 1/4 0 1/2 0 0 0
1/8 1/8 1/4 0 −1/2 0 0 0
1/8 1/8 −1/4 0 0 1/2 0 0
1/8 1/8 −1/4 0 0 −1/2 0 0
1/8 −1/8 0 1/4 0 0 1/2 0
1/8 −1/8 0 1/4 0 0 −1/2 0
1/8 −1/8 0 −1/4 0 0 0 1/2
1/8 −1/8 0 −1/4 0 0 0 −1/2


Note the following:

� The columns of the matrix H1 form an orthogonal subset of R8 (the vector space of
dimension 8 over R); that is these columns are pair wise orthogonal (try their dot
products). Therefore, they form a basis of R. As a consequence, H1 is invertible.
The same is true for H2 and H3.

� As a product of invertible matrices, H is also invertible and its columns form an
orthogonal basis of R.

To apply the procedure to the columns, we just multiply A on the left by HT . So the
resulting matrix is

HTAH =



96. −2.03125 −1.53125 −0.21875 −0.4375 −0.75 −0.3125 0.125
−2.4375 −0.03125 0.78125 −0.78125 0.4375 0.25 −0.3125 −0.25
−1.125 −0.625 0 −0.625 0 0 −0.375 −0.125
−2.6875 0.75 0.5625 −0.0625 0.125 0.25 0 0.125
−0.6875 −0.3125 0 −0.125 0 0 0 −0.25
−0.1875 −0.3125 0 −0.375 0 0 −0.25 0
−0.875 0.375 0.25 −0.25 0.25 0.25 0 0
−1.25 0.375 0.375 0.125 0 0.25 0 0.25


The important part of this process is that it is reversible. In particular, H is an

invertible matrix. If

B = HTAH

then

A = (HT )−1BH−1

B represents the compressed image of A (in the sense that it is sparse). Moreover,
since H is invertible, this compression is lossless



3.4 Lossy Compression

The Haar wavelet transform can be used to perform lossy compression so that the com-
pressed image retains its quality. First, the compression ratio of an image is the ratio
of the non-zero elements in the original to the non-zero elements in the compressed image.

Let A be one of our 8×8 blocks and HTAH be the Haar wavelet compressed image of
A. HTAH contains many detail coefficients which are close to 0. We will pick a number
ε > 0 and set all of the entries of HTAH with absolute value at mostε to 0. This matrix
now has more 0 values and represents a more compressed image. When we decompress
this image using the inverse Haar wavelet transform, we end up with an image which is
close to the original.

For example, with our matrix A from the example, if we choose ε = 0.25 then we end
up with the matrix:

96. −2.03125 −1.53125 0 −0.4375 −0.75 −0.3125 0
−2.4375 0 0.78125 −0.78125 0.4375 0 −0.3125 0
−1.125 −0.625 0 −0.625 0 0 −0.375 0
−2.6875 0.75 0.5625 0 0 0 0 0
−0.6875 −0.3125 0 0 0 0 0 0

0 −0.3125 0 −0.375 0 0 0 0
−0.875 0.375 0 0 0 0 0 0
−1.25 0.375 0.375 0 0 0 0 0


This matrix represents a compression ratio of 48

27 = 1.7 .

Compression ratio If we choose our threshold value ε to be positive (i.e. greater
than zero), then some entries of the transformed matrix will be reset to zero and there-
fore some detail will be lost when the image is decompressed. The key issue is then to
choose ε wisely so that the compression is done effectively with a minimum damage to the
picture. Note that the compression ratio is defined as the ratio of nonzero entries in the
transformed matrix (B = HTAH) to the number of nonzero entries in the compressed
matrix obtained from B by applying the threshold ε.

some images: Original Image , 10.1 Compression Ratio , 30:1 Compression Ratio ,
50:1 Compression Ratio



(a) Original Image (b) 10:1 Compression Ratio

(c) Original Image (d) 30:1 Compression Ratio



(e) Original Image (f) 50:1 Compression Ratio

3.5 Normalization

we can make the compression process faster, more efficient

Let us first recall that an n × n square matrix A is called orthogonal if its columns
form an orthonormal basis of Rn, that is the columns of A are pairwise orthogonal and
the length of each column vector is 1. Equivalently, A is orthogonal if its inverse is equal
to its transpose. That latter property makes retrieving the transformed image via the
equation

A = (HT )−1BH−1 = (H−1)TBH−1 = HBHT

much faster.

Another powerful property of orthogonal matrices is that they preserve magnitude.
In other words, if v is a vector of Rn and A is an orthogonal matrix, then ‖Av‖ = ‖v‖.
Here is how it works:

‖Av‖2 = (Av)T (Av)
= vTATAv

= vT Iv
= vTv

= ‖v‖2

This in turns shows that ‖Av‖ = ‖v‖. Also, the angle is preserved when the transforma-
tion is by orthogonal matrices: recall that the cosine of the angle between two vectors u



and v is given by:

cos(φ) =
u.v

‖u‖ ‖v‖
so, if A is an orthogonal matrix, ψ is the angle between the two vectors Au and Av, then

cos(ψ) =
(Au)(Av)

‖Au‖ ‖Av‖
=

(Au)T (Av)

‖u‖ ‖v‖
=
utATAv

‖u‖ ‖v‖
=

uTv

‖u‖ ‖v‖
=

u.v

‖u‖ ‖v‖
= cos(ψ)

Since both magnitude and angle are preserved, there is significantly less distortion
produced in the rebuilt image when an orthogonal matrix is used. Since the transforma-
tion matrix H is the product of three other matrices, one can normalize H by normalizing
each of the three matrices. The normalized version of H is

H =



√
8/64

√
8/64 1/2 0

√
2/4 0 0 0√

8/64
√

8/64 1/2 0 −
√

2/4 0 0 0√
8/64

√
8/64 −1/2 0 0

√
2/4 0 0√

8/64
√

8/64 −1/2 0 0 −
√

2/4 0 0√
8/64 −

√
8/64 0 1/2 0 0

√
2/4 0√

8/64 −
√

8/64 0 1/2 0 0 −
√

2/4 0√
8/64 −

√
8/64 0 −1/2 0 0 0

√
2/4√

8/64 −
√

8/64 0 −1/2 0 0 0 −
√

2/4


Remark If you look closely at the process we described above, you will notice that

the matrix W is nothing but a change of basis for R8. In other words, the columns of H
form a new basis (a very nice one) of R8. So when you multiply a vector v (written in
the standard basis) of R8 by H, what you get is the coordinates of v in this new basis.
Some of these coordinates can be neglected using our threshold and this what allows the
transformed matrix to be stored more easily and transmitted more quickly.

images The two images below represent a 10:1 compression using the standard and
normalized Haar wavelet transform. Notice that the rounded and angled sections in the
normalized image are of a higher quality.



(g) Standard, 10:1 Compression (h) Normalized, 10:1 Compression

3.6 Progressive Transmission

The Haar wavelet transformation can also be used to provide progressive transmission of
a compressed image.

Every time you click on an image to download it from the Internet, the source com-
puter recalls the Haar transformed matrix from its memory. It first sends the overall
approximation coefficients and larger detail coefficients and a bit later the smaller detail
coefficients. As your computer receives the information, it begins reconstructing in pro-
gressively greater detail until the original image is fully reconstructed.

example: An easy way to do this is consider the images on page 7. First the 50:1
image in its Haar wavelet compressed state is sent. The receiving computer decompresses
this to show the 50:1 image. Next, only the detail coefficients which were zeroed out in
the 50:1 image but not in the 30:1 image are sent. This new data along with the 50:1
image allows us to reconstruct the 30:1 image. Similarly, the detail coefficients which
were zeroed out to give the 30:1 image but not the 10:1 image are sent. From this we
construct the 10:1 image. Finally the remaining detail coefficients are sent, allowing us
to reconstruct the original image. We can stop this process at any time to view the
compressed image rather than the original.



4 Conclusion

Using SVD and Wavelet techniques, we can save a lot of computer memory which can
be used for other purposes. From our personal computers to the servers of all the big
networking websites, all rely heavily on image compression techniques for saving memory,
which in turn relies on linear algebra and we have discussed in detail in this project how
the image compression is done using SVD and Wavelet.
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